CIR graphs with no k-clique and no l-independent set

Circle graphs are intersection graphs of chords in a circle. So the vertices are chords of a circle. Two vertices are joint by an edge if the corresponding chords intersects.

How many vertices can have a circle graph with no $k$ clique and no independent set of size $l$?

We denote the number of verices by $c_k_l$.

k\l 2 3 4 5 6 7 8 9
2 1
2_2.pdf
2_2.info
2
2_3.pdf
2_3.info
3
2_4.pdf
2_4.info
4
2_5.pdf
2_5.info
5
2_6.pdf
2_6.info
6
2_7.pdf
2_7.info
7
2_8.pdf
2_8.info
3 2
3_2.pdf
3_2.info
5
3_3.pdf
3_3.info
8
3_4.pdf
3_4.info
12
3_5.pdf
3_5.info
15
3_6.pdf
3_6.info
19
3_7.pdf
3_7.info
>22
3_8.pdf
3_8.info
4 3
4_2.pdf
4_2.info
8
4_3.pdf
4_3.info
13
4_4.pdf
4_4.info
19
4_5.pdf
4_5.info
5 4
5_2.pdf
5_2.info
11
5_3.pdf
5_3.info
18
5_4.pdf
5_4.info
>22
5_5.pdf
5_5.info
6 5
6_2.pdf
6_2.info
14
6_3.pdf
6_3.info
23
6_4.pdf
6_4.info
7 6
7_2.pdf
7_2.info
17
7_3.pdf
7_3.info
28
7_4.pdf
7_4.info
8 7
8_2.pdf
8_2.info
20
8_3.pdf
8_3.info
33
8_4.pdf
8_4.info
9

You can download program for finding the maximal circle graph with no $k$ clique and no $l$ independent set (cir_max.tgz).