Exercises for Combinatorial and Computational Geometry

Series 5 - Polytopes, arrangements, and Voronoi diagrams

deadline 5. 1. 2016

1. Count the number of k-dimensional faces, $k=1,2,3$, of a 4 -dimensional cyclic polytope on n vertices.
2. Count the number of 1 - and 2-dimensional faces in an arrangement of n planes in general position in \mathbb{R}^{3}.
3. Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be a set of n points in the plane. We say that points x, y have the same view of P if the points of P are visible in the same cyclic order from x and y. That is, if we rotate light rays that emanate from x and y, respectively, the points of P are lit in the same order by these rays. We assume that neither x nor y is in P and that neither of them can see two points of P in occlusion.
(a) Show that the maximum number of points with mutually distinct views of P is $O\left(n^{4}\right)$.
(b) Show that the bound $O\left(n^{4}\right)$ cannot be improved in general.
4. Show that for $n \geq 2$ the Voronoi diagram of a $2 n$-point set $A_{2 n}:=\{(i, 0,0)$: $i=1,2, \ldots, n\} \cup\{(0, n, j): j=1,2, \ldots, n\}$ in \mathbb{R}^{3} has at least $c n^{2}$ vertices for some positive constant c.
5. Let P be a finite point set in the plane with no three points on a line and no four points on a circle. Define a graph $D T$ (called the Delaunay triangulation) on P as follows: two points a, b are connected by an edge if and only if there exists a circular disk with both a and b on the boundary and no point of P in its interior.
Prove that $D T$ is a pseudotriangulation - a plane graph where every face except of the outer-face is a triangle.
[^0]
[^0]: web: http://kam.mff.cuni.cz/kvg

