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1. INTRODUCTION

The classical Ramsey number R(k, ) is the minimum positive integer N such that
for every graph H on n vertices, H contains either a complete subgraph on k
vertices or an independent set on [ vertices. More generally, for arbitrary graphs G
and H, define R(G, H) to be the minimum positive integer N such that in every
bicoloring of edges of Ky with, say red and blue colors, there is either a red copy
of G or a blue copy of H. Burr and Erdds [2] conjectured that for every d,

there exists k = k(d) such that R(G, G) < k|V(G)| (1)

(a) for every graph G with maximum degree at most d;
(b) for every d-degenerate graph G.

The first conjecture was proved by Chvatal, R6dl, Szemerédi, and Trotter [4],
and the second (which is much stronger) is still wide open. Chen and Schelp [3]
proved the conjecture for planar graphs and, more generally, for so called
k-arrangeable graphs. Rodl and Thomas [5] proved that graphs with no
K,-subdivisions are pS-arrangeable, which implies that for every p, the graphs
with no K),-subdivisions have linearly bounded Ramsey number. Also, Alon [1]
proved that (1) holds if G = (W, U; E) is a bipartite graph and the degree of every
vertex in W is at most two. We present here a simple lemma which implies the
following two results.

Theorem 1. Let a real 0 < v < 1 and a positive integer d > 3 be fixed and let
k = k(d,~) = [2exp{rL}]. Let n be sufficiently large and let G = (W, U;E) be a

1—y
bipartite graph with the bipartition (W, U) and such that |W| < n, |U| < n?, and

deg(w) <d  for every weW. (2)

If n is sufficiently large, then for any bicoloring of the edges of Ki i, there exists
a monochromatic copy of G.

Theorem 2. Let a positive integer d be fixed and n be sufficiently large. Let
G = (V,E) be a graph with |V| < n, and such that the set U of vertices of degree
at least d + 1 in G is an independent set. Let k = k(d, n) = exp{6d + 6d*\/Inn}.
Then R(G, G) < kn. In particular, for every € > 0, there exists C = C(d,€) such
that for every graph G = (V, E) with the independent set of vertices of degree at
least d + 1,

R(G,G) < C|V(G)|'".

Theorem 1 confirms the conjecture by Trotter that (1) holds if G is a crown.
Theorem 2 shows that in a wider class, the Ramsey number is not far from linear.
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2. MAIN LEMMA

Lemma 1. Let a positive integer d be fixed and n be sufficiently large. Suppose
that positive integers m > 2, | > 4, and kn satisfy the inequalities

<§>12 6(nk)" 3)

and

1
c kn27t>m— 1. (4)

Then for every subgraph H = (V,Vy; E) of the complete bipartite graph Kiy, x
with the bipartition (Vy, V) and such that |E| > (kn)/2, there exists M C V,
with |M| > m with the property that for every d-element subset D of M, the
number of vertices of H adjacent to all vertices in D is at least n.

Proof. Call a d-tuple {xi,...,x4} of vertices in V; poor if |[N(x;)N---N
N(xz)| < n. An [-tuple {yi,...,y;} of vertices in V, will be called bad if it is
contained in the set N(x;) N---NN(x,) for some poor d-tuple {xi,...,x;} of
vertices in V;. Other [-tuples of vertices in V, will be called good. By the
definition, the number of bad /-tuples in V, is at most

\% —1
<|d1|> <n l ) < kdnd+l/l!.

It follows that the number b of pairs (x, L) such that x € V; and L C N(x) is a bad
[-tuple is estimated as follows

b < kn kK'n® /1l = kT pd T (5)

On the other hand, the total number of pairs (x, L) such that x € V; and L C N(x)

is an [-tuple, is at least
Z deg x
;)

RIS %

Under condition that 3 _, degx > (kn)?/2, the last sum is at least

Vi (LO'S/‘”J) . Hence

d 0.5kn — 1)’ 0.5kn)""! 21\!
3 cgx Z|V1|u:2.% 1=
l 1! 1! kn

xeV,
=) (0.5kn)"*! 1_2_12
- ! kn /)’

xeV)
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Since due to (4), 2/ < A1 < k1 e have

6(m—1) = 6°
202 pias 2kn 2
- —>1-"—>1-="=Z
=" kn~  6kn 3

Therefore,
degx (0.5kn)"""!
E > .
) I
xeV

It follows that the number g of pairs (x,L) such that x € V; and L C N(x) is a
good [-tuple, is at least

(O.Skn)l_H kd+1nd+l+l nl+lk

; > (0.5(k/2)’ —(nk)d).

By (3), g > 1(0.5kn)"" /1. 1
There exists a good I-tuple Ly C N(x) participating in at least g - (kl")7 such
pairs. We have

0.5kn)"" 1 1
o 2% L= —kn27!,
(1) 31! (k”l) 6

By (4), the last expression is greater than m — 1. It follows that there is a subset M
of V; with [M| = m such that Ly C N(x) for every x € M. Since L is good, none
of the d-tuples of elements of M is poor. This proves the lemma.

3. APPLICATIONS OF THE LEMMA

Proof of Theorem 1. Letk = Dexp{%ﬂ. Let H, and H; be two subgraphs
of the complete bipartite graph Kj,, with bipartition (V;,V,) whose union is
K. We may assume that |E(H;)| > |E(H,)| and hence |[E(H,)|| > (kn)*/2. Set
I=1](1—-7)log,n| and m = [n7]. Then conditions (3) and (4) are satisfied.
Thus, by Lemma 1, there exists M C V; with |[M| > m with the property that for
every d-element subset D of M, the number of vertices of H adjacent to all
vertices in D is at least n. Now we construct embedding f : WU U — M UV, of
G = (W, U;E) into the subgraph of H; induced by M UV, in a greedy manner.
Let f be an arbitrary 1-1 mapping of U to M. We extend this mapping to
wi, wa, ... wy-elements of W and define f-images as follows: For i = 1,2,...n
consider D(w;) = f(Ng(w;)). Since |D(w;)| < d there are at least n vertices in V,
adjacent to each vertex in D(w;). We choose for f(w;) any of them not used as
f(w;) for j < i. Theorem 1 is proved.
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Instead of proving Theorem 2 directly, we first derive a more general state-
ment. Let H (s, n,d) denote the family of graphs G = (V, E) on at most n vertices
such that there exists a partition V = V; U --- U V| with the properties:

(a) every V; is an independent set;
(b) for every i =1,...,s and every v € V;, the degree of vin G-V —---
—V,_1 is at most d.

For example, H(0,n,d) is the family of graphs without edges on at most n
vertices and H(1,n,d) is the family of bipartite graphs on at most n vertices in
which all the vertices of one of the parts have degrees at most d.

Let F(s,t,n,d) be the smallest positive integer such that for every
G € H(s,n,d) and every G, € H(t,n,d),

R(G1,Gy) < nF(s,t,n,d).

Theorem 3. Let a positive integer d > 3 be fixed. For every non-negative
integers s and t with s +t > 1, and for sufficiently large n,

F(s,t,n,d) < 10 exp{2(s +t — 1)(1 + dvInn)}.

In particular, for every € > 0, there exists ny = ny(s,t,d, ) such that for every
n > ny,

F(s,t,n,d) <n°.

Proof of Theorem 3. We prove the theorem for a fixed d by induction on
s + t. Clearly, for any s > 1 and ¢t > 1,

F(s,0,n,d) = F(0,t,n,d) = 1.

Suppose that the theorem is proved for all pairs (s',#') with s + ¢ < s 4 ¢ and
assume that s > 1 and ¢ > 1. Consider arbitrary graphs G; € H(s,n,d) and
G, € H(t,n,d).

Set

k= [Sexp{2(s+t—1)(1+dVInn)}| and N =kn. (6)
Consider red-blue coloring of edges of K,y and let Hy,H, with V(H;) =
V(H;) = V(K,y) be the subgraphs consisting of red and blue edges respectively.

Let V(Kyy) = UUW be an arbitrary partition with |U| = |W| = kn. We may
assume that at least half of edges connecting U with W belongs to E(H;). Set

I=+VInn, and m = 10n exp{2(s + ¢t — 2)(1 + dVInn)}.
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We will prove that these parameters satisfy conditions of Lemma 1. Indeed, we
can assume that for n > ny(d),

5 exp{2(1 + dVInn)} < n/6.

Then for k defined by (6), we have k < (n/6)*""~! and hence
K\ Vinn o 2(s+—1)d < (s+i-1)d d < cdpd d
3 > (exp{2(s+t—1)(1 +dVInn)}) >n >n n®>6%k"n".

Similarly, for n > ny(d),

1
chn2 > g exp{2(s + 1 — 1)(1 + dVInn) — Vinn} >

> 10n exp{2(s +t —2)(1 +dVInn)} > m — 1.

Applying Lemma 1, we get that there exists M C U with |[M| > m with the
property that for every d-element subset D of M, the number of vertices in W
adjacent in H; to all vertices in D is at least n.

Let a partition of V(G;) verifying that G, € H(s,n,d) be the partition
V(Gl) =X U...UXyy. Let Gll = Gy — X;. Then Gll S H(S — 1,I’l,d). By the
induction assumption, R(G', G2) < m. It follows that either H,(M) contains a
copy of G} or H,(M) contains a copy of G,. In the latter case, we are done, so we
assume that there exists an embedding f of G| into H;(M). Now (similarly to the
proof of Theorem 1) we embed vertices of X; into W in a greedy manner. Let
Xi,...,X, be the vertices in X;; note that p < n. Consecutively, fori =1,...,p,
we do the following. Consider D(x;) = f(Ng, (x;)). Since |D(x;)| < d, there are at
least n vertices in W adjacent in H; to each vertex in D(x;). We choose for f(x;)
any of them not used as f(x;) for j < i. Theorem is proved.

Proof of Theorem 2. Let X;; be any maximal (by inclusion) independent
set in G containing all vertices of degree at least d 4+ 1. By the maximality of
Xu+1, the maximum degree of G — X, is at most d — 1, and hence V(G) \ X441
can be partitioned into d independent sets Xi,...,X,. It follows that
G € H(d,n,d). Thus, by Theorem 3,

R(G,G) < 10 n exp{2(2d — 1)[(1 4+ dvInn)]}.

This proves the theorem.

Remark. Note that replacing 2-coloring by r-coloring one can verify straight-
forward extensions of Theorems 1, 2, and 3.
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Note added in proof: It was recently observed by Shi Lingsheng in [6] that as a
consequence of Theorem 1 and Lemma 1, one can derive that the Ramsey number
of a r-dimensional cube R(Q;) < m®, where m = 2" and ¢ > 0.

Indeed, with the choice of d, [ and m as in Theorem 1, (3) is satisfied if

1 1 In6 1+d
—[——=1]1 -1 >—4+n24+ —- 1
(g 1) o0 2 B m2 1 1)

while (4) holds true.

Thus for example, setting vy = %, d=t, and m=2' one can see that
R(Q;) < m* holds, where ¢ < 7. By a careful optimization of constants, ¢ = @
is proved in [6].
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