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Abstract

If a Singer difference set over a field of square order q2n is partitioned into q +1 subsets such that
the numbers in each subset belong to a different residue class modulo q +1, then q of the subsets are
equicardinal, while one subset has a different cardinality.
© 2004 Elsevier Ltd. All rights reserved.

Let D = {d1, d2, . . . , dk} be a set of integers modulo v such that every a �≡ 0 mod v

can be expressed in exactly λ ways in the form di − d j ≡ a mod v. Then D is a (v, k, λ)-
difference set.

Consider the finite field G F(qm), q a prime power. Let w be a primitive root of this
field. Then G F(qm) can be regarded as an m-dimensional vector space V over the G F(q)

subfield. Let an (m − 1)-dimensional subspace of V comprise, besides 0, the vectors
w jr , r = 1, 2, . . . , (qm−1 − 1)/(q − 1), where w jr and cw jr , c ∈ G F(q)\{0}, are
considered identical.

Note that for m even, the elements of the G F(q) subfield are (q + 1)th powers.
We state Singer’s theorem [3] as follows, where Part (b) is the object of the present

article:

Theorem. (a) The exponents jr form a cyclic (v, k, λ)-difference set D with:

v = (qm − 1)/(q − 1), k = (qm−1 − 1)/(q − 1), λ = (qm−2 − 1)/(q − 1).

(b) Assume m is even and let m = 2n, n > 1.

E-mail address: bkestenb@iris.nyit.edu (B.C. Kestenband).

0195-6698/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2003.10.014

http://www.elsevier.com/locate/ejc


1124 B.C. Kestenband / European Journal of Combinatorics 25 (2004) 1123–1133

Then, if the difference set D = { jr : r = 1, 2, . . . , (q2n−1 − 1)/(q − 1)} is partitioned
into q + 1 subsets D0, D1, . . . , Dq such that for all i, jr ∈ Di ⇔ jr ≡ i mod q + 1, we
have:

|Di | =
{
(q2n−1 + qn+1 − qn − 1)/(q2 − 1) if 2 n
(q2n−1 − qn+1 + qn − 1)/(q2 − 1) if 2 | n

for one value of i

|Di | =
{
(q2n−1 − qn + qn−1 − 1)/(q2 − 1) if 2 n
(q2n−1 + qn − qn−1 − 1)/(q2 − 1) if 2 | n

for q values of i.

Some preliminary work is required before we can proceed to the actual proof.
In G F(qm), consider the polynomial

Ξ (x) = xqm−1 + xqm−2 + · · · + xq + x .

Note that:

Ξ is an additive function;
Ξ (c) ∈ G F(q) for every c ∈ G F(qm);
Ξ (tc) = t · Ξ (c) for t ∈ G F(q).

It was shown in [2, Theorem 15(iii)] that the zeros of Ξ make up an (m−1)-dimensional
vector space over G F(q), where zeros which differ by a factor c ∈ G F(q)\{0} are
identified. As such, we shall adopt the view that Singer’s theorem concerns the exponents
jr of the primitive root w in the set of nonvanishing zeros of Ξ . Specifically, the difference
set D will be regarded as the set of exponents of w in the set of nonvanishing zeros of Ξ ,
where, again, no distinction is made between w jr and cw jr , c ∈ G F(q)\{0}.

We shall be concerned exclusively with finite fields G F(q2n) and w will stand for a
primitive root of such a field. Nothing similar takes place in fields of nonsquare orders.

The proof of Part (b) of the theorem depends upon the parity of n, and, if n is even, upon
the parity of q as well.

Proposition 1 constitutes the proof for the case in which n is odd, i.e. m ≡ 2 mod 4—
see the paragraph immediately following the proof of the proposition. The proof for the
case 2 | n, i.e. 4 | m, is the object of Proposition 6.

Proposition 1 is valid for all prime powers, but there are slight differences in the proof
between the cases in which q is odd or even. We shall make the following convention
regarding the proof: whenever a sentence is followed by a similar sentence enclosed in
brackets, the former is valid for q odd, while the latter holds for q even. Everything else is
valid regardless of the parity of q .

Proposition 1. Consider the finite field G F(q2n), n odd, and the q2n−1 − 1 exponents of
w in the set of nonvanishing zeros of Ξ (x) = xq2n−1 + xq2n−2 + · · · + xq + x.

(i) If q is odd, there are (q2n−1 + qn+1 − qn − 1)/(q + 1) exponents that are congruent
to 1

2 (q + 1) modulo q + 1.

Then, for each i ∈ {0, 1, . . . , 1
2 (q − 1), 1

2 (q + 3), . . . , q}, there are (qn + 1)(qn−1 −
1)/(q + 1) exponents that are congruent to i modulo q + 1.

(ii) If q is even, there are (q2n−1 + qn+1 − qn − 1)/(q + 1) exponents that are multiples
of q + 1.
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Then, for each i ∈ {1, 2, . . . , q}, there are (qn + 1)(qn−1 − 1)/(q + 1) exponents that
are congruent to i modulo q + 1.

Proof. We have Ξ (x) = 0 ⇔ xqn + x = b, where b is a zero of the polynomial
Θ(x) = xqn−1 + xqn−2 + · · · + xq + x .

As Ξ possesses q2n−1 distinct zeros [2, Theorem 15(i)], Θ cannot have fewer than qn−1

distinct zeros, nor can the equation xqn + x = b with Θ(b) = 0 have fewer than qn distinct
roots.

Thus, in order to find the zeros of Ξ , one has to solve qn−1 equations xqn + x = b with
b as above.

For b = 0 we have xqn + x = 0. The solutions of this equation are 0 and w(i+ 1
2 )(qn+1),

i = 0, 1, . . . , qn−2 [the solutions of this equation are 0 and wi(qn+1), i = 0, 1, . . . , qn−2].
Note that n being odd, the exponents of w in the preceding sentence are congruent to
1
2 (q +1) modulo q +1 [note that n being odd, the exponents of w in the preceding sentence
are multiples of q + 1].

Let now a be a solution of the equation xqn + x = b �= 0. Since [w(qn+1) j ]qn =
w(qn+1) j for any j , we see that aw(qn+1) j is a solution of the equation xqn +x = bw(qn+1) j .
What this shows is that no two exponents of w in the solutions of the equation xqn + x =
b �= 0 can differ by a multiple of qn + 1.

Hence, the qn exponents of w in the solution set of the above equation are that many
different residues modulo qn + 1. So one residue is missing. The missing residue is
1
2 (qn + 1), because w(i+ 1

2 )(qn+1) is a zero of xqn + x for any integer i , as shown earlier in
the proof [the missing residue is 0, i.e. qn + 1, because wi(qn+1) is a zero of xqn + x for
any i ].

The set {0, 1, . . . , qn} contains (qn + 1)/(q + 1) numbers congruent to each of the
numbers 0, 1, . . . , q modulo q + 1. If 1

2 (qn + 1) is removed from the set, one is evidently
left with (qn − q)/(q + 1) numbers congruent to 1

2 (q + 1) modulo q + 1 [if 0 is removed
from the set, one is left with (qn − q)/(q + 1) numbers divisible by q + 1].

As there are altogether qn−1 − 1 nonzero b’s, we end up with a total of qn −
1 + [(qn − q)/(q + 1)](qn−1 − 1) exponents that are congruent to 1

2 (q + 1) modulo
q + 1 and [(qn + 1)/(q + 1)](qn−1 − 1) exponents congruent to each of the numbers
0, 1, . . . , 1

2 (q −1), 1
2 (q +3), . . . , q , modulo q +1 [as there are altogether qn−1−1 nonzero

b’s, we end up with a total of qn − 1 + [(qn − q)/(q + 1)](qn−1 − 1) exponents that are
multiples of q + 1 and [(qn + 1)/(q + 1)](qn−1 − 1) exponents congruent to each of the
numbers 1, 2, . . . , q , modulo q + 1]. �

Since w jr and cw jr , c ∈ G F(q)\{0}, are identified in the theorem, it is necessary to
divide the results of Proposition 1 by q − 1 in order to arrive at the corresponding numbers
in the theorem.

We now turn to the more complicated situation in which n is even, i.e. 4 | m.
Let T denote the set of nonvanishing zeros of Ξ : T = {cw jr : c ∈ G F(q)\{0}, jr ∈ D}.
Our partition of D into q + 1 subsets D0, D1, . . . , Dq , induces a partition of T into

q + 1 subsets T0, T1, . . . , Tq , where Ti = {cw jr : c ∈ G F(q)\{0}, jr ∈ Di } for all i . We
have |Ti | = (q − 1)|Di |.
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The automorphism d → dq maps the subset Ti onto Tq+1−i , because � ≡ i mod q +
1 ⇔ q� ≡ q + 1 − i mod q + 1. Hence the subsets T0 and, if q is odd, T1

2 (q+1)
as well, are

left invariant by said automorphism. But for i �= 0 or 1
2 (q + 1), the subsets Ti and Tq+1−i

are interchanged.
Let now |Di | = ni , i = 0, 1, . . . , q . We have

q∑
i=0

ni = (q2n−1 − 1)/(q − 1) (1)

and also, in virtue of the preceding paragraph:

n1 = nq , n2 = nq−1, . . . , nq/2 = n1+q/2 for q even (2)

n1 = nq , n2 = nq−1, . . . , n 1
2 (q−1)

= n 1
2 (q+3)

for q odd. (3)

Therefore Eq. (1) becomes Eq. (4) if q is even, or (5) if q is odd:

n0 + 2n1 + 2n2 + · · · + 2nq/2 = (q2n−1 − 1)/(q − 1) (4)

n0 + 2n1 + 2n2 + · · · + 2n 1
2 (q−1)

+ n 1
2 (q+1)

= (q2n−1 − 1)/(q − 1). (5)

If, and only if, two numbers in D are in the same subset Di , the two differences they
give rise to are multiples of q + 1 (one should bear in mind that this only holds because
q + 1 | (qm − 1)/(q − 1) for m even). Since the set {1, 2, . . . , (q2n − 1)/(q − 1) − 1}
includes (q2n − q2)/(q2 − 1) multiples of q + 1, it follows that

q∑
i=0

ni (ni − 1) = [(q2n−2 − 1)/(q − 1)][(q2n − q2)/(q2 − 1)].

Combining this with (1) gives
q∑

i=0

n2
i = (q4n−2 + q2n+1 − 2q2n − q2n−1 + 1)/[(q − 1)(q2 − 1)]. (6)

In the case of G F(q2n), n even, the parity of q plays a crucial role. For q even, the proof
is fairly straightforward. But for odd prime powers q , our attempts at finding a more or less
“direct” proof, based on elementary properties of finite fields, have not been successful.
Eventually a proof was found, but it has the heuristically unsatisfactory feature that it
requires an incursion into the realm of correlations of finite projective planes.

For our present purposes it is not necessary to define the concept of correlation or of
absolute point of a correlation. It suffices to mention the following two facts concerning
correlations:

Fact 1 (Ball’s Theorem [1]). In a projective plane of order n∗s2, where n∗ is square-free,
the number of absolute points of a correlation is congruent to 1 modulo n∗s.

Fact 2. For every positive integer r there exists a correlation of the Desarguesian projective

plane PG(2, qr ) whose absolute points are precisely those points

(
x
y
z

)
which satisfy the

equation xyq + xq y + zq+1 = 0.
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We also need a third fact, which is a particular case of Theorem 19 in [2]. We state it as
follows:

Fact 3. Consider the equation xq = λx + θ , λ, θ ∈ G F(qr ), λ �= 0.
If λ is a (q − 1)th power, let λ = ωq−1. Then the given equation has q solutions, or no

solution, in G F(qr ), according to whether θ/ωq is, or is not, a zero of Ξ .

We need to obtain a few more results before we can prove the theorem for n even.

Proposition 2. In PG(2, q2n), q odd, n even, the number of points

(
x
y
z

)
satisfying the

equation xyq + xq y + zq+1 = 0 is given by (q2 + q)N + q + 1, where N stands for the
number of zeros of Ξ which are (q + 1)th powers.

Proof. For z = 0, the equation in the statement of the proposition is satisfied by the points(
1
0
0

)
and

(
ω
1
0

)
, where ω + ωq = 0, i.e. ω = aw

1
2 (q2n−1)/(q−1), a ranging through the

G F(q) subfield. We have thus obtained q + 1 points on the line z = 0.
For z = 1, the equation under consideration becomes

(x/y)q = −x/y − 1/yq+1. (7)

As −1 is a (q − 1)th power in G F(q2n), it follows from Fact 3 that Eq. (7) has q
solutions for x/y, or no solution. In the notation of Fact 3, we have θ = −1/yq+1, while
ω is given by the expression in the first paragraph of this proof.

Then ωq = aw
1
2 q(q2n−1)/(q−1), a ∈ G F(q).

By virtue of Fact 3, Eq. (7) has q solutions if θ/ωq = −1/(yq+1ωq) =
−1/(ayq+1w

1
2 q(q2n−1)/(q−1)) is a zero of Ξ , and no solution otherwise. Here, the exponent

of w is a multiple of q + 1, because n is even by assumption. Thus θ/ωq is a (q + 1)th
power.

Since N is the number of (q+1)th powers among the zeros of Ξ , there are N acceptable
values for yq+1. Hence there are N equations (7) to solve and each such equation yields q
values for the ratio x/y. On the other hand, each of the N values for yq+1 supplies q + 1
distinct values for y, because the equation yq+1 = tq+1 has q + 1 distinct solutions:

y = tws(q2n−1)/(q+1), s = 0, 1, . . . , q.

Therefore we end up with Nq(q + 1) points with z �= 0. �

The purpose of the foregoing proposition is to prove the next corollary. The number to
the right of the divisibility bar in the corollary will be denoted a little later by a0 and will
play an important role in the case in which q is odd.

Corollary 3. qn−1 | n0 − (q2n−1 − qn+1 + qn − 1)/(q2 − 1).

Proof. With our notation, the number N in the preceding proposition is (q − 1)n0. By
virtue of Fact 1, we therefore have:

(q − 1)n0(q
2 + q) + q + 1 ≡ 1 mod qn.
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This leads to n0 = (uqn−1 − 1)/(q2 − 1) for some integer u and the conclusion follows
readily. �

Lemma 4. If a ∈ G F(q2n), q odd, n even, is of the form a = w
1
2 (q+1)(2i+1), where w is a

primitive root of the field and aqs = ca for some odd number s and some c ∈ G F(q), then
q ≡ 1 mod 4 and a is a zero of Ξ .

Moreover, the number of elements a as described above, in G F(q2n), is an even multiple
of q − 1.

Proof. The condition aqs = ca is equivalent to:

w
1
2 qs (q+1)(2i+1) = wr(q2n−1)/(q−1)w

1
2 (q+1)(2i+1)w(q2n−1)t

for some integers r, t . This equation entails:

1
2 (qs − 1)(2i + 1) = [(q2n − 1)/(q2 − 1)][r + (q − 1)t]

which shows that:

(q2n − 1)/(q2 − 1) | 1
2 (qs − 1)(2i + 1). (8)

Since we have assumed that n is even and s is odd, the relationship (8) cannot take place
if q ≡ 3 mod 4, proving the first claim of the lemma.

Next we will demonstrate that if a is of the form in the statement of the lemma and (8)
holds, then aqn−1 = −1, where q ≡ 1 mod 4. This equation is equivalent to aqn + a = 0,
which implies Ξ (a) = 0.

Using the expression for a, the equation aqn−1 = −1 is rewritten as

w
1
2 (q+1)(2i+1)(qn−1) = w

1
2 (q2n−1)

⇒ q2n − 1 | 1
2 (q + 1)(2i + 1)(qn − 1) − 1

2 (q2n − 1)

⇒ qn + 1 | 1
2 (q + 1)(2i + 1) − 1

2 (qn + 1).

Let

t =
1
2 (qs − 1)(2i + 1)

(q2n − 1)/(q2 − 1)
. (9)

Then 1
2 (q + 1)(2i + 1) = (q2n−1)t

(q−1)(qs−1)
.

Thus we have to prove that qn + 1 | (q2n−1)t
(q−1)(qs−1)

− 1
2 (qn + 1), i.e. that (qn−1)t

(q−1)(qs−1)
is one

half of an odd number.
Let n = 2r (2u + 1), r ≥ 1. Then

q2n − 1

q2 − 1
= q4 − 1

q2 − 1
· q8 − 1

q4 − 1
· q16 − 1

q8 − 1
· · · q2r+1 − 1

q2r − 1
· q2n − 1

q2r+1 − 1
.

The last fraction is an odd integer, because 2n = 2r+1(2u+1). We rewrite the expression
(9) for t as:

t =
1
2 (qs − 1)(2i + 1)

(q2 + 1)(q4 + 1) . . . (q2r + 1)[(q2n − 1)/(q2r+1 − 1)] .
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As q2 j +1 ≡ 2 mod 4 for all j, 1
2 (qs−1) must be a multiple of 2r . So let qs−1 = 2r+1v.

Then the last expression for t becomes:

t = (2i + 1)v

1
2 (q2 + 1) · 1

2 (q4 + 1) . . . 1
2 (q2r + 1)[(q2n − 1)/(q2r+1 − 1)] . (10)

Since (qu + 1, qs − 1) = 2 for any integer u (this is a consequence of [2, Lemma 8]),
it follows that ( 1

2 (q2 j + 1), v) = 1 for j = 1, 2, . . . , r .

Further, let (v, (q2n − 1)/(q2r+1 − 1)) = h, where h is odd. It then follows that 2i + 1
is a (necessarily odd) multiple of the odd number:

1
2 (q2 + 1) · 1

2 (q4 + 1) · 1
2 (q8 + 1) · · · 1

2 (q2r + 1){(q2n − 1)/[h(q2r+1 − 1)]}.
But this last number reduces to (q2n − 1)/[2rh(q2 − 1)]. As a consequence, Eq. (10)

shows that t is an odd multiple of v/h, so that we can write t = (2 j + 1)(qs − 1)/(2r+1h).
Then:

(qn − 1)t

(q − 1)(qs − 1)
= (qn − 1)(2 j + 1)(qs − 1)

2r+1h(q − 1)(qs − 1)
= 2 j + 1

2r+1h
· qn − 1

q − 1

= 1

2

[
2 j + 1

h
· 1

2
(q + 1) · 1

2
(q2 + 1) · 1

2
(q4 + 1) · · · 1

2
(q2r−1 + 1) · qn − 1

q2r − 1

]
.

All the factors in the square brackets are odd and thus (qn −1)t/[(q −1)(qs −1)] is one
half of an odd number indeed, completing the proof of the first paragraph of the lemma.

Concerning the second paragraph:
It has been shown above that 2i +1 must be of the form (2k +1)(q2n−1)/[2rh(q2−1)].

Therefore:

a = w
1
2 (q+1)(2i+1) = w(2k+1)(q2n−1)/[2r+1h(q−1)].

In order to find the range of k, observe that the exponent of w must be less than q2n − 1,
whence it follows that k < 2r h(q − 1) − 1

2 , i.e. k = 0, 1, 2, . . . , 2r h(q − 1) − 1. Hence k
takes on 2r h(q − 1) values. This last number is an even multiple of q − 1, because r ≥ 1.
This completes the proof. �

Corollary 5. In G F(q2n), the number n0 is odd.

Proof. The fact that n0 is odd plays a role in the proof of the theorem only if q is odd and
n is even. For the sake of completeness, however, we have stated the corollary in its full
generality.

For q even, Eq. (4), which is valid regardless of the parity of n, shows that n0 must be
an odd number.

We omit the proof for the case in which q and n are odd. So let q be odd and n be even.
We will demonstrate that the number n 1

2 (q+1)
is even, which entails, by virtue of (5),

that n0 is odd.
We will say that two members of T1

2 (q+1)
are equivalent if their ratio is in the G F(q)

subfield. This equivalence relation partitions T1
2 (q+1)

into n 1
2 (q+1)

equivalence classes of

cardinality q − 1. It has been observed earlier that the set T1
2 (q+1)

is invariant under the
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group of automorphisms generated by the automorphism d → dq . The effect of this group
on the equivalence classes just defined is to permute them in cycles of various lengths. If
s is the smallest integer for which aqs

/a ∈ G F(q), then the equivalence class containing a
belongs to a cycle of length s, where s, of course, can be even or odd.

By virtue of Lemma 4, every element a = w
1
2 (q+1)(2i+1) satisfying aqs

/a ∈ G F(q) for
some odd s is a zero of Ξ and thus it is a member of T1

2 (q+1)
. Consequently, in the case in

which s is odd, there must be an even number of cycles of length s, because said lemma
has shown that the total number of elements a as described in the preceding sentence is an
even multiple of q − 1.

Then, as n 1
2 (q+1) represents the sum of the lengths of all the cycles, it must be an even

number, as claimed. �
We are now prepared to prove the next proposition, which completes the proof of the

theorem.

Proposition 6. Consider the finite field G F(q2n), n even, and the q2n−1 − 1 exponents of
w in the set of nonvanishing zeros of Ξ (x) = xq2n−1 + xq2n−2 + · · ·+ xq + x. Among these
exponents, there are (q2n−1 − qn+1 + qn − 1)/(q + 1) that are multiples of q + 1.

Then, for each i ∈ {1, 2, . . . , q}, there are (q2n−1 + qn − qn−1 − 1)/(q + 1) exponents
that are congruent to i modulo q + 1.

Proof. Let:

A = (q2n−1 − qn+1 + qn − 1)/(q2 − 1), B = (q2n−1 + qn − qn−1 − 1)/(q2 − 1).

Since |Ti | = (q − 1)|Di | = (q − 1)ni , the following statements are equivalent to the
claims of the present proposition: n0 = A, n1 = n2 = · · · = nq = B .

We shall let:

n0 = a0 + A, ni = ai + B, i = 1, 2, . . . , q. (11)

Thus our goal is to show that a0 = a1 = · · · = aq = 0.
With this notation, Eqs. (4) and (5) become:

a0 + 2a1 + 2a2 + · · · + 2a 1
2 q + A + q B = (q2n−1 − 1)/(q − 1)

a0 + 2a1 + 2a2 + · · · + 2a 1
2 (q−1)

+ a 1
2 (q+1)

+ A + q B = (q2n−1 − 1)/(q − 1)

But A + q B = (q2n−1 − 1)/(q − 1). Hence:

a0 + 2a1 + 2a2 + · · · + 2a 1
2 q = 0 for q even (12)

a0 + 2a1 + 2a2 + · · · + 2a 1
2 (q−1)

+ a 1
2 (q+1)

= 0 for q odd. (13)

Case I. q is a power of two.
Then, because of (2), the left side of (6) is n2

0 + 2n2
1 + 2n2

2 + · · · + 2n2
1
2 q

, while its right

side is A2 + q B2 (easy check).
Substitute here the expressions for ni :

(a0 + A)2 + 2(a1 + B)2 + 2(a2 + B)2 + · · · + 2(a 1
2 q + B)2 = A2 + q B2.
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But (12) reduces this equation to: a2
0 + 2a2

1 + 2a2
2 + · · · + 2a2

1
2 q

+ 2(A − B)a0 = 0.

Furthermore, A − B = −qn−1, hence:

a2
0 + 2a2

1 + 2a2
2 + · · · + 2a2

1
2 q

− 2a0qn−1 = 0. (14)

For each i modulo q+1, the set {1, 2, . . . , (q2n−1)/(q−1)} contains (q2n−1)/(q2−1)

numbers congruent to i modulo q + 1. Therefore the difference set D yields Q differences
congruent to i modulo q + 1, where Q = λ(q2n − 1)/(q2 − 1) = [(q2n−2 − 1)/(q −
1)][(q2n − 1)/(q2 − 1)].

For a fixed i , these differences are produced by pairs { jr , jr ′ }, where jr ∈ Du ,
jr ′ ∈ Du+i , u = 0, 1, . . . , q . But jr − jr ′ ≡ i mod q +1 ⇔ jr ′ − jr ≡ q +1− i mod q +1.
This leads to the following 1

2 q equations, each of which contains one term that has been
boxed:

n0n1 + n1n2 + · · · + n 1
2 qn 1

2 q+1 + · · · + nqn0 = Q

n0n2 + n1n3 + · · · + nq−1n0 + nqn1 = Q

n0n3 + n1n4 + · · · + n 1
2 q−1n 1

2 q+2 + · · · + nq−1n1 + nq n2 = Q

n0n4 + n1n5 + · · · + nq−1n2 + nqn3 = Q

...

n0n 1
2 q + n1n 1

2 q+1 + · · · + n 3
4 q+1n 1

4 q + · · · + nq−1n 1
2 q−2 + nqn 1

2 q−1 = Q.

Each left side comprises q + 1 terms. In the terms that have been boxed, and in none
other, the two factors are equal, by (2). The 1

2 q boxed terms are all different, obviously.
By virtue of (2) again, the remaining q terms on each left side can be grouped into 1

2 q
pairs, such that the two terms in each pair are equal. As a consequence, we have for each
i ∈ {1, 2, . . . , 1

2 q}:
2n0ni + 2n ji1nki1 + · · · + 2n j

i, 1
2 q−1

nk
i, 1

2 q−1
+ n2

�i
= Q (15)

where, for each i , the set of subscripts {i, ji1, ki1, . . . , ji, 1
2 q−1, ki, 1

2 q−1, �i } consists of two

copies of the set {1, 2, . . . , 1
2 q}. Also, the 1

2 q subscripts �i are all different.
Substitute into Eq. (15), the expressions (11) for n0, n1, . . . , n 1

2 q :

2(a0 + A)(ai + B) + 2(a ji1 + B)(aki1 + B)

+ · · · + 2(a j
i, 1

2 q−1
+ B)(ak

i, 1
2 q−1

+ B) + (a�i + B)2 = Q.

This equation is transformed into:

2a0ai + 2a ji1aki1 + · · · + 2(a j
i, 1

2 q−1
ak

i, 1
2 q−1

+ a2
�i

+ 2Aai

+ 2B(a0 + a ji1 + aki1 + · · · + a j
i, 1

2 q−1
+ ak

i, 1
2 q−1

+ a�i )

+ 2AB + (q − 1)B2 = Q.
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It is an easy verification that 2AB + (q − 1)B2 = Q. Also, A = B − qn−1. Thus the
last equation becomes:

2a0ai + 2a ji1aki1 + · · · + 2a j
i, 1

2 q−1
ak

i, 1
2 q−1

+ a2
�i

+ 2B(a0 + ai + a ji1 + aki1 + · · · + a j
i, 1

2 q−1
+ ak

i, 1
2 q−1

+ a�i ) − 2qn−1ai = 0.

Here, the coefficient of 2B is simply a0 + 2a1 + · · ·+ 2a 1
2 q , i.e. 0 (see (12)). Therefore,

for each i ∈ {1, 2, . . . , 1
2 q} we have the equation:

2a0ai + 2a ji1aki1 + · · · + 2a j
i, 1

2 q−1
ak

i, 1
2 q−1

+ a2
�i

− 2qn−1ai = 0. (16)

It has been observed earlier that the subscripts �i are all different, so that the set
{�i : i = 1, 2, . . . , 1

2 q} is actually the set {1, 2, . . . , 1
2 q}.

As our goal is to prove that a0 = a1 = · · · = a 1
2 q = 0, we shall assume that some of

the ai ’s do not vanish and a contradiction will be arrived at.
Since all the ai ’s must be integers, Eqs. (16) shows that 2 | a1, a2, . . . , a 1

2 q . But 2 | a0

as well, by (12). It follows that all the terms with coefficient 2 in (16) are divisible by 23

(provided so is the last term). Hence 23 | a2
i , so that 22 | ai for all i . Thus all the terms

with coefficient 2 in (16) are multiples of 25 (provided so is the last term). Thus 25 | a2
i ,

whence 23 | ai . This inductive process can be continued as long as 2r ≤ qn−1, so that one
obtains successively: 24 | ai , . . . , qn−1 | ai , for all i . But then every term with coefficient
2 in (16) is a multiple of 2q2n−2, hence 2q2n−2 | a2

i ⇒ 2qn−1 | ai for all i �= 0. This
entails, by virtue of (12), that 4qn−1 | a0. But this can only take place if a0 = 0, because
Eq. (14) shows that 0 ≤ a0 ≤ 2qn−1.

Therefore a0 = 0. Now Eq. (14) shows that a1 = a2 = · · · = a 1
2 q = 0 and from

Eqs. (2) we infer that a 1
2 q+1 = · · · = aq−1 = aq = 0 as well, concluding the proof of

Case I.

∗
Trusting that the attentive reader has noticed why for odd prime powers one cannot

use the same approach as in Case I, and also that he/she will see in due course why
the argument for odd prime powers fails for even prime powers, we now proceed to
Case II.

∗
Case II. q is an odd prime power.

Note that A, as defined at the beginning of the present proof, is an odd number. Then,
because of (3), the left side of Eq. (6) is n2

0 + 2n2
1 + 2n2

2 + · · ·+ 2n2
1
2 (q−1)

+ n2
1
2 (q+1)

and its

right side is A2 + q B2, as in Case I. Proceeding as in that case, one arrives at the equation:

a2
0 + 2a2

1 + · · · + 2a2
1
2 (q−1)

+ a2
1
2 (q+1)

− 2a0qn−1 = 0. (17)

This equation shows that 0 ≤ a0 ≤ 2qn−1. But Corollary 3 has shown that qn−1 | a0
(see (11)), so that the only possibilities are a0 = 0 or qn−1 or 2qn−1. The last number must
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be ruled out, because a0 = 2qn−1 ⇒ a1 = a2 = · · · = a 1
2 (q−1)

= a 1
2 (q+1)

= 0, by virtue

of (17). This, in turn, implies a0 = 0, by (13).
The value a0 = qn−1 cannot be accepted, either, for the following reason: n0 = a0 + A,

where A is odd and so is n0 (by Corollary 5), so a0 cannot be an odd number.
Therefore a0 = 0, so that a1 = a2 = · · · = a 1

2 (q−1)
= a 1

2 (q+1)
= 0, by (17). From

Eqs. (3) we now infer that a 1
2 (q+3)

= · · · = aq−1 = 0, too. �
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