# On Graphs with Small Ramsey Numbers

A. V. Kostochka<sup>1,2</sup> and V. Rödl<sup>3</sup>

<sup>1</sup>INSTITUTE OF MATHEMATICS NOVOSIBIRSK-90, 630090, RUSSIA <sup>2</sup>UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS 61801

<sup>3</sup>DEPT. OF MATHEMATICS AND COMPUTER SCIENCE EMORY UNIVERSITY, ATLANTA GEORGIA 30322

Received December 21, 2000

**Abstract:** Let R(G) denote the minimum integer N such that for every bicoloring of the edges of  $K_N$ , at least one of the monochromatic subgraphs contains G as a subgraph. We show that for every positive integer d and each  $\gamma, 0 < \gamma < 1$ , there exists  $k = k(d, \gamma)$  such that for every bipartite graph G = (W, U; E) with the maximum degree of vertices in W at most d and  $|U| \le |W|^{\gamma}$ ,  $R(G) \le k|W|$ . This answers a question of Trotter. We give also a weaker bound on the Ramsey numbers of graphs whose set of vertices of degree at least d+1 is independent. © 2001 John Wiley & Sons, Inc. J Graph Theory 37: 198–204, 2001

Keywords: Ramsey numbers; bipartite graphs

This work was partially supported by the grant RM1-181 of the Cooperative Grant Program of the Civilian Research and Development Foundation.

Contract grant sponsor: Russian Foundation for Fundamental Research.

Contract grant number: 99-01-00581.

Contract grant sponsor: NSF.

Contract grant number: DMS-9704114.

Correspondence to: V. Rödl.

© 2001 John Wiley & Sons, Inc.

#### 1. INTRODUCTION

The classical Ramsey number R(k, l) is the minimum positive integer N such that for every graph H on n vertices, H contains either a complete subgraph on kvertices or an independent set on l vertices. More generally, for arbitrary graphs G and H, define R(G,H) to be the minimum positive integer N such that in every bicoloring of edges of  $K_N$  with, say red and blue colors, there is either a red copy of G or a blue copy of H. Burr and Erdős [2] conjectured that for every d,

there exists 
$$k = k(d)$$
 such that  $R(G, G) \le k|V(G)|$  (1)

- (a) for every graph G with maximum degree at most d;
- (b) for every d-degenerate graph G.

The first conjecture was proved by Chvatal, Rödl, Szemerédi, and Trotter [4], and the second (which is much stronger) is still wide open. Chen and Schelp [3] proved the conjecture for planar graphs and, more generally, for so called k-arrangeable graphs. Rödl and Thomas [5] proved that graphs with no  $K_p$ -subdivisions are  $p^8$ -arrangeable, which implies that for every p, the graphs with no  $K_p$ -subdivisions have linearly bounded Ramsey number. Also, Alon [1] proved that (1) holds if G = (W, U; E) is a bipartite graph and the degree of every vertex in W is at most two. We present here a simple lemma which implies the following two results.

**Theorem 1.** Let a real  $0 < \gamma < 1$  and a positive integer  $d \ge 3$  be fixed and let  $k = k(d, \gamma) = \lceil 2\exp\{\frac{d}{1-\gamma}\} \rceil$ . Let n be sufficiently large and let G = (W, U; E) be a bipartite graph with the bipartition (W, U) and such that  $|W| \le n$ ,  $|U| \le n^{\gamma}$ , and

$$\deg(w) \le d \qquad \textit{for every} \quad w \in W. \tag{2}$$

If n is sufficiently large, then for any bicoloring of the edges of  $K_{kn,kn}$ , there exists a monochromatic copy of G.

**Theorem 2.** Let a positive integer d be fixed and n be sufficiently large. Let G = (V, E) be a graph with  $|V| \le n$ , and such that the set U of vertices of degree at least d+1 in G is an independent set. Let  $k = k(d,n) = \exp\{6d + 6d^2\sqrt{\ln n}\}$ . Then  $R(G,G) \le kn$ . In particular, for every  $\varepsilon > 0$ , there exists  $C = C(d,\varepsilon)$  such that for every graph G = (V, E) with the independent set of vertices of degree at least d+1,

$$R(G,G) \le C|V(G)|^{1+\varepsilon}$$
.

Theorem 1 confirms the conjecture by Trotter that (1) holds if G is a *crown*. Theorem 2 shows that in a wider class, the Ramsey number is not far from linear.

### 2. MAIN LEMMA

**Lemma 1.** Let a positive integer d be fixed and n be sufficiently large. Suppose that positive integers  $m \ge 2$ ,  $l \ge 4$ , and kn satisfy the inequalities

$$\left(\frac{k}{2}\right)^l \ge 6(nk)^d \tag{3}$$

and

$$\frac{1}{6}kn2^{-l} > m - 1. (4)$$

Then for every subgraph  $H = (V_1, V_2; E)$  of the complete bipartite graph  $K_{kn,kn}$  with the bipartition  $(V_1, V_2)$  and such that  $|E| \ge (kn)^2/2$ , there exists  $M \subset V_1$  with  $|M| \ge m$  with the property that for every d-element subset D of M, the number of vertices of H adjacent to all vertices in D is at least n.

**Proof.** Call a *d*-tuple  $\{x_1, \ldots, x_d\}$  of vertices in  $V_1$  poor if  $|N(x_1) \cap \cdots \cap N(x_d)| < n$ . An *l*-tuple  $\{y_1, \ldots, y_l\}$  of vertices in  $V_2$  will be called *bad* if it is contained in the set  $N(x_1) \cap \cdots \cap N(x_d)$  for some poor *d*-tuple  $\{x_1, \ldots, x_d\}$  of vertices in  $V_1$ . Other *l*-tuples of vertices in  $V_2$  will be called *good*. By the definition, the number of bad *l*-tuples in  $V_2$  is at most

$$\binom{|V_1|}{d} \binom{n-1}{l} < k^d n^{d+l} / l!.$$

It follows that the number b of pairs (x, L) such that  $x \in V_1$  and  $L \subset N(x)$  is a bad l-tuple is estimated as follows

$$b < kn \ k^d n^{d+l} / l! = k^{d+1} n^{d+l+1} / l!. \tag{5}$$

On the other hand, the total number of pairs (x, L) such that  $x \in V_1$  and  $L \subset N(x)$  is an l-tuple, is at least

$$\sum_{x \in V_1} \binom{\deg x}{l}.$$

Under condition that  $\sum_{x \in V_1} \deg x \ge (kn)^2/2$ , the last sum is at least  $|V_1| \binom{\lfloor 0.5kn \rfloor}{l}$ . Hence

$$\sum_{x \in V_1} {\deg x \choose l} \ge |V_1| \frac{(0.5kn - l)^l}{l!} = 2 \cdot \frac{(0.5kn)^{l+1}}{l!} \left(1 - \frac{2l}{kn}\right)^l$$

$$\ge 2 \cdot \frac{(0.5kn)^{l+1}}{l!} \left(1 - \frac{2l^2}{kn}\right).$$

Since due to (4),  $2^l < \frac{kn}{6(m-1)} \le \frac{kn}{6}$ , we have

$$1 - \frac{2l^2}{kn} \ge 1 - \frac{2^{l+1}}{kn} > 1 - \frac{2kn}{6kn} = \frac{2}{3}.$$

Therefore,

$$\sum_{x \in V_1} \binom{\deg x}{l} > \frac{(0.5kn)^{l+1}}{l!}.$$

It follows that the number g of pairs (x, L) such that  $x \in V_1$  and  $L \subset N(x)$  is a good *l*-tuple, is at least

$$\frac{(0.5kn)^{l+1}}{l!} - \frac{k^{d+1}n^{d+l+1}}{l!} > \frac{n^{l+1}k}{l!} \left(0.5(k/2)^l - (nk)^d\right).$$

By (3),  $g \ge \frac{1}{3} (0.5kn)^{l+1} / l!$ .

There exists a good *l*-tuple  $L_0 \subset N(x)$  participating in at least  $g \cdot {kn \choose l}^{-1}$  such pairs. We have

$$\frac{g}{\binom{kn}{l}} \ge \frac{(0.5kn)^{l+1}}{3l!} \frac{l!}{(kn)^l} = \frac{1}{6}kn2^{-l}.$$

By (4), the last expression is greater than m-1. It follows that there is a subset M of  $V_1$  with |M| = m such that  $L_0 \subset N(x)$  for every  $x \in M$ . Since  $L_0$  is good, none of the d-tuples of elements of M is poor. This proves the lemma.

# APPLICATIONS OF THE LEMMA

**Proof of Theorem 1.** Let  $k = \lceil 2\exp\{\frac{d}{1-\gamma}\} \rceil$ . Let  $H_1$  and  $H_2$  be two subgraphs of the complete bipartite graph  $K_{kn,kn}$  with bipartition  $(V_1,V_2)$  whose union is  $K_{kn,kn}$ . We may assume that  $|E(H_1)| \ge |E(H_2)|$  and hence  $|E(H_1)| \ge (kn)^2/2$ . Set  $l = \lfloor (1-\gamma) \log_2 n \rfloor$  and  $m = \lceil n^{\gamma} \rceil$ . Then conditions (3) and (4) are satisfied. Thus, by Lemma 1, there exists  $M \subset V_1$  with  $|M| \ge m$  with the property that for every d-element subset D of M, the number of vertices of H adjacent to all vertices in D is at least n. Now we construct embedding  $f: W \cup U \to M \cup V_2$  of G = (W, U; E) into the subgraph of  $H_1$  induced by  $M \cup V_2$  in a greedy manner. Let f be an arbitrary 1-1 mapping of U to M. We extend this mapping to  $w_1, w_2, \dots w_n$ -elements of W and define f-images as follows: For  $i = 1, 2, \dots n$ consider  $D(w_i) = f(N_G(w_i))$ . Since  $|D(w_i)| \le d$  there are at least n vertices in  $V_2$ adjacent to each vertex in  $D(w_i)$ . We choose for  $f(w_i)$  any of them not used as  $f(w_i)$  for j < i. Theorem 1 is proved.

Instead of proving Theorem 2 directly, we first derive a more general statement. Let  $\mathcal{H}(s,n,d)$  denote the family of graphs G=(V,E) on at most n vertices such that there exists a partition  $V=V_1\cup\cdots\cup V_{s+1}$  with the properties:

- (a) every  $V_i$  is an independent set;
- (b) for every i = 1, ..., s and every  $v \in V_i$ , the degree of v in  $G V_1 \cdots V_{i-1}$  is at most d.

For example,  $\mathcal{H}(0, n, d)$  is the family of graphs without edges on at most n vertices and  $\mathcal{H}(1, n, d)$  is the family of bipartite graphs on at most n vertices in which all the vertices of one of the parts have degrees at most d.

Let F(s, t, n, d) be the smallest positive integer such that for every  $G_1 \in \mathcal{H}(s, n, d)$  and every  $G_2 \in \mathcal{H}(t, n, d)$ ,

$$R(G_1, G_2) \leq nF(s, t, n, d).$$

**Theorem 3.** Let a positive integer  $d \ge 3$  be fixed. For every non-negative integers s and t with  $s + t \ge 1$ , and for sufficiently large n,

$$F(s, t, n, d) \le 10 \exp\{2(s + t - 1)(1 + d\sqrt{\ln n})\}.$$

In particular, for every  $\varepsilon > 0$ , there exists  $n_0 = n_0(s, t, d, \varepsilon)$  such that for every  $n > n_0$ ,

$$F(s,t,n,d) \leq n^{\varepsilon}$$
.

**Proof of Theorem 3.** We prove the theorem for a fixed d by induction on s + t. Clearly, for any  $s \ge 1$  and  $t \ge 1$ ,

$$F(s, 0, n, d) = F(0, t, n, d) = 1.$$

Suppose that the theorem is proved for all pairs (s',t') with s'+t' < s+t and assume that  $s \ge 1$  and  $t \ge 1$ . Consider arbitrary graphs  $G_1 \in \mathcal{H}(s,n,d)$  and  $G_2 \in \mathcal{H}(t,n,d)$ .

Set

$$k = |5\exp\{2(s+t-1)(1+d\sqrt{\ln n})\}|$$
 and  $N = kn$ . (6)

Consider red-blue coloring of edges of  $K_{2N}$  and let  $H_1, H_2$  with  $V(H_1) = V(H_2) = V(K_{2N})$  be the subgraphs consisting of red and blue edges respectively. Let  $V(K_{2N}) = U \cup W$  be an arbitrary partition with |U| = |W| = kn. We may assume that at least half of edges connecting U with W belongs to  $E(H_1)$ . Set

$$l = \sqrt{\ln n}$$
, and  $m = 10n \exp\{2(s + t - 2)(1 + d\sqrt{\ln n})\}$ .

We will prove that these parameters satisfy conditions of Lemma 1. Indeed, we can assume that for  $n \ge n_0(d)$ ,

$$5 \exp\{2(1 + d\sqrt{\ln n})\} < n/6.$$

Then for k defined by (6), we have  $k < (n/6)^{s+t-1}$  and hence

$$\left(\frac{k}{2}\right)^{l} \ge \left(\exp\left\{2(s+t-1)(1+d\sqrt{\ln n})\right\}\right)^{\sqrt{\ln n}} \ge n^{2(s+t-1)d} \ge n^{(s+t-1)d} n^{d} > 6^{d} k^{d} n^{d}.$$

Similarly, for  $n \ge n_0(d)$ ,

$$\frac{1}{6}kn2^{-l} > \frac{n}{6} \exp\{2(s+t-1)(1+d\sqrt{\ln n}) - \sqrt{\ln n}\} >$$

$$> 10n \exp\{2(s+t-2)(1+d\sqrt{\ln n})\} > m-1.$$

Applying Lemma 1, we get that there exists  $M \subset U$  with  $|M| \ge m$  with the property that for every d-element subset D of M, the number of vertices in Wadjacent in  $H_1$  to all vertices in D is at least n.

Let a partition of  $V(G_1)$  verifying that  $G_1 \in \mathcal{H}(s,n,d)$  be the partition  $V(G_1) = X_1 \cup ... \cup X_{s+1}$ . Let  $G'_1 = G_1 - X_1$ . Then  $G'_1 \in \mathcal{H}(s-1, n, d)$ . By the induction assumption,  $R(G'_1, G_2) \leq m$ . It follows that either  $H_1(M)$  contains a copy of  $G'_1$  or  $H_2(M)$  contains a copy of  $G_2$ . In the latter case, we are done, so we assume that there exists an embedding f of  $G'_1$  into  $H_1(M)$ . Now (similarly to the proof of Theorem 1) we embed vertices of  $X_1$  into W in a greedy manner. Let  $x_1, \ldots, x_p$  be the vertices in  $X_1$ ; note that p < n. Consecutively, for  $i = 1, \ldots, p$ , we do the following. Consider  $D(x_i) = f(N_{G_1}(x_i))$ . Since  $|D(x_i)| \le d$ , there are at least n vertices in W adjacent in  $H_1$  to each vertex in  $D(x_i)$ . We choose for  $f(x_i)$ any of them not used as  $f(x_i)$  for i < i. Theorem is proved.

**Proof of Theorem 2.** Let  $X_{d+1}$  be any maximal (by inclusion) independent set in G containing all vertices of degree at least d+1. By the maximality of  $X_{d+1}$ , the maximum degree of  $G - X_{d+1}$  is at most d-1, and hence  $V(G) \setminus X_{d+1}$ can be partitioned into d independent sets  $X_1, \ldots, X_d$ . It follows that  $G \in \mathcal{H}(d, n, d)$ . Thus, by Theorem 3,

$$R(G,G) \le 10 \ n \ \exp\{2(2d-1)[(1+d\sqrt{\ln n})]\}.$$

This proves the theorem.

**Remark.** Note that replacing 2-coloring by r-coloring one can verify straightforward extensions of Theorems 1, 2, and 3.

**Note added in proof:** It was recently observed by Shi Lingsheng in [6] that as a consequence of Theorem 1 and Lemma 1, one can derive that the Ramsey number of a *t*-dimensional cube  $R(Q_t) \le m^c$ , where  $m = 2^t$  and c > 0.

Indeed, with the choice of d, l and m as in Theorem 1, (3) is satisfied if

$$\frac{1}{\gamma} \left( \frac{1}{\ln 2} - 1 \right) \ln(m - 1) \ge \frac{\ln 6}{d} + \ln 2 + \frac{1 + d}{1 - \gamma},\tag{1}$$

while (4) holds true.

Thus for example, setting  $\gamma = \frac{1}{5}$ , d = t, and  $m = 2^t$ , one can see that  $R(Q_t) \le m^c$  holds, where  $c \le 7$ . By a careful optimization of constants,  $c = \frac{\sqrt{5}+3}{2}$  is proved in [6].

## References

- [1] N. Alon, Subdivided graphs have linear Ramsey numbers, J Graph Theory 18(4) (1984), 343–347.
- [2] S. A. Burr and P. Erdős, On the magnitude of generalized Ramsey numbers for graphs, in: "Infinite and finite sets", Vol.1, Colloquia Mathematica Soc. Janos Bolyai, 10, North-Holland, Amsterdam-London (1975), 214–240.
- [3] G. Chen and R. H. Schelp, Graphs with linearly bounded Ramsey numbers, J Comb Theory, Ser. B 57 (1993), 138–149.
- [4] C. Chvátal, V. Rödl, E. Szemerédi, and W. T. Trotter, The Ramsey number of a graph with bounded maximum degree, J Comb Theory, Ser. B 34 (1983), 239–243.
- [5] V. Rödl and R. Thomas, Arrangeability and clique subdivisions, in: "The Mathematics of Paul Erdős", Vol. 2, R. Graham and J. Nešetřil, (Editors), Springer, Berlin, 1997, pp. 236–239.
- [6] S. Lingsheng, manuscript, March 30, 2001.