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Abstract

Let G be a finite Abelian group ard(G) its Davenport constant, which is defined as the maximal
length of a minimal zero-sum sequenceédnWe show that various problems on zero-sum sequences
in G may be interpreted as certain covering problems. Using this approach we study the Davenport
constant of groups of the forgZ/nZ)", with n > 2 andr e N. For elementaryp-groupsG, we
derive a result on the structure of minimal zero-sum sequeBbasing maximal lengthS| = D(G).
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Let G be an additively written finite Abelian group aisk= ]‘[!zl g a sequence is.
Then S is called a zero-sum sequencleﬂ:1 gi = 0 and itis called zero-sumfree if
Yic1 G # Oforall@ # | c [1,1]. Key problems in zero-sum theory are to find the
maximal possible length € N of zero-sumfree sequences, to determine the structure of
such maximal sequences and to find in given sequences zero-sum subsequences satisfying
additional properties.

A main aim of this paper is to present a new method in this area. We show that various
zero-sum problems may be interpreted and successfully tackled as covering problems in
finitely generated, free modules.

Let R be a commutative ring ant® an R-module. A subseC c M is called a
proper coset, iC = a+ N for someR-submoduleN < M and somea € M\N. For
given subset?A ¢ M we study the smallest numbsre Ng U {oo} such thatA\{0} is
contained in the union of proper cosets. lisection 3we concentrate on sets of sub-
sums of zero-sumfree sequences in vectorspaces including cubes in vectorspaces. These
investigations generalize former work on coverings by affine hyperplanes (resp. cover-
ings by single-valued sets), and they might be of their own interest {eeerem 3.9
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and the subsequent remarkpction 4deals with finite Abelian groupli. We show that
s(M, M) < ZpepquM (p—1), and that equality holds, among others, for cyclic groups
and elementary groups (s€éheorem 4.Y.

In Section 5we build the bridge between covering problems and zero-sum problems.
Section 6contains our two main results on zero-sum sequencesGLet (Z/nZ)" with
r,n e N,n > 2, and letD(G) denote the Davenport constant@f which is defined as
the maximal length of a minimal zero-sum sequenc&inThen 1+ r(n — 1) < D(G),
and equality holds, ifG is a p-group. But even in the case whemeis a prime, up to
now only very little is known about the structure of minimal zero-sum sequences with
maximal length (the theory of non-unique factorizations in Krull monoids naturally leads
to questions about the structure of such sequences;,d@, L7]). Theorem 6.2%resents
a (sharp) structural result on zero-sumfree sequences with maximal length in elementary
p-groups (see alsGorollary 6.3and the subsequent discussionh I§ not a prime power,
it is still a conjecture thaD(G) = 1 + r (n — 1) holds true. InTheorem 6.6ve show that
a certain covering condition implies thB{G) = 1 4 r (n — 1). In our opinion this result
provides some theoretical evidence why the conjecture should be true and opens a way
how to tackle it.

2. Preliminaries

Let N denote the positive integef§p = N U {0} andP C N the set of prime numbers.
For some primep € P letvp : N — Np denote thep-adic exponent whence =
[Tper P**™ for everyn € N. For integers, b € Z we setfa, b] = {x € Z | a < x < b}.

Throughout, all Abelian groups will be written additively and foe NletCy = Z/nZ
denote the cyclic group with elements. LetG be a finite Abelian group. TheG =
Chy®---®Cp withl<ng|---|nif |G| > 1andwithr =ny =1if |G| = 1. Then
r = r(G) is called the rank ofs andn, = exp(G) is the exponent os. Whenever it is
convenient we considé€s as anR-module forR = Z/n; Z. Clearly, theR-submodules of
G coincide with the subgroups. In particularnif = p, thenG might be considered as an
r-dimensional./ pZ-vectorspace.

Let 7(G) denote the free Abelian monoid with ba§isAn elementS € F(G) is called
asequence in @nd will be written in the form

I
S= 1‘[ g9® =g € 7).
geG i=1

A sequencd < F(G) is called asubsequence of, 8 there exists somé&’ € F(G) such
thatS=T - T’ (equivalentlyyg(T) < vg(S) for everyg € G). As usual

|
o(9 =) Vy(9g=) g €G
1

geG i=
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denotes theum of $

|S| = ng(S) =1 eNp
geG

denotes théength of Sand

29 = {Zgi 1 B#1C [1,|]} cG
iel

the set of all possible subsums 8f Clearly,|S| = 0 if and only if S = 1 is the empty

sequence. We say that the sequeBice

e zero-sumfregf 0 ¢ Y (9),

e azero-sum sequendéos (S) = 0,

e a minimal zero-sum sequence it is a zero-sum sequence and each proper
subsequence is zero-sumfree.

All rings are commutative, they are supposed to have a unit element aRdraddules
are unitary. LeR be a commutative rindyl be a freeR-module with basi1, ..., X and
C an R-module. Therr(M) = | denotes its rank, and for evefye Homgr(M, C) there
exists some& = (cy, ..., ¢) € C' such that

f=evx:M-—C
[ [
f = inxi —0(f) = f(c) = Z)\.ici,
i=1 i=1
whencé is the evaluation homomorphisménand we use the notatiéi{ f) = ev(f) =
f (c) whenever it is convenient.

3. Coveringsby proper cosets
Definition 3.1. Let R be a commutative ring andl an R-module.

(1) A subsetC c M is called aproper cosetif C = a + N for someR-submodule
N < M and som&a € M\N.

(2) Forasubsef c M lets(A, M) denote the smallest integee Ng U {co} such that
A\{0} is contained in the union &fproper cosets.

By definition we haves(A, M) = 0 if and only if A C {0} ands(A, M) = 1 if and
only if Ais contained in a proper coset.

In combinatorics various problems of the following type have been studied: find the
minimal number of (proper) affine hyperplands, . . ., Hs, which cover a given finite set
of points A in a (real) finite-dimensional vector space. Of course, this minimal number is
the same which is needed by a minimal coverind\dfy proper cosets, as is shown in the
following simple lemma.

Lemma3.2. Let R be a field, M a free R-module of rankerN and A C M a subset.
Thens(A, M) is the smallest integer &€ Ng U {oo} such that A{0} C Uiszl H;i where
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Hi, ..., Hs are affine hyperplanes (i.e.jH= a + N; where all N are free R-submodules
of M withrankr— 1and a € M\N;).

Proof. If N < M is an R-submodule ané € M\N, then(a)r N N = {0}. By base
extension we obtain som@-submoduleN* with N < N* < M, (a)r N N* = {0} and

with rankr — 1. Thus every proper coset can be blown up to an affine hyperplane and
since clearly every affine hyperplane not containing zero is a proper coset, the assertion
follows. O

In a series of papers coverings by so-called single-valued sets have been studied: let
be a commutative ringyl a freeR-module of finite rank an€ an R-module (mainly the
situationC = R was considered). A subsgtc M is called single-valued if there is some
6 € Homgr(M, C) and somé € C\{0} such that! (A) = {b}.

In the following lemma we point out that in a wide class of rings single-valued sets
coincide with proper cosets.

Proposition 3.3. Let R be a commutative ring, M an R-module &g A c M\{0}.

(1) Suppose there exists some R-module C, sbree Homr(M, C) and some be
C\{0} such that(A) = {b}. Thens(A, M) = 1.

(2) Suppose that A= A1 U --- U Ag with s(A;, M) = 1for everyi € [1,s]. Then
there exist an R-algebra : R — C, 01,...,6s € Homr(M, C) and elements
b1, ..., bs € C\{0} such thaw; (A;) = {b;j} for every i € [1, s]. Furthermore, if R
is an Artinian ring and an injective R-module and M a finitely generated R-module,
then C= R has the required property.

Proof. 1. IfN={me M |6(m) = 0},thenN < M is a properR-submodule and
A C a+ N for everya e Awhences(A, M) = 1.

2. Suppose that for eveliy e [1, s] we haveA; C & + N; for someR-submodule
Ni < M and withg; € M\N;. By standard construction we build d&algebraC
out of theR-moduleB = &°_; M/N;: we setC = R & B, definee : R — C by
€(r) = (r, 0) and define multiplication o by (r, b)(r’,b") = (rr’,rb’ 4+ r’b) for
allr,r’ e Randallb, b’ € B. For everyi € [1, s]

6i: M — B<— C
m— (0,...,00m+ N;,0,...,00 =b+— (0, b)

is an R-module homomaorphism witl#(g;) = b # 0, 6;(N;) = {0} whence
6i (A) C (g + Ni) = {by}.
Suppose thaR is an Artinian ring, injective as aR-module andV a finitely generated
R-module. ThenR is zero-dimensional, semi-local and Noetherian. Net< M be an
R-submodule and € M\N. By D. Eisenbud®, Propositions 21.2 and 21.5]

€: M/N — Homg(Homr(M/N, R), R)
X+ N+ (ex : 0 > 6(X+ N))

is an R-module isomorphism. Since+ N # 0 € M/N, it follows thate; # 0 whence
there is som® € Homgr(M/N, R) withd(@+ N) £ 0. If  : M — M/N denotes the
canonical projection, thefio 7 : M — R satisfie®)(N) = {0} andé(@a+ N) #0. O
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In the following lemma we summarize some basic properties afthdv)-invariant.
Lemma 3.4. Let R be a commutative ring, M an R-module andBAC M.

(1) s(A, M) < |A|.

(2) Let C be an R-module anfl € Homgr(M, C) such that0 ¢ 6(A\{0}). Then
S(A, M) < |0(A)].

(3) s(AUB, M) <s(A, M) +s(B, M).

(4) If B c Awiths(B, M) < s(A, M), then AB # @.

(5) Suppose that A= A1 U --- U Ay wheres(A;,M) = 1foralli e [1,t] and
t = s(A, M). Then for every non-empty setd [1, t] we haves(|_; ., Ai, M) = [I].

Proof. Without restriction we may suppose thag0A U B.

1. SinceA = | J, . a(@a+ {0}), the assertion follows.

2. Since
A= ] (Ano )
beb (A)
and since byProposition 3.81) s(AN #~1(b), M) = 1, it follows thats(A, M) <
[OCA).

i=1
the union of theA's andB]swhences(AU B, M) <s(A, M) +s(B, M).
4. Suppose thad c Aands(B, M) < s(A, M). ThenA = BU (A\B) and

s(B, M) < s(A, M) <s(B, M) +s(A\B, M)

whences(A\B, M) # 0 andA\B # §.
5. Obvious. O

3. 1f A= [J4M A andB = UT(:Bl’M) Bj with proper cosets\, Bj, thenAU B is

Definition 3.5. Let R be a commutative ring andl a free R-module with basis
X1, ..., X| forsome € N.

(1) Foreveny # k € N} we set

|
Ak) = Al(k) = AKk) = {Zaixi | 0<a; <k for everyi € [1,|], C M.
i=1

(2) LetG be an Abelian group anfl = ]_[!:l 0i € F(G) a sequence is. We set

ALS) = A(S) = {Z Xi|##1ClLI,) g = o} c ARD).
iel iel

In particular, we writeAL (1) = AL((1, ..., 1)) and we may interpreAk (1) as the set
of vertices of the cube iM. Clearly, A'R(k) depends on the choice of a basishhbut
s(A'R(k), M) is independent of the basis whence we simply V\s'(tA'R(k), R.

Whenever for a sequenc one hass(AL(1)\AL(S), R) < s(AL(1), R), then
A'R(S) # ¥ whenceS is not zero-sumfree. In this way we shall give a new proof that
the Davenport constant Gf[) equals (p — 1) + 1 (see the discussion aft€éheorem 6.5
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Lemma 3.6. Let R be a commutative ring, M an R-modu{&1,..., X;} € M an
independent subset aid# S= [T _; XI™ € F(M).

1) X5 = A'R(m)\{O} C (X1,..., X)r and S is zero-sumfree if and only if either
charR) = 0orm € [0, charR) — 1]'.
(2) Suppose that S is zero-sumfree andlet k < mand | c [1,1]. Then

|
1<s (2 (l_[ XL‘") , M) <s(X(9, M)
v=1
|
53(2( I1 XW),M)—IeriEZmi:ISI'
i—1

ie[LIN\I icl
(3) If chatR) = n and p is a prime divisor of n with p< n and p < I, then
s(AR(D), R <1 -1
Proof. 1. By definition we havel'(S) = A'R(m)\{O}. Sis zero-sumfree if and only if
0 ¢ X(9) if and only if for everyk < mthe equationZ'v=l k, X, = 0 implies that
k = 0. SinceXg, ..., X| are independent elements, the assertion follows.
2. Since X (X)\{0} = {Xij} = Xj + {0} € M is a proper coset, it follows that
S(X(Xj), M) = 1foreveryi € [1,1]. Since0 # k < m, we haveX (Hlv=1 XE") -
Y (S) andLemma 3.43) implies thats (Z (Hlu=l X,'f“) , M) <s(X(S), M).
Next we show that

-1
s(X(S, M) =5 (2 (]_[ x(”i) : M) +m
i=1

which implies the remaining inequalities by an inductive argument.
Letv € [1, m]. SinceS is zero-sumfree anfiX4, ..., X|} is independent, we
obtain that

1-1
0#—vX ¢ ¥ (]‘[x{"‘) C (X1, ..., Xi—1)R
i=1

and thatv X| ¢ (Xi, ..., X|—1)Rr. Thus for

-1
B, = {vXi} + (2 (]‘[ XF“) U {0}) C (WX} + (Xa, ., Xim1)R

i=1

we obtain thats(B,, R) = 1. Since Z(§) = ¥ ([[1X") u UL, B,
Lemma 3.4mplies the assertion.

3. SupposéXy, ..., X} is a basis oR!, chaR) = n and p a prime divisor of with
p < min{n,l}. Fori € N we set

A ={ij |l C[l,l]with|l|=i}

jel
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and obtain that
eve(A) =i +nZ wherec = (1+nZ,...,1+nZ)

whences(A;, R') = 1. Furthermores(A; U Api1, R') = 1, because
eve(Ar) = % +NZ = eVe(Apt1) forc = <Ep +nZ,..., Ep + nZ) )

Thus we infer that

AR = J A=AuApu | A
]

el ie[L,I1\{L, p+1)
which implies that
s(AR(), Ry <1 -1 O
Lemma3.7. Let R be a commutative ring,d Nand ke [1,| —1]. In R[X,Yjj |i €

[1, k], j € [1,1]] we have the following polynomial identity:

) (—1)”i]j<x - Zvi,j) = —xk,

g£IC[L,0] jed

Proof. see Lemma9.3inlfg]. O
Proposition 3.8. Let R be a commutative ring, M an R-module, C an R-algebra and
S a zero-sumfree sequence in M. Suppdg&) = A; U --- U A where k < |§|
and 6; (Aj) = {bj} with 6 € Homgr(M,C) and h € C\{0} for all i e [1,k]. Then

=(=1 bik =0
Proof. Letb = ]_[!‘=l bi and fori € [1, k] we setd = b—bi -6 € Homgr(M, C) whence
0/ (Ai) = {b}.

Suppose thad = []°, f, and letd # J C [1,|S]]. SinceX(S) = Aj U --- U A,

v=

there exists some € [1, k] such tha) ;. fj € A,. This implies that
jed jed
whence

K
I1 (b— Zeﬂfp) =0.
i=1 jEJ
Using Lemma 3.8 withX = b andY; j = 6/(fj) we infer that 0= —bX. O

Theorem 3.9. Let R be afield, k N and S be a zero-sumfree sequence'in R

1) s(2(9,R) = 8.
(2) If suppS) c R isindependent, thew(2(S), R) = |S|.
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(3) Letk e N if cha(R) = 0, andk € [0, cha(R)—1]' otherwise. Thes(A(k), R) =
Z!:l ki :

Proof. (1) Assume to the contrary thatX(S), R') < |S]. ThenZ(S) = AjU--- U Ay

with k < |S| ands(A1, R') = --- = s(Ax, R)) = 1. By Proposition 3.3here exist
6, € Homr(R', R) andb;j € R\{OL such thaw; (A)) = {b;} for everyi e [1,K].
ThusProposition 3.8mplies that] | 1b‘§ = 0 whenceb, = 0 for somev € [1, k],
a contradiction.

(2) Lemma 3.62) implies thas(X(S), R') < |S whence the assertion follows from (1).

(3) If {X1,..., X} is a basis ofR, then byLemma3.61) T = []I_, X! is zero-
sumfree andl(T) = A'R(k)\{O}. Hence the assertion follows from (2)

v=

Remark 3.10. Fork = 1 andR = Z/pZ the result ors(Ak(k), R') was proved by Gao
in [11] and fork = 1 and R the real numbers a first proof was given by Alon anolddi
in [1]. For further results of this type see algf) nd [16].

4. Ons(M, M) for finite Abelian groups M

Let M be afinite Abelian group with exponent édp) = n. ThenM may be considered
as anR-module withR = Z/nZ and theR-submodules coincide with the subgroups of
M. SinceM is finite, Lemma 3.4shows that

s(M, M) < |M| < o0.
In this section we studg(M, M) and for simplicity we ses(M) = s(M, M).
Definition 4.1. We define a homomorphisin: (N, -) — (Np, +) by

L:N— No
N> Y vp(M(p—1).

pelP

Lemma4.2. Let M be a finite Abelian group.
(1) If N < M is a subgroup, then
S(N) =s(N, M) = s(M) = s(N) +s(M/N).
(2) s(M) < L(IM)).
(3) If s(M) = L(|M]), thens(N) = L(|N|) for all subgroups N< M.

Proof. (1) LetN < M, N\{0} = "\ (gi + Ni), with all Ni < M and allgi € M\N;,

and letM/N\{N} = USM™ (@@ + N) + Hi/N) with all N < H; < M and

all 3 € M\H;. If x € M\N, then there is somé € [1,s(M/N)] such that
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X+ N € (& + N) + Hi/N whence(x — a) + N € Hj/N, x — & € H; and
X € @ + Hj. Thus

s(N) s(M/N)
M\(0} = [ J@+Nou | J @& +H)
i=1 i=1

whences(M) < s(N) + s(M/N).

By definition we haves(N, M) < s(N, N) ands(N, M) < s(M, M). Hence
it remains to verify thas(N) < s(N, M). Let N\{0} = (J!_;(g + Ni) with
t =s(N,M), NN < M andg; € M\N; for everyi e [1,t]. By the minimality
of t we infer that there is somef t; € NN (g + Ni) whencet; + Nj = g + N;
for everyi € [1, t]. Therefore it follows that

t t
N\{0} = [ J(t + Ny 0Ny = [t + (Ni 0 N))
i=1 i=1

with tj € N\(N; N N) for everyi € [1,t]. Thisimpliesthas(N) =s(N, N) <t =
s(N, M).

(2) We proceed by induction gM|. If IM| = 1, thens(M) = 0 = L(1). Suppose that
IM| > 1 and letN < M be a subgroup of indegM : N) = p for some prime
p € P. Then (1) and induction hypothesis imply that

s(M) = s(N) +s(M/N) < s(N) +(p—1 = L(ND + (p—1) = L(IMD.

(3) Suppose tha(M) = L(|M)). It suffices to show that for all subgroups< M with
(M : N) € Pwe haves(N) = L(|N]). Then the assertion follows by induction. Let
p € PandN < M a subgroup witiM : N) = p. Using (1) and (2) we infer that

LM =s(M) =s(N) +(p—1) = L(ND + (p—1) =L(M])
whences(N) = L(|N}). O

Lemma4.3. Let M be a finite Abelian group artdl< M a subgroup.

(1) Let M\{0} = Uisi'\f)(gi + Ni) where, foreveryie [1, s(M)], N; < M is a subgroup
and g € M\N;, andlet | consist of thosed [1, s(M)] such that(g; + Nj) N6 # @.
Ifx+6 ¢ Ui (@i + Ni) for every xe M\, thens(M) > s(6) + s(M/0).

(2) If s(M) > s@©@) + s(M/6), s(®) = L(|8]) and s(M/6) = L(IM/6]), then

s(M) = L(M}).

Proof. 1. We set] = [1,s(M)]\I. For everyi € | there aren; € N; andt; € 6 such
thatg; + hj =t whenceg; + Nj = t; + Ni, and sinceN; # gi + N;, it follows that
ti ¢ Nj. Thus we obtain that

(%) 0\{0} = U((ti +N)NBo) = U(ti + (N N 8)).
We assert thaltEI <!
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(%) M/6\ (6} = | (g} +60) + (Nj +6)/6)

jed
is a covering by proper cosets. Th@n and(xx) imply that
s(M) =[]+ 1J| = s(8) + s(M/6).

Leti € [1,s(M)]. If gi +6 € (N; + 6)/6, then there is somb; € N; with
g +6 = h; +6 whencegi € N; +6 and(gi + Nj) N6 # @. Thus it follows
that(gj +6) + (Nj + 6)/6 is a proper coset df1/6 for everyj € J.

To verify equality, letx € M\¢. Sincex + 6 ¢ Ui (g + Ni), there
exists somey € x + 6 and somej € J such thaty € g; + Nj. Then
X+60=y+6 Cgj+ Nj+6whencex +6 € (g; +6) + (N; +6)/6.

2. Lemma 4.2dmplies that
L(M]) = s(M) > s(0) +s(M/0) = L(|0]) + L(IM/6]) = L(IM])
whence the assertion follows[]
Proposition 4.4. Let M be a finite Abelian group.
1) f M = M1 @& M2 with gcd{|M3], [M2|} = 1, thens(M) > s(My) + s(My).
2) IfM = @!(ZlMi a direct decomposition into subgroups wgbd{| M; |, [M; |} = 1for
all1<i < j <kands(Mj) =L(M]|) foreveryiec [1, k], thens(M) = L(|M}).
(3) If exqM) = [[7_, p" and S((Cm)"™) = L((Cm)"1]) where § is the p-rank of
M, thens(M) = L(|M]).
Proof. (1) Suppose thaM = M1 & My. We verify the assumption diemma 4.3
with & = Mj. Then the assertion follows. With all notations ad.emma 4.3 let

X € M\ M1 whencex + M1 = b+ Mj for someb € M2\{0}. Then there exists some
A € [1,s(M)] such thab € g; + N,. It suffices to verify that

@ +N)NML =90

(whencex ¢ 1 andb ¢ (i, (gi + N)).
We setN, = H and since gcdMy|, [M2|} = 1, it follows thatH = H; & Ha
with H;j < M;. Assume to the contrary that

(b+H)NMy = (g.+H)N M1 #4.

Then there arda; € Hy,ho € Hr andmy € Mj such thatb + h1 +hy = mg
whenceb + hy = m; — hy € M1 N M2 = {0}. Thereforeb = —h, € H» < H and
g, +H =b+ H = H, a contradiction.

(2) Lemmas 4.2and4.3imply that

k k
LAMD = Y LAMiD = ) s(Mi) < S(M) < L(M)).

i=1 i=1
(3) If for i € [1,s] M; denotes thep;-subgroup ofM, then M; < (Cp_ni)ri and
Lemma 4.2mplies thats(M;) = L(|M;|). Thus the assertion follows from (1)
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Let M be a finite Abelianp-group. A subsetey, ..., &} C M is called independent,
if Z}zl mig = 0, withmy, ..., m; € Z, implies thatmieg = --- = myg = 0. Every
independent subset is contained in a maximal independent subset, and each two maximal
independent subsets have the same number of elements, which is denotk laynd is
called therank of M. Let so€M) = {x € M | px = 0} denote thesocle of M Then
soq M) is anlFp-vector space with dim(sodM)) =r(sodM)) = r(M).

Lemma4.5. Let M be a finite Abelian p-group, N« M a subgroup, ge M\N and
6 = sodM).

(1) If r(N) =r(M), thend < N.

(2) If g € M\N, then there exists some*N« M such that N< N*, pge N*, g ¢ N*
andr(N* 4+ (g)) = r(M).

(3) f r(N + (g)) =r(M), pge N and(g + N) N = @, thenr(N) = r(M).

(4) If M = (Cpn)" withr,n e Nand(g+ N) N6 # ¢, then there are e M and
N* < M such that M= (") & N*, N < N* and g"~te* + N = g+ N.

Proof. 1. Clearly, we have s@®l) < soqM). If r(N) = r(M), then so¢N) and
soq M) arelF p-vector spaces with the same dimension whenceMde= soqN) <
N.

2. Letg € M\N andN; = (N, pg). Assume to the contrary, thgte N;. Then there
area € Z andh € N such thag = —a(pg) + hwhence(l+ap)g=h.If x,y e Z
with x ord(g) +y(1+ap) = 1, theng = (1—x ord(g))g = yh € N, a contradiction.

If r(M) = r(N7z + (g)), we setN* = Nj. Suppose that(M) > r(N; + (g))
and setN; + (g) = @'_(a) witht = r(N1 + (g)). Then{er,...,&} C M is
contained in a maximal independent sub&etz M whencelE| = r(M). We set
Q = (E\{e1,...,g}) andN* = N; + Q. ThenN < N; < N*, pg € N* and
r(N* 4+ (g)) = r(M). Assume to the contrary thgte N*. Then there ara € N1
andq € Q such thaty = n4+ g whenceg = g—n € N1+ (g) N Q = {0} and
g = nh € Ny, a contradiction.

3. Suppose thag + N) N8 = @ andr(N + (g)) = r(M). We assert that

sodN) = sodN + (g))

which implies that(N) = r(M). Obviously, so¢N) < soqN +(g)), and we choose
somex € sodN + (g)). Sincepg € N, we havex = ag+ n withn € N and
a € [0, p—1]. Assume to the contrary that> 0. Then there is son& € [1, p—1]
and somé € Z such thaga = 1+kp. Thena'x = g+n’ withn’ = kpg+a’'n € N.
Then 0= a’px, butg + n" € g + N implies thatp(g + n’) # 0, a contradiction.

4. LetM = (Cpn)" withr,n € Nand(g+ N) N6 # ¢. Then there is some € 0
and somen € N such thate = g — n whenceg + N = e+ N. Sincee ¢ N and
pe = 0, it follows that(e) " N = {0}. There is some* € M with p"~le* = eand
obviously(e*) N N = {0}. ThenN is contained in a maximal subskt* such that
(e*) N N* = {0}. Thus we obtain thatl = (e*) & N* (cf. [22], 4.2.7). O
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Proposition 4.6. Let M be a finite Abelian p-group.

(1) If M is elementary, thes(M) = L(|M|).
(2) If M is cyclic, thens(M) = L(IM]). O

Proof. (1) If M is elementary with basiXy, ..., X|, thenM = A'Z/pz((p—l, R o B
1)) whence the assertion follows froftheorem 3.9
(2) Let M be a cyclic group. We proceed by induction gM|. If [M| = p, thenM
is elementary and the assertion follows from (1). To do the induction step, we set
6 = soqM). If we can verify the assumption dfemma 4.3 then the assertion
follows.
Let M\{0} = Ufﬂf)(gi + Nj) where, for everyi € [1,s(M)], Nj < M
is a subgroup and; € M\N;. Let | consist of thosé < [1,s(M)] such that
(g + Nj) N6 # @. By Lemma4.5we may suppose thadg < N; for every
i €[1,s(M)].
Letx € M\6#. We have to verify that

x+6 ¢ J@ + N,
iel
If A € [1, s(M)]with x € g, + Ny, then 0# px € N, whence 1= r(N;) = r(M).
Thusd < N, (g + Ni) N6 C (gr + No) N Ny = ¥ whencer ¢ | and
X ¢ Uier (@ +Np). O
Theorem 4.7. Let M be a finite Abelian group. If M= M1 & My, where M is cyclic,
exp(My) squarefree andcd{|M1]|, [M2|} = 1, thens(M) = L(|M|).

Proof. If My is cyclic, thenM;j is a direct sum of cyclic groups of prime power order. If
exp(My) is squarefree, thel is a direct sum of elementa-groups. Thus the assertion
follows from Propositions 4.4nd4.6. O

5. Zero sets

Zero sets play a crucial part in establishing the connection between covering problems
and zero-sum problems.

Definition 5.1. Let R be a commutative ring an@ an R-module. A subsetA of a
finitely generated fredR-module M is called azero set over Cif 0 € 6(A) for every
0 € Homgr(M, C).

We continue with a characterization of zero sets in the case vih&@ direct sum of
submodules. IR is a field andC an R-vector space, then zero sets allow a very simple
characterization.

Proposition 5.2. Let R be a commutative ring,& N and C= @¥_, C; an R-module.

(1) For a subset A of some finitely generated free R-module M the following conditions
are equivalent:

(a) Aiis azero setover C.
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(b) For every partition (resp. for every decomposition}=AA; U - - - U Ak there is
some i€ [1, k] such that Ais a zero set over C

(2) Supposethat Risafieldand & --- = Cx = R. Forasubset AC R' the following
conditions are equivalent:

(a) Aiis a zero set over C.
(b) AN H = ¢ for all submodules H< R' withr(H) > | — k.

(3) Suppose that R= Z/ pZ for some prime pe P and let C = Fq be the field with
q = pK elements. For a subset & (X1, ..., X|)r C R[X4, ..., X] the following
conditions are equivalent:

(@) Ais azero setoverC.
(0) [Trea f e (X' = Xi [T € [L1N)R.

Proof. 1. (a) = (b) Assume to the contrary th&t= A;U---UAx and noA; is a zero
set overC;. Hence for every € [1, k] there is som#®; € Homgr(M, C;) such that
6; (A)) C Ci\{0}. Therefored = (01, ..., 6k) € HOmr(M, C) andd(A) c C\{0}, a
contradiction.

(b) = (a) Assume to the contrary th& is not a zero set oveE. Then there is
somed = (s, ...,60k) € Homgr(M, C) such that(A) c C\{0}. Fori € [1, k] we
setA = {a e A 6i(a) # 0} and obtainthalA = A1 U--- U Ax and noA, is a zero
set ovelC;, a contradiction.

2. Every submodulél < R with r(H) > | — k is the intersection df (not necessarily
different) hyperplanes, sa = Hjy N --- N Hy, and for everyH; there is some
6, € Homr(R', R) such thatH; = ker(;). ThusAN H # ¢ if and only if there

is somea € A such that fo = (61, ..., 6) € Homgr(R', R¥) we haved(a) = 0
whence the assertion follows.
3. Ais a zero set oveFg if and only if for all6 € Homr(R[ Xy, ..., X1, Fq) we have

0 € 6(A), which holds if and only if for alc € IF'q there is somef € A such that

f(c) = 0. This is equivalent to the fact that for alle IF'q we have[[;.5 f(©) =0
and the assertion follows.O

In the following we want to point out that many classical problems in zero-sum theory
allow a straightforward formulation in terms of zero sets.

Let G be a finite Abelian group with exponemtA first problem, which is still unsolved
for generalG, is to determine th®avenport constanD(G) of G which is defined as
the maximal length of a minimal zero-sum sequenceéGir{equivalently,D(G) is the
smallest integet € N such that every sequen& € F(G) with |S] > | contains a
zero-sum subsequence). The paper ofo&rd5inzburg—Ziv 10} was a starting point for
investigations of subsequences of given sequences which have sum zero and satisfy certain
additional properties. For a subgetC N letn, (G) denote the smallest integee N such
that every sequencge F(G) has a zero-sum subsequeficeith |T| € A.

Clearly, nn(G) is just the Davenport constafii(G) and the invariantg), (G) for
A ={|G|}, A = {n} andA = [1, n] have found considerable attention in the literature (cf.
[8, 12, 19, 24] and the references given there) Af= {A}, then we set);, (G) = na (G).
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Main Lemmab5.3. Let G be a finite Abelian group with exponent n,=R Z/nZ and
A C N asubset. Theny (G) is the smallest integerd N such that the subset

A= {in [T CILI |l eA} c AL(D) c R = (Xg,.... X)R
iel
is a zero set over the R-module G.

Proof. Recall that for everyy € Homg(R', G) there is some& € G' such thaty =
ev. : R — G. A sequenceS = ]’[!zlci € F(G) has a zero-sum subsequence
T = []ig G with [T| = |I| € A if and only if there exists somé € A such that
eve(f) = f((c1,...,q)) =0. This implies the assertion.[]

Hence in this interpretation of zero-sum problems we fix BamoduleC (hereC =
7Z/nZ) and vary over the ranks of the fré&modulesM. This motivates the following
definition.

Definition 5.4. Let R be a commutative ring. For @-moduleC we set

s*(C) = sups(A, M) | Ais a subset of a freR-moduleM with finite rank and
Ais not a zero set ovel} € Ng U {o0}.

Proposition 5.5. Let R be a commutative ring and C an R-module.

(1) s*(C)<IC| -1
(2) A subset A of some free R-module M with finite rank, which satisfi@sM) >
ks*(C) + 1, is a zero set over €

Proof. (1) If a subsetA of some freeR-moduleM with finite rank is not a zero set over
C andd € Homgr(M, C) such that (A) c C\{0}, thenLemma 3.42) implies that

S(A,M) = 16(A)| = IC| -1

Thus we obtain thag*(C) < |C| — 1.

(2) Let Abe a set having the above properties and assume to the contrady,ithadt a
zero set ove€K. Then byProposition 5.21) there exists a partitioA = AjU- - -UAg
such that nd4; is a zero set ove€. This implies that

k
S(A, M) <) " s(A;, M) <ks*(C),
i=1
a contradiction. [

At the end of this section we want to show in an explicit example how zero-sum
problems can be attacked via zero sets (seeTdisorem 6.5

Letn € N be a positive integer with > 2. An old conjecture, going back to Kemnitz,
states that

7h‘l(cn D Cn) =4n — 3.

Itis easy to see thaj,(C,, @ Cn) > 4n — 3 and quite recently it was proved that for prime
powers we haven(Ch @ Cp) < 4n — 2 (see 14, 21, 23)).
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Main Lemma 5.6. Suppose that for every primeeP and for

A= :in [ cLll=p{ CcR =Xt ..., X)R,
iel

where R= Z/pZ and| = 4p—3, we haves(A, R)) > 2p—1. Them)n(Ch®Cn) = 4n—3

for every ne N.

Proof. It suffices to verify that
() MCrdCh) <4n-3.

Sincenn(+) is multiplicative, it suffices to show) for prime numbers.
Let p € P be a prime number an® = Z/pZ. Using Proposition 5.5ve infer that
s*(R) < p—1land

S(A,RP3) > 2p—1>2(s*(R) +1

whenceA is a zero set oveR @ R. Thus MainLemma 5.3implies thatyp(R® R) <
4p-3. O

6. ThecaseG = C],

In this final section we concentrate on groupof the formG = C|, and study the
maximal possible length of minimal zero-sum sequences and consider the structure
of such sequences. To begin with, Bt= Cp, & --- & Cp, With1 < ng | --- | ny.
Then it is easy to see th&(G) > 1+ Y i_,(ni — 1). Equality holds forp-groups and
for groups with rank < 2, but for everyr > 4 there are infinitely many groups for
which the above inequality is strict (se¥3], Theorem 3.3 in 16, 18] and the references
cited there). Although fop-groups the precise value of the Davenport constant is known,
we have almost no information about the structure of minimal zero-sum sequendts
|S| = D(G). We start with a structural result for such sequences in elemeptarpups
(Theorem 6.2and Corollary 6.3. Then we consider the Davenport constant for groups
G = CJ, wheren is not a prime power.

Lemma6.l. Let G = C,with n,r € N,n > 2and S= [[I_;g € F(G). Then
S(AR(D\AL(S), R) <r(n— 1) where R= Z/nZ.

Proof. Let{e,..., &} be abasis 06. For everyi € [1,1] we setg; = Z’Uzl Cy.ie, with
Cvj € Z.Forv e [1,r]andm e [1,n — 1] let

Am = {Z Xi € Ag(D) |1 CIL11,) (G +NZ) = m+nZ
iel iel

C (X1,..., X)r=R.
Thens(A,m, R) = 1, since forc, = (¢,1 + nZ, ..., ¢, +nZ) € R we have

v, (Aym) = Y (G +NZ) = m+nZ € R\{0}.

iel
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Hence it suffices to prove that

r

n—-1
Ar\ARS) < | | Avm.
v=1m=1
To verify the inclusion, letf = Y., Xi € AR(D\AR(S) ¢ R. ThenY ) gi # 0
whence there exists somee [1,r] with } ., ¢, e, # 0. Therefore} ., c,ie =
m+ nZforsomeme [1,n—1]ie.f € Aym. O

Theorem 6.2. Let G be an elementary p-group andeSF(G) a zero-sumfree sequence
with maximal length. Then for every subsequence T of S and every cyclic subgroup H of
GwehavdX(T)NH| <|T]|.

Proof. Let R =Z/pZ,r e NandH < G = (Z/pZ)" a cyclic subgroup. FoH = {0}
the assertion is obvious whence we suppose|that= p and selG = H' & H. Suppose
that

r(p—=1 r(p—1)
S= l_[ a, and T= ]_[ a,
v=1 v=r(p—1)+1-t

witht = |T| € N. If t > p, the assertion is obvious. So we supposethatp — 1.
For everyi € [1,|S|]] we writea; = b; + ¢; with b; € H” andc; € H and we set

|
U/=l_[b,,e]-'(H/) wherel =r(p—1) —t.
v=1

Theorem 3.9mplies thats(AL(1), R') = | andLemma 6.lyields thats(AL(1)\ AL(U"),
R) < (r —1)(p—1). We have

ALU) = {in 1 CILIL Y by =o}

iel iel
= {in [l C [1,I],Zaa =Zci € H} CR = (X1,..., X)r
iel iel iel

Since 0¢ X' (9), it follows that

0¢ {Zci =Y allclLlL) b =o} = ev(AR(U").

iel iel iel

UsingLemma 3.4we infer that

leve(AL(U"))| > s(ALU), R)
> s(AL(D), R — s(AL(D)\ALU"), R)
>r(p-1)—t—@r-1(p-1

p—1-t.
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We set
A=X(T)NH, A =AU{0}, B=ew(ALU)) and B =BUI0}.

ThenA'+ B'= AUBU(A+B)U{0}, AUBU(A+B) c (S NH c H\{0}and
|AUBU(A+ B)| = |A'+ B’| — 1. Since 0 has exactly one representation of the form
0 = a+bforsomea € A’ and somd € B’, atheorem of Kempermar(], Theorem 3.2)
implies that

|A'+B'| > |A|+|B| -1
Therefore we obtain that

p—1 =[H\{0}| = |JAUBU (A+B)| = |A|+|B'| -2
=|Al+|Bl=p-1+(ZMNH[-|T)

whencg X(T)NH| < |T|. O

Corollary 6.3. Let G be an elementary p-group andeSF(G) a zero-sumfree sequence
with maximal length. Then each two distinct elements of S are independent.

Proof. Let g1, g2 be two elements occurring in the sequecand suppose that they are
dependent. We have to show tlgat= gp. ClearlyH = (g1) = (g2) is a cyclic subgroup
of GandT = g; - g2 is a subsequence &with X(T) = {g1, g2, 01 + g2} C H. Then
Theorem 6.2mplies that X(T) " H| < |T| = 2whencegy = gp. O

Remark 6.4. Let G be an elementarp group with rankr.

(1) LetS € F(G) be a zero-sumfree sequence with length — 1) andg € G with
Vg(S) =i e[, p—11.1f H=(g)andT =¢', then(T)NH = {vg | v e [L,i]}
whencel X (T) N H| =i = |T|. ThusTheorem 6.2s sharp in this case.

(2) We briefly discuss what is known about the structure of a minimal zero-sum sequence
S e F(G) with maximal length i.e. withS| = D(G) =r(p—1) + 1.

(a) Ifr =1, then itis obvious tha® has the fornS = gP for some 0+ g € G.

(b) Ifr = 2, itis conjectured that there exists sogne G which occursp— 1 times
in S (i.e. withvg(S) = p — 1, cf. Section 413, [16] and [15]).

(c) If r = 2p — 1, then there exists some minimal zero-sum sequéneef (G)
with |[T| = D(G), which is squarefree (i.eig(S) < 1 forallg € G; cf.
Theorem 7.3 in16]).

Finally we study the Davenport constant for gro@s= CJ, wheren is not necessarily
a prime power. It is still conjectured that for every- 2 and every > 1 we have

(%) DIC)=r(n—-1)+1
(see P]) but up to now there is no strong evidence why this should be trueqkf. [
page 462).
We conjecture that foR = Z/nZ and allr e N
(%) S(AN DLy RIO=DHL) —p (n) + 1.

After a further lemma we show in our final result thjak) implies (x).
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Proposition 6.5. Let R= Z/nZ for some n> 2 and Ac R' for some le N.

(1) If Ais nota zero set over R, theiiA, R) <s(R, R) = L(n).
(2) If nis a product of distinct primes, thes(A'R((n —1,...,n=1),R) =IL(n).
(3) Ifnis prime andI=r(n—1) + 1 for some re N, thens(A'R(l), RY =rL(n) + 1.

Proof. 1. Theorem 4.7mplies thats(R, R) = L(|R|) = L(n).
Let X1, ..., X| be a basis oR' and forc € R and f € Alet f(c) = ew(f).
Suppose thah is not a zero set oveR. Then there exists sontec R' such that

{f(©| f € A} C R\{O}.
Suppose that

t
R\(0} C | J@ + Hi)
i=1

wheret = s(R, R) and for alli € [1,t]letHj = (m; + nZ) with 1 < m; | nand
a € R\Hi. Fori € [1,t] let

A ={f e A| f(c) e a + Hi}

and since for evenf e Aj we havef(mlic) = mlla # 0 € Z/nZ, it follows that
s(Ai, R) =1.SinceA= A1 U--- U A, we finally infer thas(A, R') < t.

2. By definition we haveAL((n — 1,...,n — 1)) = R' whenceTheorem 4.7mplies
thats(R, R) = L(|R'|) = L(n') = IL(n).

3. This follows fromTheorem 3.9nd the definition of.(-). O

Theorem6.6. Let G = C with nnr € N, n > 2 and suppose that
s(AR" ), R (-D+1) — r(n) + 1where R= Z/nZ. Then OG) =r(n — 1) + 1.

Proof. Assume to the contrary thaD(G) > r(n — 1) + 1. Then by

Lemmab5.3 ArR(”_l)“(l) is not a zero set ove®. By Proposition 5.2here exists a parti-
tion ArR("_l)H(l) = A1 U---U A such that n@4; is a zero set oveR. ThenLemma 3.4

andProposition 6.5mply that

r

(AR VD), RO < S s(A, RODH) <rL),

i=1
a contradiction. [

Finally we point out that our methods give two new proofs of the well-known fact that
D(C;)) =r(p—1) + 1 (for a discussion of further proofs se&g},[Section 6). Firstly, the
result follows fromTheorem 6.@ndProposition 6.63). For a second proof, & € ]—'(C[))
be a sequence wittg] = | =r(p — 1) + 1. We have to show th& is not zero-sumfree.
Lemma 6.landProposition 6.83) imply that

S(ARM\AR(S), R) <r(p—1) <r(p—1) +1=s(AxD), R)

whenceAL(S), R) # ¢ andSis not zero-sumfree.
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