Exercises for Combinatorial and Computational Geometry Series 4 — Duality and polytopes

hints 15. 12. 2015, deadline 22. 12. 2015

- 1. For a set $C \subseteq \mathbb{R}^d$, show that $C = C^*$ if and only if C is the closed unit ball with the center in the origin. [2]
- 2. For every set $X \subset \mathbb{R}^d$, show that $(X^*)^*$ is equal to the closure of $\operatorname{conv}(X \cup \{0\})$. [2]
- 3. Let v_1, \ldots, v_n be linearly independent vectors in \mathbb{R}^n . Consider the convex hull C of rays p_1, \ldots, p_n that start in the origin and that are determined by these vectors (that is, $p_i = \{x \in \mathbb{R}^n; x = \lambda v_i, \lambda \ge 0\}$).

Prove that there is a ray in C that forms an acute angle with every ray p_i . [3]

- 4. Consider n line segments in the plane such that each of them is contained in a line passing through the origin, but none of these line segments contains the origin. Show that if every three of the line segments can be intersected by a line, then all the n line segments can be intersected by a line. (By intersecting we mean that the line segment and the line have at least one point in common. In particular, a line containing a line segment intersects this line segment.) [3]
- 5. Find a compact convex set $C \subseteq \mathbb{R}^3$ such that the set $ex(C) = \{x \in C; conv(C \setminus \{x\}) \neq C\}$ is not closed. [3]
- 6. Prove that every polytope $P \subset \mathbb{R}^d$ is an orthogonal projection of some kdimensional regular simplex in \mathbb{R}^n for suitable k, n. (An orthogonal projection is a mapping π from the space \mathbb{R}^n to a subspace $M \cong \mathbb{R}^d$ that is embedded in \mathbb{R}^n such that for every $x \in \mathbb{R}^n$ the vector $\pi(x) - x$ is orthogonal to M.) [4+hint]

web: http://kam.mff.cuni.cz/kvg