Exercises for Combinatorial and Computational Geometry

Series 1 -Convex sets

hints 27.10.2015, deadline 3.11.2015

Please choose a nickname that will be used in the list of scores on the webpage of the exercises. If you have already chosen a nickname, you can just sign your solutions with either your name or your nickname.

- 1. Find a set $M \subset \mathbb{R}^2$ that is a union of two convex sets such that $\mathbb{R}^2 \setminus M$ consists of five pairwise disjoint connected components. [2]
- 2. Prove Carathéodory's theorem (you may use Radon's theorem or a part of its proof). [2]
- 3. Let $M = \{x_1, y_1, x_2, y_2, \dots, x_{d+1}, y_{d+1}\}$ be a set of 2d+2 points in \mathbb{R}^d . Prove that M can be partitioned into two subsets A and B such that each of these subsets contains exactly one point from $\{x_i, y_i\}$ for every $i = 1, 2, \dots, d+1$ and the convex hulls of A and B have a nonempty intersection. (You may use the fact that the (d + 1)-tuple of vectors $x_i - y_i$ is linearly dependent and then use an approach similar to the proof of Radon's theorem.) [2]
- 4. We say that a set P pierces the triangles of a point set M if every triangle determined by a triple of points of M contains at least one point of P in its interior. Prove that for every n-point set $M \subset \mathbb{R}^2$ in general position (no three points on a line) there is a set P of 2n 5 points that pierces the triangles of M. [3]
- 5. Let $X_1, X_2, \ldots, X_{d+1}$ be finite point sets in \mathbb{R}^d such that for every $i \in \{1, 2, \ldots, d+1\}$ the origin lies in $\operatorname{conv}(X_i)$. Prove that there exist (d+1) points $x_i \in X_i, i \in \{1, 2, \ldots, d+1\}$, such that the origin lies in $\operatorname{conv}(\{x_1, x_2, \ldots, x_{d+1}\})$. [4, hint]

web: http://kam.mff.cuni.cz/kvg