Exercises for Combinatorial and Computational Geometry Series 6 — bonus problems

deadline: 16. 2. 2016

- 1. Let C be the set of all cells (faces of maximum dimension) in an arrangement of n lines in the plane. Prove that $\sum_{C \in C} f_0(C)^2 = O(n^2)$, where $f_0(C)$ denotes the number of vertices of a cell C. [3]
- 2. Let S be a set of n geometric objects in the plane. The *intersection graph of* S is a graph on n vertices that correspond to the objects in S. Two vertices are connected by an edge if and only if the corresponding objects intersect.
 - (a) The total number of all graphs on n given vertices is $2^{\binom{n}{2}} = 2^{n^2/2 + O(n)}$. Prove that the total number of all intersection graphs of n line segments in the plane is only $2^{O(n \log n)}$. (Be careful and consider also collinear line segments!) Use the theorem about the number of sign patterns. [3]
 - (b) Show that the number of intersection graphs of n simple curves in the plane is at least $2^{\Omega(n^2)}$. If you wish, you can solve this exercise for n convex sets instead of simple curves. [3]
- 3. Prove that for fixed d the number of unbounded cells in an arrangement of n hyperplanes in \mathbb{R}^d is at most $O(n^{d-1})$. [2]
- 4. (a) How many cells are there in the arrangement of $\binom{d}{2}$ hyperplanes in \mathbb{R}^d with equations $x_i = x_j$, where $1 \le i < j \le d$? [3]
 - (b) How many cells are there in the arrangement of hyperplanes in \mathbb{R}^d with equations $x_i + x_j = 0$ and $x_i = x_j$, where $1 \le i < j \le d$? [2]
- 5. Show that for every positive irrational number α there are infinitely many pairs of numbers $m, n \in \mathbb{N}$ such that

$$\left|\alpha - \frac{m}{n}\right| < \frac{1}{n^2}$$

Use Theorem 2.1.3 from the lecture notes.

6. Prove that for $\alpha = \sqrt{2}$ there are ony finitely many pairs $m, n \in \mathbb{N}$ that satisfy

$$\left|\alpha - \frac{m}{n}\right| < \frac{1}{4n^2}.$$

[3]

[1]

7. Let α_1, α_2 be real numbers. Prove that for every $N \in \mathbb{N}$ there exist $m_1, m_2 \in \mathbb{Z}$, $n \in \mathbb{N}, n \leq N$ such that

$$\left|\alpha_i - \frac{m_i}{n}\right| < \frac{1}{n\sqrt{N}}, \ i = 1, 2.$$

[3]

web: http://kam.mff.cuni.cz/kvg