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Abstract

In this paper we derive a general combinatorial identity in terms of polynomials with
dual sequences of coefficients. Moreover, combinatorial identities involving Bernoulli and Euler
polynomials are deduced. Also, various other known identities are obtained as particular cases.
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1. Introduction

Let {an}n∈N be a sequence of complex numbers whereN = {0, 1, 2, . . .}. We call the
sequence{a∗

n}n∈N given by

a∗
n =

n∑
i=0

(
n

i

)
(−1)i ai (1.1)

thedual sequenceof {an}n∈N. It is well known thata∗∗
n = an for all n ∈ N (see, e.g. [2,

pp. 192–193]). Those self-dual sequences are of particular interest and were investigated
in [5]. The Bernoulli numbersB0, B1, . . . are given byB0 = 1 and

∑n
i=0

(n+1
i

)
Bi =

0 (n = 1, 2, 3, . . .); since B1 = −1/2 and B2k+1 = 0 for k = 1, 2, . . . the sequence
{(−1)nBn}n∈N is self-dual asobserved in [5]. Like the definition of Bernoulli polynomials
(see, e.g. [6]), we introduce

An(x) =
n∑

i=0

(
n

i

)
(−1)i ai x

n−i and A∗
n(x) =

n∑
i=0

(
n

i

)
(−1)i a∗

i xn−i . (1.2)

Obviously An(0) = (−1)nan, An(1) = a∗
n and

A′
n+1(x) =

n∑
i=0

(
n + 1

i

)
(−1)i ai (n + 1 − i )xn−i = (n + 1)An(x).
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In 1995 Kaneko [3] found the following new recursion formula for Bernoulli numbers:

k∑
j =0

(
k + 1

j

)
(k + j + 1)Bk+ j = 0 for k = 1, 2, . . . .

By means of the Volkenborn integral, Momiyama [4] got the following symmetric
extension: if k, l ∈ N andk + l > 0, then

(−1)k
k∑

j =0

(
k + 1

j

)
(l + j + 1)Bl+ j + (−1)l

l∑
j =0

(
l + 1

j

)
(k + j + 1)Bk+ j = 0.

Recently Wu et al. [7] proved furtherthat fork, l ∈ N we have

(−1)k
k∑

j =0

(
k + 1

j

)
(l + j + 1)Bl+ j (t) + (−1)l

l∑
j =0

(
l + 1

j

)
(k + j + 1)Bk+ j (−t)

= (−1)k(k + l + 2)(k + l + 1)tk+l . (1.3)

Motivated by the above work, we obtain the following general theorem.

Theorem 1.1. Let k, l ∈ N and x+ y + z = 1. Then

(−1)k
k∑

j =0

(
k

j

)
xk− j Al+ j +1(y)

l + j + 1
+ (−1)l

l∑
j =0

(
l

j

)
xl− j

A∗
k+ j +1(z)

k + j + 1

= a0(−x)k+l+1

(k + l + 1)
(k+l

k

) . (1.4)

Also,

(−1)k
k∑

j =0

(
k

j

)
xk− j Al+ j (y) = (−1)l

l∑
j =0

(
l

j

)
xl− j A∗

k+ j (z) (1.5)

and

(−1)k
k∑

j =0

(
k + 1

j

)
xk− j +1(l + j + 1)Al+ j (y)

+ (−1)l
l∑

j =0

(
l + 1

j

)
xl− j +1(k + j + 1)A∗

k+ j (z)

= (k + l + 2)((−1)k+1Ak+l+1(y) + (−1)l+1A∗
k+l+1(z)). (1.6)

Remark 1.1. (1.5) in thecasel = 0 yields that

k∑
j =0

(
k

j

)
xk− j A j (y) = (−1)k A∗

k(1 − x − y) =
k∑

j =0

(
k

j

)
0k− j A j (x + y)

= Ak(x + y).
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Corollary 1.1. Let k be a nonnegative integer. If a∗
n = an for all n ∈ N, then

k∑
j =0

(
k

j

)
(−1) j (2t − 1)k− j Ak+ j +1(t)

k + j + 1
= a0(2t − 1)2k+1

2(2k + 1)
(2k

k

) (1.7)

and

k∑
j =0

(
k + 1

j

)
(k + j + 1)(1 − 2t)k− j +1Ak+ j (t) = −2(k + 1)A2k+1(t). (1.8)

If a∗
n = −an for all n ∈ N, then

k∑
j =0

(
k

j

)
(1 − 2t)k− j Ak+ j (t) = 0 (1.9)

and in particular

k∑
j =0

(
k

j

)
(−1) j ak+ j = 0.

Proof. To obtain (1.7)–(1.9), we simply take l = k, x = 1 − 2t and y = z = t in
(1.4)–(1.6). (1.9) in thecaset = 0 gives the last identity. �

Example 1.1. Let u0 = 0,u1 = 1, andus+1 = aus+bus−1 for s = 1, 2, . . . , wherea and
b are complex numbers witha2 + 4b �= 0. It is well known thatun = (αn − βn)/(α − β)

for all n ∈ N, whereα andβ are the two roots of the equationx2 − ax − b = 0. Observe
that

u∗
n =

n∑
i=0

(
n

i

)
(−1)i α

i − β i

α − β
= (1 − α)n − (1 − β)n

α − β

(and henceu∗
n = −un if a = 1). Also,

n∑
i=0

(
n

i

)
(−1)i u∗

i (1 − a)n−i

=
n∑

i=0

(
n

i

)
(α − 1)i − (β − 1)i

α − β
(1 − a)n−i

= (α − a)n − (β − a)n

α − β
= (−1)n βn − αn

α − β
= (−1)n−1un.

Let k, l ∈ N. Applying (1.4)–(1.6) with x = a, y = 0 andz = 1 − a, we obtain the
following identities:

k∑
j =0

(
k

j

)
(−1) j ak− j ul+ j +1

l + j + 1
=

l∑
j =0

(
l

j

)
(−1) j al− j uk+ j +1

k + j + 1
, (1.10)
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k∑
j =0

(
k

j

)
(−1) j ak− j ul+ j = −

l∑
j =0

(
l

j

)
(−1) j al− j uk+ j , (1.11)

k∑
j =0

(
k + 1

j

)
(−1) j ak− j +1(l + j + 1)ul+ j −

l∑
j =0

(
l + 1

j

)
(−1) j al− j +1

× (k + j + 1)uk+ j = ((−1)k − (−1)l )(k + l + 2)uk+l+1.

In the casel = k, (1.11)yields the following recursion formula:

k∑
j =0

(
k

j

)
(−1) j ak− j uk+ j = 0.

Theorem 1.1has the following important application.

Theorem 1.2. Let k and l be nonnegative integers.

(i) If x + y + z = 0 then

(−1)k
k∑

j =0

(
k

j

)
xk− j yl+ j +1

l + j + 1
+ (−1)l

l∑
j =0

(
l

j

)
xl− j zk+ j +1

k + j + 1

= (−x)k+l+1

(k + l + 1)
(k+l

k

) . (1.12)

In particular,

k∑
j =0

(
k

j

)
(−1) j

2 j (k + j + 1)
= 2k

(2k + 1)
(2k

k

) . (1.13)

(ii) For n ∈ N let Bn(x) denote the Bernoulli polynomial of degree n. Suppose that
x + y + z = 1. Then

(−1)k
k∑

j =0

(
k

j

)
xk− j Bl+ j +1(y)

l + j + 1
+ (−1)l

l∑
j =0

(
l

j

)
xl− j Bk+ j +1(z)

k + j + 1

= (−x)k+l+1

(k + l + 1)
(k+l

k

) . (1.14)

Also,

(−1)k
k∑

j =0

(
k

j

)
xk− j Bl+ j (y) = (−1)l

l∑
j =0

(
l

j

)
xl− j Bk+ j (z) (1.15)

and

(−1)k
k∑

j =0

(
k + 1

j

)
xk− j +1(l + j + 1)Bl+ j (y)
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+ (−1)l
l∑

j =0

(
l + 1

j

)
xl− j +1(k + j + 1)Bk+ j (z)

= (−1)k(k + l + 2)(Bk+l+1(x + y) − Bk+l+1(y)). (1.16)

(iii) The second part remains valid if we replace all the Bernoulli polynomials in
(1.14)–(1.16) by corresponding Euler polynomials defined by2exz/(ez + 1) =∑∞

n=0 En(x)zn/n!.
Proof. (i) Let a0 = 1 andai = 0 for i = 1, 2, 3, . . . . For anyn ∈ N we clearly have
a∗

n = 1, An(t) = tn and A∗
n(t) = (t − 1)n. If x + y + z = 0, thenx + y + (1 + z) = 1

and A∗
n(1 + z) = zn, therefore (1.12) follows from (1.4). When l = k, x = −1 and

y = z = 1/2, (1.12) yields (1.13).
(ii) Let an = (−1)nBn for n ∈ N. Then A∗

n(x) = An(x) = Bn(x). Applying
Theorem 1.1we obtain the identities (1.14)–(1.16). (Note thatBn(1 − t) = (−1)nBn(t).)

(iii) By the definition of the Euler polynomials,En(1 − x) = (−1)nEn(x) and
En(x+y) = ∑n

i=0

(n
i

)
Ei (x)yn−i for anyn ∈ N. Letan = (−1)nEn(0) for n = 0, 1, 2, . . . .

Thena∗
n = ∑n

i=0

(n
i

)
Ei (0) = En(1) = an andAn(x) = A∗

n(x) = En(x). So we have part
(iii) by Theorem 1.1.

The proof ofTheorem 1.2is now complete. �

Remark 1.2. In the casex = 1, y = t andz = −t , (1.16) turns out to be (1.3) since
Bn(1+ t) = Bn(t)+ntn−1. (1.15) in thecasex = 1, and its analogue with respect to Euler
polynomials were recently discovered in [7]. When l = k, x = 1 − 2t and y = z = t ,
(1.14) and (1.16) yield the following interesting identities:

k∑
j =0

(
k

j

)
(−1) j (2t − 1)k− j Bk+ j +1(t)

k + j + 1
= (2t − 1)2k+1

2(2k + 1)
(2k

k

) , (1.17)

k∑
j =0

(
k + 1

j

)
(k + j + 1)(1 − 2t)k− j +1Bk+ j (t) = −2(k + 1)B2k+1(t). (1.18)

They remain valid if the Bernoulli polynomials are replaced by corresponding Euler
polynomials.

In the next section we will give more applications ofTheorem 1.1. Section 3will be
devoted to a proof ofTheorem 1.1.

2. More applications of Theorem 1.1

Theorem 2.1. Let {an}n∈N be a sequence of complex numbers, and let k, l ∈ N. Then we
have

k∑
j =0

(
k

j

)
(−1) j al+ j +1

l + j + 1
+

l∑
j =0

(
l

j

)
(−1) j

a∗
k+ j +1

k + j + 1
= a0

(k + l + 1)
(k+l

k

) . (2.1)
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Also,

k∑
j =0

(
k

j

)
(−1) j al+ j =

l∑
j =0

(
l

j

)
(−1) j a∗

k+ j (2.2)

and

k∑
j =0

(
k + 1

j

)
(−1) j (l + j + 1)al+ j +

l∑
j =0

(
l + 1

j

)
(−1) j (k + j + 1)a∗

k+ j

= (k + l + 2)((−1)kak+l+1 + (−1)l a∗
k+l+1). (2.3)

Proof. (2.1)–(2.3) follow from (1.4)–(1.6) in thecasex = 1 andy = z = 0. �

Example 2.1. Let k, l , m ∈ N. The Stirling numbersS(m, n)(n ∈ N) of the second kind
are given byxm = ∑∞

n=0 S(m, n)(x)n, where(x)0 = 1 and(x)n = x(x−1) · · · (x−n+1)

for n = 1, 2, . . . . Observe that

n∑
i=0

(
n

i

)
(−1)i ((−1)i i !S(m, i )) =

∞∑
i=0

S(m, i )(n)i = nm for n ∈ N.

Applying (2.2) we obtain the identity

k∑
j =0

(
k

j

)
(l + j )!S(m, l + j ) =

l∑
j =0

(
l

j

)
(−1)l− j (k + j )m. (2.4)

Example 2.2. For n = 1, 2, 3, . . . the nth Bell numberbn expresses the number of
partitions of a set of cardinalityn, in addition b0 = 1. It is well known that

n∑
i=0

(
n

i

)
(−1)i ((−1)i bi ) = bn+1 for n ∈ N

(see, e.g. [2, p. 359]). ApplyingTheorem 2.1to the sequence{(−1)nbn}n∈N we obtain the
following three identities fork, l ∈ N.

l∑
j =0

(
l

j

)
(−1) j bk+ j +2

k + j + 1
− (−1)l

k∑
j =0

(
k

j

)
bl+ j +1

l + j + 1
= 1

(k + l + 1)
(k+l

k

) , (2.5)

k∑
j =0

(
k

j

)
bl+ j =

l∑
j =0

(
l

j

)
(−1)l− j bk+ j +1, (2.6)

k∑
j =0

(
k + 1

j

)
(l + j + 1)bl+ j +

l∑
j =0

(
l + 1

j

)
(−1)l− j (k + j + 1)bk+ j +1

= (k + l + 2)(bk+l+2 − bk+l+1). (2.7)
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Theorem 2.2. Let k, l , m ∈ N. Then we have

k∑
j =0

(
k

j

)
(−1) j

l + j + 1

(
x + l + j + 1

m

)

= (−1)k
∑

k< j ≤m

1

j

(
l

j − k − 1

)(
x

m − j

)
+

(x
m

)
(k + l + 1)

(k+l
k

) . (2.8)

Also,

k∑
j =0

(
k

j

)
(−1) j

( y
l+ j +1

)
(x−1

l+ j

) +
l∑

j =0

(
l

j

)
(−1) j

( x−y
k+ j +1

)
(x−1
k+ j

)
= x

(k + l + 1)
(k+l

k

) (2.9)

and

k∑
j =0

(
k

j

)
(−1) j

( y
l+ j

)
( x
l+ j

) =
l∑

j =0

(
l

j

)
(−1) j

(x−y
k+ j

)
( x
k+ j

) . (2.10)

Proof. Let an = (x+n
m

)
for n ∈ N. By identity (3.47) of Gould [1] or (5.24) of [2], we have

a∗
n =

n∑
i=0

(
n

i

)
(−1)i

(
x + i

m

)
=

{
(−1)n

( x
m−n

)
if m ≥ n,

0 otherwise.

Applying (2.1) we obtain (2.8).
Let cn = (y

n

) /(x
n

)
for n ∈ N. Thenc∗

n = (x−y
n

) /(x
n

)
by (7.1) of [1], in fact

(
x

n

)
c∗

n =
n∑

i=0

(
x − i

n − i

)
(−1)i

(
y

i

)
= (−1)n

n∑
i=0

(
n − 1 − x

n − i

)(
y

i

)

= (−1)n
(

n − 1 − x + y

n

)
=

(
x − y

n

)
.

Note that(n + 1)
( x
n+1

) = x
(x−1

n

)
for anyn ∈ N. So (2.9) and (2.10) follow from the first

and the second identities inTheorem 2.1. �

3. Proof of Theorem 1.1

Lemma 3.1. Let i, k, l ∈ N. Then

l∑
j =0

(
l

j

)(
k + j

i

)
(−1)l− j (1 + t)k+ j −i =

k∑
j =0

(
k

j

)(
l + j

i

)
t l+ j −i . (3.1)
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Proof. Clearly
k∑

j =0

(
k

j

)(
l + j

i

)
t l+ j −i −

l∑
j =0

(
l

j

)(
k + j

i

)
(−1)l− j (1 + t)k+ j −i

=
k∑

j =0

(
k

j

)
(t l+ j )(i )

i ! −
l∑

j =0

(
l

j

)
(−1)l− j ((1 + t)k+ j )(i )

i !

= 1

i ! · di

dt i


 k∑

j =0

(
k

j

)
t l+ j −

l∑
j =0

(
l

j

)
(−1)l− j (1 + t)k+ j




= 1

i ! · di

dt i
(t l (1 + t)k − (1 + t)k(1 + t − 1)l ) = 0.

This proves (3.1). �
Proof of Theorem 1.1. Observe that

(−1)k
k∑

j =0

(
k

j

)
xk− j Al+ j +1(y)

l + j + 1
+ (−1)l

l∑
j =0

(
l

j

)
xl− j

A∗
k+ j +1(z)

k + j + 1

= (−1)k
k∑

j =0

(
k

j

)
xk− j

l + j + 1


a0yl+ j +1 +

l+ j∑
i=0

(
l + j + 1

i + 1

)
(−1)i+1

× ai+1yl+ j +1−(i+1)


 + (−1)l

l∑
j =0

(
l

j

)
xl− j

k + j + 1

×
k+ j +1∑

r=0

(
k + j + 1

r

)
(−1)r a∗

r zk+ j +1−r

= ca0 +
k+l∑
i=0

ci (−1)i+1 ai+1

i + 1

where

c = (−1)k
k∑

j =0

(
k

j

)
xk− j yl+ j +1

l + j + 1

+ (−1)l
l∑

j =0

(
l

j

)
xl− j

k + j + 1

k+ j +1∑
r=0

(
k + j + 1

r

)
(−1)r zk+ j +1−r

and

ci − (−1)k
k∑

j =0

(
k

j

)
xk− j

(
l + j

i

)
yl+ j −i

= (−1)l
l∑

j =0

(
l

j

)
xl− j

k + j + 1

∑
i<r≤k+ j +1

(
k + j + 1

r

)
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× (−1)r
(

r

i + 1

)
(i + 1)zk+ j +1−r

= (−1)l
l∑

j =0

(
l

j

)
xl− j

(
k + j

i

)
(−1)k+ j +1

×
∑

i<r≤k+ j +1

(
k + j − i

r − 1 − i

)
(−z)k+ j −i−(r−1−i )

= (−1)k−1
l∑

j =0

(
l

j

)(
k + j

i

)
(−x)l− j (1 − z)k+ j −i .

Obviouslyci = 0 whenx = 0. If x �= 0, then

(−1)kci

xk+l−i =
k∑

j =0

(
k

j

)(
l + j

i

) ( y

x

)l+ j −i

−
l∑

j =0

(
l

j

)(
k + j

i

)
(−1)l− j

(
1 + y

x

)k+ j −i

= 0

by Lemma 3.1.
Let us now calculate the value ofc. Clearly

(−1)kc =
k∑

j =0

(
k

j

)
xk− j yl+ j +1

l + j + 1

+ (−1)k+l
l∑

j =0

(
l

j

)
xl− j (−1)k+ j +1

k + j + 1
(1 − z)k+ j +1

=
k∑

j =0

(
k

j

)
xk− j

∫ y

0
t l+ j dt −

l∑
j =0

(
l

j

)
(−x)l− j

∫ x+y

0
tk+ j dt

=
∫ y

0

k∑
j =0

(
k

j

)
xk− j t l+ j dt −

∫ x+y

0

l∑
j =0

(
l

j

)
(−x)l− j tk+ j dt

=
∫ y

0
t l (x + t)kdt −

∫ x+y

0
tk(t − x)l dt

=
∫ x+y

x
sk(s − x)l ds −

∫ x+y

0
tk(t − x)l dt = −

∫ x

0
sk(s − x)l ds

= −
∫ 1

0
(tx)k(tx − x)l xdt = (−1)l+1xk+l+1B(k + 1, l + 1),
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whereB(k + 1, l + 1) := ∫ 1
0 tk(1 − t)l dt is known to be

Γ (k + 1)Γ (l + 1)

Γ (k + l + 2)
= k! l !

(k + l + 1)! = 1

(k + l + 1)
(k+l

k

) .

So we havec = (−x)k+l+1/
(
(k + l + 1)

(k+l
k

))
.

In view of the above, (1.4) holds.
If we replacez in (1.4) by 1− x − y and take partial derivation with respect toy, then

we obtain (1.5) from (1.4). Substitutingk + 1 andl + 1 for k and l in (1.5) and taking
derivation with respect toy, we then get (1.6).

The proof ofTheorem 1.1is now complete. �
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