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Abstract

Szekeres proved, using complex analysis, an asymptotic formula for the number of partitions
of n into at mostk parts. Canfield discovered a simplification of the formula, and proved it
without complex analysis. We re-prove the formula, in the asymptotic regime Wwieat least a
constant times/n, by showng thatit is equivalent to a local central limit theorem in Fristedt's
model for random pditions. We then apply the formula to derive asymptotics for the number of
minimal differenced partitions with a given number of parts. As a corollary, we find (explicitly
computable) constantg, B4, 14, og such that the number of minimal differendgartitions ofn is
(1 + o(1))cgn—/4exp(B4+/N) (a result of Meinardus), almost all of them (fractiafil + 0(1)))
have approximatelyy./n parts, and the distribution of the number of parts in a random such
partition is asymptotically normal with standard deviatioh+ o(1))ogn/4. In paticular, y, =
V15lod (1 + +/5)/2]/x.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Let p(n,k) be the number of unordered partitions ofinto exactly k parts. Let
P(n,k)y = Z‘j‘zl p(n, j) be the number of partitions of into at mostk parts, or
equivalently the number of partitions ofinto parts all of which do not excedd Hardy
and Ramanujan/] proved the famus asymptotic formula

1
P(n, oo) ~ —— & v2/3 1
( 44/3n @
for thetotal number of all partitions, whera, ~ by means lim_ . an/bn = 1. Some

35 years later, SzekereEl] derived an asymptotic formula fdP(n, k). A few years ago,
Canfield P] discovered a simpler way to write the formula. This is easiest to understand
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whenk is goproximately a constanttimes./n. The famula then takes the form

P(n, ty/n) ~ %em“ﬁ )
whereG(t) andH (t) are functions defined as follows: for&x < 1, let
X dt o x™
Liox)= | —logl—-t)— =) =—
i2(X) fo 0g(1 - 1) mgl -

be the dilogarithm function. Define a functian [0, co] — [0, 7/+/6] by the mplicit
equation

a(t)? = Lip(1— e @O,
It is easy to check that(t) is an increasing function that satisfie$0) = 0, a(c0) =
7/+/6. ThenG(t), g(t) andH (t) are given by

a(t)

27[2 — (12 4 2)e~2Ot]1/2
H(t) = 2a(t) — tlog(l — e *®t),

G(t) =

Define also
g(t) = e *OG().

One can obtain fron) also a asympttic formula for p(n, k), nanely
t
p(n, [tv/h]) ~ ?e”“”ﬁ. (3)

Theorem 1. As n — oo, (2) holds uniformly for te [T, oo] for every T > 0. (3) holds
uniformly as t ranges over compact subsetflobo).

Szekeres'’s proof dfheorem lused complex analysis and the saddle point method, and
required considerable analytic insight, espélgigiven his more complicated formulation
of (2). As well as simfifying it, Canfield re-proved Z) without recourse to complex
analysis, by using only the recurrence equation satisfie® oy k) and elementary real
analysis. Our first main goal in this paper is to give a new probabilistic probfiebrem 1
Our proof uses Fristedt’s conditiing device for random partitions§][ We showthat the
proof of (2) redwces to proving a local limit theorem in Fristedt’'s model. We then apply
the standard methodology of prdiikty theory, namely reprsnting the pobabilities as
inverse Fourierritegrals. This is formally equivalent to the use of contour integration and
the saddle point method in Szekeres’s paper, but in our opinion the probabilistic outlook
gives important insight into the technigu& similar use of local limit theorems can be
found, e.g.,in3, 6, 9.

The form of the function&(t), g(t) andH (t) may seem unwieldy. Our second main
goal in this paper is to show that it is nevertheless possible to extract useful information
from them. We describe an application to the asymptotics of minimal difference partitions:
for d € N, a minmal difference dpartition is a partitioni; > A2 > --- > Ak suchthat
Vi Ai — Ai4+1 > d. Note hat ford = 1 these are just partitions into distinct parts. login)
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be the total number of minimal differendgpartitions of n, and letqq(n, k) be the number
of minimal differenced partitions of n into exactlyk parts. Then we have the formula

k—1 K
qdm,k):p(n—zjd,k) —p(n-d(5)-x). @
=1

since he mappingi)¥_, — (1 —d(k—i))_; gives a bijection between the set of minimal
differenced partitions of n into k parts and the set of partitions ofn — dk(k — 1)/2) into
k parts. ) may now be used to prove:

Theorem 2. For each de N we have as n— oo, uniformly, as t ranges over compact
subsets of0, /2/d):

da(n, [tv/Nn]) ~ @eKd(t)ﬁ o

where

1 t dt t
ka(t) =
U= 1" g@72° <~/1 - dt2/2> exlo(2\/1 —de2 (\/1 — dt2/2))

Theorem 3. For each de N, ddine yy as the unique solution in the intervéd, 1) of the
equation

1-y)d=y.
Define

i 2Li2(yd) + logyd - log(1 — yq)
(Li2(ya) + § log?(1 — ya))¥/2
Vo= —log(1 — yq)
(Li2(ya) + 5 10g%(L — ya)) /2
. 1
(=K ()2
cd = ka(ya)v'2moq.
Then
(a) (Meinardus BJ; see also [L, ExampleB, p. 99])

Cd
ga(n) ~ Weﬂdﬁ'

od

(b) A “typical” minimal differen@ d partition of nhas approximatelyq./n parts. That
is, for anye > 0,

. 1
nI|_>moo m Z Qd (n, k) =1
lk—yav/Nl<ey/n
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Table 1
Values ofcq, Bq, yd andog

d Cd

Bd vd od
i o ¥/12l0g2
1 I3 Z = 0.478815...
21 V/15lod(1++/5)/2]
2 0.216122. .. 7= = 0.351859...
3 0.231676. .. 1.505235. .. 0.507887... 0.294510...
4 0.242867. .. 1.42124. .. 0.453526. .. 0.259883. ..
5 0.251663... 1.35607. .. 0.414727... 0.236017...

(c) The number of parts in a random minimal difference d partition of n has
asymptotically the normal distribution with expectationg./n and standard
deviationogn/4. That is, brany ue R,

1 ! —x2/2

) k Z 14qd(n, k)'—> e dx.
<yd+/N+uagn?/

The first few values o€y, B4, y4, 04 are shown infable 1above. The explicit values
ford = 1,2 are deived using elementary properties of the dilogarithm function. The
cased = 1 of Theorem 8a) is the well-known factj (n) ~ (4 x 3Y%~Lexpr/n/3)
proved by Hardy and Ramanujari[ The result that almost all partitions ofinto distinct
parts have about/12 log(2) /7 )+/n parts was first proved by Eog and Lehnerq]. The
cased = 2 of Theorem 8a) is in accordance with (and can be deduced from) the first
Rogers—Ramanujan identity, which states tpdh) is equal to the number of partitions
of n into parts which are congruent to 1 or 4 modulo 5. The result that a typical minimal
difference 2 partition has approximateky/15 lod (1 + +/5)/2]/7)/n parts is apparently
new. In a forthcoming papeff] we show anew method of deriving this result, based on
the computation of stationary probabilities for a certain Markov chain. The method gives
more genera results on the “limit shape” of this class of partitions, i.e. the functios of
which gives the “typtal” number of parts which are greater tteyin in a random minimal
difference 2 partition. Also, sed][for a recent work on classes of partitions defined by
inequalities (of which minimal difference partitions are an example).

Inthe next section, we outline the steps required for the probhebrem 1In Section 3
we complete the proof, and fBection 4we show howTheorems 2and 3 follow as easy
corollaries toTheorem 1

2. Theorem 1—preparation for the proof

In the next two sections, we use the following notation:

oo k
1
Fi(2) = ng Pk =]—; (d<D

j=1
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is the generating function fd? (n, k), k fixed. Lett € (0, co] be fixed, and write

B 0) 1 (5) 1
kn = t/n, sn_%, Xn =€ _1—%+O<%>.

All our estimateswill be uniform int fort > T > 0. Therefore we may assume for
simplicity of notation that varies slghtly with n in such a maner that ./n is always an
integer.

We now describe a version of Fristedt's probabilistic model for partitiol Fix
0 < x < 1 andk e N. Define independent random variablBg, Ry, R, ..., Rk such
thatR;j + 1 has a gometric distribution with parameter-1x!. More precisely

Pk(Ri=h=@—-xhx!' 1=012...

where Py x denotes probability, with parameteps andk. Let N = Z'j‘zl jRj. Then
(R1, Ry, ..., R) can be thought of as the frequemttading of a randonpartition of
the (random) integeN into parts not exceedirlg i.e. the partition in which 1 appeaRy
times, 2 appearB; times, etc. For any (nonrandom) partition

N=1-r1+2-ro+---+k-rg

of n into parts not exceedinlg given in frequential coding, the probability of it appearing
in the andom model is

k
Pok(Ru=r1,Re=T2,..., Re=ri) = [ [ Puk(Rj =71})

j=1
n

Fr(x)”

k . .
= [J@-xhxl') =
j=1

Therefore the probability thal = nis a sum over alP(n, k) different partitions of into
parts not exceedink, of this quantity, namely

P(n, k)x"
Px,k<N=n)=%.

This is the key observation that we will require for our proof; we have constructed a
random variable whose valygrobabilities are related t®(n, k) in a relatively simple
way. Furthermore, this random variable is a sum of lattice random variables, and thus we
can expect it to be an approximately normafitee random variable and satisfy a local limit
theorem.

The proof of @) will now follow from the following propositions:

Proposition 1. As n— oo,

log Fig, (Xn) = ((t) — tlog(l — e *®))y/n — % logn

1 a(t)
+3 log <—27T(1 — e—a(t)t)> +o0().
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Proposition 2. For choice of parametersptky, N is a random variable with expectation

Exn ke (N) =n (1+ O <%>>

and variance

2 —a (bt
02 (N) ~ B S A -V
Xn:kn at)  a(t)l-eo®t

Proposition 3. For choice of parametersyx k,, the random variable N “satisfies a local
limit theorem at 0", that is

1

Piky(N=n) ~ ———
X N 21 o ke (N)

as n— oo.
In the next setion we prove these claims. To see th3tfollows from them, write

P(n, kn) = X7 ™ Fii,(Xn) - Pk (N =) ~ IONG

1/2
y a® %1 gle®)—tlogl—e Vb)) /A

~1/2
1 (2 2 eot ) /n*3/4

V2r \at)  a(t) 1—e Ot
_ a® o2u(t)—tloga-e®) i _ CM na i
2r[2 — (12 4 2)e~2®1]1/2n n

(3) follows easily from ) using the elation p(n, k) = P(n — k, k) together with the
equation (which is easy to verify)

—3tH(®) + $tPH' () = —ta (D). (6)

3. Proof of the propositions
3.1. Proof ofPropositionl

We use Eler—-Maclaurin summation: write as usyal = x — [x]; then

kn
log Fi, (xn) = log Fii, (€7 *®/VM) = — % " log(1 — e~ *®1/¥M)
j=1

tﬁ 1
= / —log(1 — e @®u/Vyqy + 5= log(1 — e «M/Vy
1

tyn _e—a(t)U/ﬁa(t)/ﬁ < " 1) @

— log(1 — e *®hy) 4 f 5

1 1 — e—au/yn
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a(t)t 1
_ N —log(1 — e ")dv — = log(1 — e @®/¥Ny
a®) Jo)/m 2

Lioga — et / e ({ﬁ Ja(t)} 1) d
) - - v/a — =) dv
2 aty/yal—e" 2
= ﬁ(uz(eﬂx(t)/ﬁ) _ Liz(e*"‘(t)t)) _ 1‘ log(1 — efo:(t)/ﬁ)
a(t) 2

a(ht v

1
— Zlog(1 — e *®ty - /
2 ay/yn 1 —€

({ﬁv/a(t)} - %) dv.

Recall that the dilogarithm function satisfies the identity

2
Lio(xX) + Li2(1 —x) = % —logx - log(1 — x),

which is easily verified by differentiating both sides. Write

Ix(s) = e s 1 d
X()_/s 1—6”({1)/}_5) v.

We will prove shortly that

Ix(s) —> 3log(2m) — 1 @)
s\ 0

uniformly in x for x > X > 0. Assuming this, for the moment, we have

log F,, (Xn) = W\/tﬁ) [—Liz(l —ga®/Viy 4 % log(1 — e«®/VAy

+ L|2(1 — e*a(t)t) _ Ot(t)t |Og(1 _ eot(t)t)j|
— Llog(1 — e /¥ — Liog(1 — e M) — |, (@(t)//M)

i _ a—a(Dt
_ \/ﬁ (le(l (S) ) _t Iog(l— e_a(t)t))

a(t)
+3log(1 — e *®/V) _ Liog(1 — e @®) — Liog(2r) 4 0(2)
= /h(at) —tlogl — e *Y) + 2(og(e(t)/v/n)
— log(1 — e ") — log(27)) + o(1)
= /N(at) —tlog(l — e *®Y) — logn

1 a(t)
+ > log <—27T(1 — e—a(t)t)> + 0o(1)

which was the expregssn that we wanted.
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Proof of (7). To prove (7) and hus finish the proof oProposition 1 write 1« (s), in the
rangex > X, as

X 1 1
IX(S):/ —<{U/S}——) dv
s U 2
“r( e 1 o .
+[$ |:(]_ — eV - ;) s, x1(v) + 1_ev 1[X,X](U):| ({U/S} _ E) dv.

The second integral is a scalar producLi([0, c0)) of the sawtooth functiofw/s} —1/2

with a bounded, square-integrable function, and so can easily be seen to converge to 0,
with the required uniformity irx, ass \, O (this is a version of th Rieman-Lebesgue
lemma). For the first iregral, we conpute

X1 1 LX) rkids g 7y 1
/S ;<{U/S}—§)dv: Z/ks ;<g—k—§)dv+0(3)

k=1
LX/s] 1
=> (1 — <k + E) log((k + 1)/k)> + O(s)
k=1
= | X/s] — 3log(|X/s] + 1)
LX/s] LX/s]+1
+ ) klogk— > (k—1logk+ O(s)
k=1 k=2

= [X/s| — 3log(1X/s] + 1) +log(| X/s])
— | X/s] log(LX/s] + 1) + O(s) — log2n) -1
s\
by Stirling’s formula. O
3.2. Proof ofProposition2

We use thesimple probabilistic fact that iX is a random variable such that + 1 has
geometric diibution with parameter & p < 1, that is

PX=h)=pl-p' 1=0123,...,
then
o0
1—
EX) =Y lpa-p' = —F
=0 P
2

o?(X) =Y 1’pit—p)' - (1_ p) _1-p
—o p p

Now with choiceof parametersy, ky, N = le(“:l jRj,s0

kn j kn i —a(t)j/n
N X N I
Exn,kn(N)—jZ;Jl ] _n;ﬁﬁl_e—a(t)j/ﬁ.
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The sum is a Riemann sum, witku = 1/./n, for the ntegral

/t ue—®u 1 /1—9_‘“”‘ —log(1—v) d Lio(1 — ea®ty
— ="~
0

1—eu a ()2 v a(h)2

The difference between the Riemann sum and the integral is easily seerOd pgn),
SO

Exoka (N) = N(L+ O(1/v/)).

Similarly, the variance

) /2 2 e—ae®j/sn
Ok (N) = JX;J 1 Xn)2 Z ( ) (1—ee®i/Vn)2
32 /t U2e-a(bu @

0 (1 _ e—a(t)U)Z

The integral can be evaluated to be

t 2g-atu 1 1—e Ot |ng(1 —v)
du = —————dx
0 a- efot(t)U)Z ot(t)3 X2

v=1-g Mt

[2L|2(v) — Y og?(1 - v)i|

1
()3

v=0

_ 1 aa (bt 2,0 €W

= (t)3 |:2|_|2(1 )—O{(t) t m
2 t2 e—oz(t)t

al)  a(t) 1—ee®

3.3. Proof ofProposition3

We now reach the most delicate part of the analysis, namely the proof of the claim
that N satisfies a local limit theorem at 0. The idea is to use Fourier inversion. Denote by
#x.k(S) = Exk(€5N) the characteristic function df for parameter choice, k. Then

i P(n, k)x”eins _ F(x€®)

_ _ ins _
$xk(S) =D Pk(N =me" = ROO R0

n=0 n=0
and using Fourier inversion we get what is really a disguised contour integral:

b/

1 .
Pxn,kn(N = n) = - ¢xn,kn (S)eimsds
2m -

1 ”an,kn(N) .
- - B ke (U0 Ky (N)) €00k (N gy
27700,k (N) J 65, 1y (N)
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Soit is enough to prove that

7TOxn,kn (N) )
/ B o (U0, 1y (N)) &Mk N gy /277 8)
—ﬂGXnTM(N) n—o00
Indeed, probabilistic thinking leads us to expect that for aryR,
¢Xn,kn (U/an,kn (N))e—inu/axn,kn(N) N e,u2/2, (9)

n—o0o

which will give us @) if we can prove some additional boundedness estimates. Note that
(9) is equivalentto the claim thatN saisfies a(nhon-local) central limit theorem, i.e. that

(N —n)/ox, .k, (N) = N(O, 1) in the distribution a® — oco. Thiscan be deduced e.g. by
using the Lindeberg—Feller central limit theorem for triangular arrays. Instead, we give a
direct proof. First, we need a technical lemma:

Lemmal ForO<x <1 seR,let
fx(s) = log (1_7)() i X st }Lsz.
1—ésx 1-x 2 (1—x)2
Then there exists a constant£ 0 suchthat
x|s|®
(1-x)3
Proof. First, consider the cags| < (1 — x)/2:

1—x 2 oxl
ST VN 2 dis
lOg(l—eisx) Z j (e D

j=1

2 x!
:ZJ_

Ifx(e) =C

O<x<1seR).

ik

M_g

kgk

—

1 — -
PN Ik
J:l

1 & . -
(EZJ(H-l) (j+k—2x) | 15
=1

X

k(1

EL i§ s\ x Isi¥/a—x?®
(1= x)k 3\1-x/)  31—|sj/1-x)’

k=3
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When|s| < (1 — x)/2 this gves us| fx(s)| < 2x|s|2/3(1 — x)3. Next, for|s| > (1 — x)/2
we have

x|s|® 1 xIsl® 1 x|s|3

2)

X syl X @ <@+
“1-xs2 ' (1-x2]s ~ (1—x)3’

T—x> T 2a-x2
S0 it remains to prove

1—x x|s|®
I ' <C 1-x)/2).
og<1_ Xés> =Cayxs (s1>@-%/2
For|s| > 1/4, clearly

1—x oxh o
L x X\ dis _ _ _
Iog(l—xei5> < JZZl ; €S — 1] < —2log(1 — x)

3
<o X e XS
T 1-x8%" (1—x)3

Finally, for 0 < (1 — x)/2 < |s|] < 1/4 (which imgdies in particular 2 < x < 1),

1-x X i
log T a8 = —log 1—m(e -1

—log (1 - 2| ds/? S|n(s/2)) —log(1 —i€%/?s),
where ve write S = 2 sin(s/2)x/(1 — x). We have
1 X |s| <15 < X ISI
40 ~1-x10" -

and therefore, since/2 — 1/8 < arg(i S€5/?) < /2 + 1/8,

1-— o
log <1—7x2'5>‘ = |log(1 —iSe*?)| < C"|S®
o (SN o XIsP
- 1-x) — (1—x)3

109y, ke (U0, kg (N)) €Y/ 00k (N y

= log Fy, (xn€Y/2xnk0n Ny _Jog Fye, (xn) —

Proof of (9).

inu

Oxn.kn(N)
Zl - xrj, inu
o g _XJeHU/an kn (N) OXn,kn(N)

kn o]
i : Xn u
£ (1U/0, 1 (N) + (Z — ”) %0k (N)

j=11— Xn

I
1M I
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Y (o B
2\ ma-xh?) of (V)

=i(E (N)—n)L—u—2+Rn(u)
- ek oxka(N) 2
u2
= 0™ YHu - = + Ra(u),
where
u P & e s 14
[Ra(u)| = fi(ju/ox,k,(N)| <C — = [u[°O(n™~"),
jgl X Xn,kn 6><3n,kn(N) ng (1-— XrJ1)3
since

i j3x) 2 Z < )3 g ®j/Vn
pprt (1— Xn)3 n 11— e*Ol(t)J/ﬁ)3
t 3a—a(t)v
e
~ nZ/ Uidw
0 (1 _ efot(t)v)3
so altogethewe have shownhat for allu € R,

2
10G (e ke (U/ Oy ())& M/amnin Ny T

n—oo 2

Proof of (8). To prove that B) follows from (9), note first that fofz| < 1,

k ) k oo jl
Fild = exp(—zloga— zw) - exp(zz ﬁ—) ’
i=1

j:1|:1

so forz = xp€s/vn,

F
[k (/3| = ‘ -
kn ) . o0 1 kn ) .
=exp| Y (Re@)) — x}) + Re Zl—Z(zJ' —xh
=1 =2 j=1
kn . .
< exp| Y (Rez)) —xA)) (anmosus/f )—1>)
j=1
=exp —J—Ze a®i/Vg — cos(Js/f))—
=1 V/n
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Arounds = 0 the Ta/lor expansion

u ®j/v/n Jn 1 1 al (t)j/Jﬁjz 1 2 4
E e (1—cogjs/V/n)— == E e —— | s+ 0O(s)
=t Jnoo2 et n./n

holds uniformly inn, sincethe coefficient 062 is asymptotically

(—Dk-1 —a(tu, 2k
20! /0 e u“du.
Therefore fors in same neighborhoofl- S, S] of 0, we have for somé > 0,

|G ko (S/+/M)| < €XP(—AV/NS?). (10)

For|s| > &, itis easy to check that for sonk > 0 not depending on and not depending
ontfort > T,

kn
Zefa(t)j/«/ﬁ(]_ — cos(js/\/ﬁ))in > B

j=1 v
(approximate the sum by an integral, and taBe = %inf‘s|>50 fOT e‘”“/‘/é(l —
cogsu))du > 0). This leads to the estimate

|30k (S/V/ M| < XP=BVN), (s > ). (11)

Now (8) follows readily from (L0) and (L1), because
naxn,kn(N) .
/ ¢Xn,kn(U/an,kn(N))e_'nu/UXn,kn(N)du
=7 0xn,kn (N)

Dok (U/ Oy e (N)) &M/ (N) gy

‘/l\\/ﬁu/oxn,kn ‘SS)

+ Dy ke (U0 kg (N)) &Mk (N) .
&)<|\/ﬁu/oxn,kn |<7TUXn,kn (N)

In the first term, the integrand is dominated by exp\(n¥2/c2 | (N)u?) =

exp(— A'u?); therdore thisterm converges t¢/2r by the dominated convergence theorem.
The second term is bounded in absolute value by

2705, k, (N) exp(—By/n) — 0. O

4. Proofsof Theorems?2 and 3
4.1. Proof ofTheoren?
Use @):

a(n, ty/n) = p <n - M{_D,tﬁ) = p(, V) ~ %)e'*(")ﬁ,
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where
dtz  dt dt
'=n——n+—/n=n1-dt?/2) (1+ ———————
n=n 2n+2Jﬁ n( /)<+2(1—dt2/2)ﬁ)
-1/2
=t n/n/:;-(urd—tz) .
J1—dt2/2 2(1—-dt?/2)/n

(Agan, it may be checked that assuming that the relevant quantities are integers does no
harm.) Now we have

, t
o)~ 9 (g

dt +1/2 dt
(” m) =1t s azgn T O

Therefore,

dt
H(t/)\/ﬁ = \/ﬁ\/ 1- dt2/2 <1+ m + O(l/n))

t t
H——— ) - [
(*(2m) - (=)
dt?
* a1—d/2%2/n

(e ()

N dt H t
4/1—dt2/2  \/1-—dt2/2

dt? t
- H|— o
4(1—dt?/2) (‘/1—dt2/2)> + OV

dt t
= Kaql(t o1
abviE 2/1_di2. (\/1— dt2/2) + 0/

+ O(l/n)>

(using @)). Thisimplies 6). O
4.2. Proof ofTheorens

We bagin by showing that/y, By are the coordinates of the global maximum of the
functionKy(t). Introduce auxiliary variables

x= y=1-e*®x

J1—dtZ/2’
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Then we have

X y_Zld-y
/11 dx22 IV/RPI(Y)
logy -log(1—y)

H(x) = 2/Li + =
(x) 12(y) NaE)

Ky(t) = 2Liz(y) + logy - log(1 —y)
(Liz2(y) + (d/2) log?(1 — y))1/2
‘= —logl —y) .
(Li2(y) + (d/2) log?(1 — y))1/2

DifferentiatingKq(t) as a function of the variablenow gives, after a lengthy computation
(which is best done by computer),

(1—y)-y-[dlog?(1 - y) + 2Lix(y)]3/2 :

dy

Note thaty is in the range O< y < 1. The function Li2(y) — (1 — y)log?(1 — y) is
positive in (0, 1) (its derivative is 2Li(y) + log?(1 — y)). It follows that the critical point
yq is the solution of the equatiofl — y)? = y, and by substituting andK(t) above one
obtains the expressions feg, 84 given inTheorem 3

Theorem 3will now follow by summinggq(n, k) over the @propriate range of values
of k, and expandingKg(t) into a Taylor series around its critical point= y4. Theonly
potential obstacle is the laalkf complete urformity in (5), that prevets ruling out a
significant contribution forgq(n, k) coming from very small or very large values kf
Only an upper bound og(n, k) is necessary, since in the vicinity of the maximum point,
where a lower bound might be necessaBy,Holds uniformly. We will make use of the
following lemma.

Lemma2. Foranyne Nandt> 0,
P(n, ty/n) < et OV,

Proof. Note that for anjk € N and 0< x < 1, sinceFx(x) = Y 225 P(n, k)x",
P(n, k)x" < F(x),

or
log P(n, k) < —nlogx + log F(x).

Setk = ty/n andx = e /v Then

K . t
log Fk(x) = — } log(1 —x) < v/n / —log(1— e “%)ds
j=1 0

Lio(1 — e Ut
u

= ﬁ%(Liz(l) — Liz(e_Ut)) = ﬁ( —t |Og(1 _ e—ut)> .
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So

Lio(1—e™uh
u

log P(n, k) < +/n <u + —tlog(1— e‘“t)> )

Settingu = «(t) gives the desired bound
We are now eady to conclude the proof. Write
1
Ka(t) = Bd — == (t — ya)* + O((t — ya)®).
20§
ka(t) = ka(ya) + O(t — ya),
both bigO’s being uniform in some neighborhodgy — ¢, yq + €] of y4. Let
mg = maxKa(t):t € [0, 2/d]\[yd — €, yd + €]} < Ba.
For an integek = yg/N 4 Uogn*4, u € R, (5) gives

(14 O(u/nY*)kq(yd)
n

2
qa(n, k) = exp (ﬁwﬁ - “7 + o<u3/n1/4)>

— (14 O(u3/nv4) Kl (nyd—) efovn . g %/2

Sunming overk, andusingLemma 2outside[yq — €, yq + €] and the uniformity in )
inside, gives

S qu(n k) ~ U g f T ey

3/4
n
k<yd+/N+uogn®/4

Settingu = oo (this is permitted, again becauselamma 3 gives

k N2
da(n) =Y da(n, k)~7"(’/"n)3/4 %4 ghavi,
k

ThisisTheorem 8a). The ratio of the last two equations gividseorem &), which implies
Theorem gb). O
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