Hadwiger's conjecture for line graphs

Bruce Reed ${ }^{\text {a }}$, Paul Seymour ${ }^{\text {b }}$
${ }^{\text {a }}$ Equipe Combinatoire, Case 189, Université de Paris VI, 4 Place Jussieu, 75252 Paris Cedex 05, France ${ }^{\mathrm{b}}$ Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Received 10 October 2002; accepted 4 September 2003
Available online 23 January 2004

Abstract

We prove that Hadwiger's conjecture holds for line graphs. Equivalently, we show that for every loopless graph G (possibly with parallel edges) and every integer $k \geq 0$, either G is k-edgecolourable, or there are $k+1$ connected subgraphs A_{1}, \ldots, A_{k+1} of G, each with at least one edge, such that $E\left(A_{i} \cap A_{j}\right)=\emptyset$ and $V\left(A_{i} \cap A_{j}\right) \neq \emptyset$ for $1 \leq i<j \leq k$. © 2003 Published by Elsevier Ltd

1. Introduction

Hadwiger's conjecture asserts that for every loopless graph G and every integer $k \geq 0$, either G is k-vertex-colourable, or G has K_{k+1} as a minor, that is, there are $k+1$ non-null connected subgraphs A_{1}, \ldots, A_{k+1} of G, such that $V\left(A_{i} \cap A_{j}\right)=\emptyset$ and there is an edge between $V\left(A_{i}\right)$ and $V\left(A_{j}\right)$, for $1 \leq i<j \leq k+1$. This is still open, but in this paper we prove the conjecture for line graphs. (For line graphs of simple graphs the result follows easily from Vizing's theorem and was already known, but here we permit parallel edges.)

Thus, our main result is:
1.1. For every loopless graph G, and every integer $k \geq 0$ such that G is not k-edgecolourable, there are connected subgraphs A_{1}, \ldots, A_{k+1} of G, each with at least one edge, such that $E\left(A_{i} \cap A_{j}\right)=\emptyset$ and $V\left(A_{i} \cap A_{j}\right) \neq \emptyset$ for $1 \leq i<j \leq k+1$.

The referee informs us that Monrad, Stiebitz, Toft and Vizing discussed and obtained a solution to the same problem in September 2002, independent of our work (but knowing that a solution had been obtained). Their solution is similar to ours and they do not intend to publish it.

[^0]
2. A version of Hadwiger's theorem

We need a version of Vizing's adjacency lemma. Let e_{1} be an edge of a loopless graph G (which may have parallel edges), with ends $v_{0}, v_{1} \in V(G)$, let $k \geq 1$ be an integer, and let ϕ be a k-edge-colouring of $G \backslash e_{1}$. For a vertex v, let

$$
\bar{\phi}(v)=\{1, \ldots, k\} \backslash\left\{\phi(e): e \in E\left(G \backslash e_{1}\right) \text { incident with } v\right\} .
$$

A Vizing fan for v_{0}, e_{1}, ϕ is a sequence $e_{2}, \ldots, e_{n} \in E(G)$ such that

- for $2 \leq i \leq n, e_{i}$ is incident with v_{0}; let v_{i} be its other end
- $v_{1}, v_{2}, \ldots, v_{n}$ are all distinct
- for all $j \geq 2$ there exists $i<j$ with $i \geq 1$ such that $\phi\left(e_{j}\right) \in \bar{\phi}\left(v_{i}\right)$.

Vizing [1, 2] proved:
2.1. Let $G, e_{1}, v_{0}, v_{1}, k, \phi$ be as above, where v_{0} has degree $\leq k$, and let e_{2}, \ldots, e_{n} be a Vizing fan for v_{0}, e_{1}, ϕ, where e_{i} has ends $v_{0}, v_{i}(1 \leq i \leq n)$. If G is not k-edge-colourable then the sets

$$
\bar{\phi}\left(v_{0}\right), \bar{\phi}\left(v_{1}\right), \ldots, \bar{\phi}\left(v_{n}\right)
$$

are mutually disjoint.
This has the following corollary. (The number of edges incident with a vertex v is denoted by $\operatorname{deg}(v)$, and if u, v are distinct vertices, $\mu(u, v)$ denotes the number of edges with ends $\{u, v\}$.)
2.2. Let v_{0} be a vertex of a loopless graph G, and let $k \geq 0$ be an integer such that G is not k-edge-colourable, $G \backslash v_{0}$ is k-edge-colourable, and every vertex of G has degree $\leq k$. There are neighbours v_{1}, \ldots, v_{n} of v_{0}, all distinct, so that

$$
\sum_{1 \leq i \leq n}\left(\operatorname{deg}\left(v_{i}\right)+\mu\left(v_{0}, v_{i}\right)-k\right) \geq 2
$$

Proof. By deleting edges incident with v_{0}, we may assume that there is an edge e_{1} incident with v_{0} such that $G \backslash e_{1}$ is k-edge-colourable and G is not k-edge-colourable. Let e_{1} have ends $\left\{v_{0}, v_{1}\right\}$, let ϕ be a k-edge-colouring of $G \backslash e_{1}$, and choose a Vizing fan e_{2}, \ldots, e_{n} for v_{0}, e_{1}, ϕ, with n maximum. From the maximality of n the set

$$
\left\{\phi(e): e \in E(G) \text { incident with } v_{0} \text { but not with any of } v_{1}, \ldots, v_{n}\right\}
$$

is disjoint from all the sets $\bar{\phi}\left(v_{1}\right), \bar{\phi}\left(v_{2}\right), \ldots, \bar{\phi}\left(v_{n}\right)$ (and also trivially from $\bar{\phi}\left(v_{0}\right)$); and by 2.1 the sets $\bar{\phi}\left(v_{0}\right), \bar{\phi}\left(v_{1}\right), \ldots, \bar{\phi}\left(v_{n}\right)$ are mutually disjoint. Consequently,

$$
\left(\operatorname{deg}\left(v_{0}\right)-\sum_{1 \leq i \leq n} \mu\left(v_{0}, v_{i}\right)\right)+\sum_{0 \leq i \leq n}\left(k-\operatorname{deg}\left(v_{i}\right)\right)+2 \leq k,
$$

that is

$$
\sum_{1 \leq i \leq n}\left(\operatorname{deg}\left(v_{i}\right)+\mu\left(v_{0}, v_{i}\right)-k\right) \geq 2 .
$$

Finally, we claim that $n \geq 2$. For there exists $c \in \bar{\phi}\left(v_{1}\right)$, because $\operatorname{deg}\left(v_{1}\right) \leq k$ and the edge e_{0} is not coloured. Since we cannot properly extend ϕ by giving e_{0} the colour c, it follows that $c \notin \bar{\phi}\left(v_{0}\right)$; and hence $n \geq 2$ from maximality.

This in turn has the following corollary.
2.3. Let G be a loopless graph, and let $k \geq 0$ be an integer such that G is not k-edgecolourable and every vertex has degree $\leq k$. Then there exist distinct vertices u, v, w such that

$$
\min (\operatorname{deg}(u), \operatorname{deg}(v))+\mu(v, w) \geq k+1 .
$$

Proof. Choose $v_{0} \in V(G)$ of maximum degree; we may assume that $G \backslash v_{0}$ is k-edgecolourable, for otherwise we may delete v_{0} and repeat. Let v_{1}, \ldots, v_{n} be as in 2.2, with $n \geq 2$. Then (writing v_{n+1} for v_{1})

$$
\sum_{1 \leq i \leq n}\left(\operatorname{deg}\left(v_{i}\right)+\mu\left(v_{0}, v_{i+1}\right)-k\right) \geq 2
$$

and so there exists i with $1 \leq i \leq n$ such that

$$
\operatorname{deg}\left(v_{i}\right)+\mu\left(v_{0}, v_{i+1}\right) \geq k+1
$$

Let $u=v_{1}, v=v_{0}, w=v_{i+1}$; then u, v, w are distinct (since $n \geq 2$), and

$$
\min (\operatorname{deg}(u), \operatorname{deg}(v))+\mu(v, w)=\operatorname{deg}\left(v_{i}\right)+\mu\left(v_{0}, v_{i+1}\right) \geq k+1
$$

as required.

3. The main proof

Proof of 1.1. We proceed by induction on $|V(G)|$. We claim first that we may assume that
(1) For every two distinct vertices v_{1}, v_{2}, if $d=\min \left(\operatorname{deg}\left(v_{1}\right), \operatorname{deg}\left(v_{2}\right)\right)$ then there are d paths of G between v_{1} and v_{2}, pairwise edge-disjoint.

For by Menger's theorem there is a partition $\left(X_{1}, X_{2}\right)$ of $V(G)$ with $v_{1} \in X_{1}$ and $v_{2} \in X_{2}$, such that there are $\left|\delta\left(X_{1}, X_{2}\right)\right|$ pairwise edge-disjoint paths of G between v_{1} and v_{2}, where $\delta\left(X_{1}, X_{2}\right)$ denotes the set of edges of G with one end in X_{1} and the other in X_{2}. Suppose that $\left|X_{1}\right|,\left|X_{2}\right| \geq 2$. For $i=1,2$ let G_{i} be the graph obtained from G by deleting all edges with both ends in X_{i} and then identifying all the vertices of X_{i} in a new vertex. Since G is not k-edge-colourable, it follows that at least one of G_{1}, G_{2} is not k-edge-colourable, say G_{1}. Since $\left|X_{1}\right|>1$, it follows that $\left|V\left(G_{1}\right)\right|<|V(G)|$, and so from the inductive hypothesis there are pairwise edge-disjoint connected subgraphs $A_{1}^{\prime}, \ldots, A_{k+1}^{\prime}$ of G_{1}, each with at least one edge, such that $V\left(A_{i}^{\prime} \cap A_{j}^{\prime}\right) \neq \emptyset(1 \leq i<j \leq k+1)$. From the choice of $\left(X_{1}, X_{2}\right)$, there are paths $P(e)\left(e \in \delta\left(X_{1}, X_{2}\right)\right)$ of G_{2}, pairwise edge-disjoint, such that $e \in E(P(e))\left(e \in \delta\left(X_{1}, X_{2}\right)\right)$ and v_{2} belongs to every $P(e)$. For $1 \leq i \leq k+1$, let A_{i} be the subgraph of G formed by all the edges in A_{i}^{\prime}, and the edges in $P(e)$ for each $e \in E\left(A_{i}^{\prime}\right)$, and all vertices incident with these edges. Then A_{1}, \ldots, A_{k+1} satisfy the theorem. So we may assume that $\min \left(\left|X_{1}\right|,\left|X_{2}\right|\right)=1$; but then (1) holds. This proves (1).

If some vertex v has degree $\geq k+1$, let A_{1}, \ldots, A_{k+1} be pairwise edge-disjoint connected subgraphs, each with $v \in V\left(A_{i}\right)$ and $E\left(A_{i}\right) \neq \emptyset$; then the theorem is satisfied. We may therefore assume that every vertex has degree $\leq k$. By 2.3 , there are distinct vertices u, v, w such that

$$
\min (\operatorname{deg}(u), \operatorname{deg}(v))+\mu(v, w) \geq k+1
$$

Let $d=\min (\operatorname{deg}(u), \operatorname{deg}(v))$; then by (1) there are d edge-disjoint paths between u and $\{v, w\}$, and we may choose them so that no edge between v and w belongs to any of them. Then these d paths, together with the $\mu(v, w)$ edges between v and w, form $k+1$ edgedisjoint connected subgraphs that pairwise intersect, as required.

Remark. In fact this proof shows that if G is not k-edge-colourable and yet every vertex has degree $\leq k$, then there are three distinct vertices u, v, w and $k+1$ edge-disjoint paths each between two of u, v, w.

Acknowledgements

This research was supported by ONR grant N00014-97-1-0512 and NSF grant DMS 9701598.

References

[1] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3 (1964) 25-30.
[2] V.G. Vizing, Critical graphs with a given chromatic class, Diskret. Anal. 5 (1965) 9-17.

[^0]: E-mail address: breed@cgm.cs.mcgill.ca (B. Reed).

 0195-6698/\$ - see front matter © 2003 Published by Elsevier Ltd

