Exercises for Combinatorial and Computational Geometry
 Series 1 - Convex sets

hints 27.10.2015, deadline 3.11.2015
Please choose a nickname that will be used in the list of scores on the webpage of the exercises. If you have already chosen a nickname, you can just sign your solutions with either your name or your nickname.

1. Find a set $M \subset \mathbb{R}^{2}$ that is a union of two convex sets such that $\mathbb{R}^{2} \backslash M$ consists of five pairwise disjoint connected components.
2. Prove Carathéodory's theorem (you may use Radon's theorem or a part of its proof).
3. Let $M=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{d+1}, y_{d+1}\right\}$ be a set of $2 d+2$ points in \mathbb{R}^{d}. Prove that M can be partitioned into two subsets A and B such that each of these subsets contains exactly one point from $\left\{x_{i}, y_{i}\right\}$ for every $i=1,2, \ldots, d+1$ and the convex hulls of A and B have a nonempty intersection. (You may use the fact that the $(d+1)$-tuple of vectors $x_{i}-y_{i}$ is linearly dependent and then use an approach similar to the proof of Radon's theorem.) [2]
4. We say that a set P pierces the triangles of a point set M if every triangle determined by a triple of points of M contains at least one point of P in its interior. Prove that for every n-point set $M \subset \mathbb{R}^{2}$ in general position (no three points on a line) there is a set P of $2 n-5$ points that pierces the triangles of M.
5. Let $X_{1}, X_{2}, \ldots, X_{d+1}$ be finite point sets in \mathbb{R}^{d} such that for every $i \in$ $\{1,2, \ldots, d+1\}$ the origin lies in $\operatorname{conv}\left(X_{i}\right)$. Prove that there exist $(d+$ 1) points $x_{i} \in X_{i}, i \in\{1,2, \ldots, d+1\}$, such that the origin lies in $\operatorname{conv}\left(\left\{x_{1}, x_{2}, \ldots, x_{d+1}\right\}\right)$.
