Exercises for Combinatorial and Computational Geometry
 Series 4 - Duality and polytopes

hints 15. 12. 2015, deadline 22. 12. 2015

1. For a set $C \subseteq \mathbb{R}^{d}$, show that $C=C^{*}$ if and only if C is the closed unit ball with the center in the origin.
2. For every set $X \subset \mathbb{R}^{d}$, show that $\left(X^{*}\right)^{*}$ is equal to the closure of $\operatorname{conv}(X \cup$ $\{0\}$).
3. Let v_{1}, \ldots, v_{n} be linearly independent vectors in \mathbb{R}^{n}. Consider the convex hull C of rays p_{1}, \ldots, p_{n} that start in the origin and that are determined by these vectors (that is, $p_{i}=\left\{x \in \mathbb{R}^{n} ; x=\lambda v_{i}, \lambda \geq 0\right\}$).
Prove that there is a ray in C that forms an acute angle with every ray p_{i}. [3]
4. Consider n line segments in the plane such that each of them is contained in a line passing through the origin, but none of these line segments contains the origin. Show that if every three of the line segments can be intersected by a line, then all the n line segments can be intersected by a line. (By intersecting we mean that the line segment and the line have at least one point in common. In particular, a line containing a line segment intersects this line segment.) [3]
5. Find a compact convex set $C \subseteq \mathbb{R}^{3}$ such that the set ex $(C)=\{x \in C ; \operatorname{conv}(C \backslash$ $\{x\}) \neq C\}$ is not closed.
6. Prove that every polytope $P \subset \mathbb{R}^{d}$ is an orthogonal projection of some k dimensional regular simplex in \mathbb{R}^{n} for suitable k, n. (An orthogonal projection is a mapping π from the space \mathbb{R}^{n} to a subspace $M \cong \mathbb{R}^{d}$ that is embedded in \mathbb{R}^{n} such that for every $x \in \mathbb{R}^{n}$ the vector $\pi(x)-x$ is orthogonal to M.) [4+hint]
[^0]
[^0]: web: http://kam.mff.cuni.cz/kvg

