
European Journal of Combinatorics 24 (2003) 531–549

www.elsevier.com/locate/ejc

Zero-sum problems and coverings by proper cosets

Weidong Gaoa, Alfred Geroldingerb

aDepartment of Computer Science and Technology, University of Petroleum, Shuiku Road, Changping,
Beijing 102200, People’s Republic of China

bInstitut für Mathematik, Karl-Franzens Universit¨at, Heinrichstrasse 36, 8010 Graz, Austria

Received 5 December 2001; received in revised form 24 February 2003; accepted 25 February 2003

Abstract

Let G be a finite Abelian group andD(G) its Davenport constant, which is defined as the maximal
length of a minimal zero-sum sequence inG. We show that various problems on zero-sum sequences
in G may be interpreted as certain covering problems. Using this approach we study the Davenport
constant of groups of the form(Z/nZ)r , with n ≥ 2 andr ∈ N. For elementaryp-groupsG, we
derive a result on the structure of minimal zero-sum sequencesShaving maximal length|S| = D(G).
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Let G be an additively written finite Abelian group andS = ∏l
i=1 gi a sequence inG.

Then S is called a zero-sum sequence if
∑l

i=1 gi = 0 and it is called zero-sumfree if∑
i∈I gi �= 0 for all ∅ �= I ⊂ [1, l ]. Key problems in zero-sum theory are to find the

maximal possible lengthl ∈ N of zero-sumfree sequences, to determine the structure of
such maximal sequences and to find in given sequences zero-sum subsequences satisfying
additional properties.

A main aim of this paper is to present a new method in this area. We show that various
zero-sum problems may be interpreted and successfully tackled as covering problems in
finitely generated, free modules.

Let R be a commutative ring andM an R-module. A subsetC ⊂ M is called a
proper coset, ifC = a + N for someR-submoduleN < M and somea ∈ M\N. For
given subsetsA ⊂ M we study the smallest numbers ∈ N0 ∪ {∞} such thatA\{0} is
contained in the union ofs proper cosets. InSection 3we concentrate on sets of sub-
sums of zero-sumfree sequences in vectorspaces including cubes in vectorspaces. These
investigations generalize former work on coverings by affine hyperplanes (resp. cover-
ings by single-valued sets), and they might be of their own interest (seeTheorem 3.9
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and the subsequent remark).Section 4deals with finite Abelian groupsM. We show that
s(M, M) ≤ ∑

p∈P vp(|M|)(p−1), and that equality holds, among others, for cyclic groups
and elementary groups (seeTheorem 4.7).

In Section 5we build the bridge between covering problems and zero-sum problems.
Section 6contains our two main results on zero-sum sequences. LetG = (Z/nZ)r with
r, n ∈ N, n ≥ 2, and letD(G) denote the Davenport constant ofG, which is defined as
the maximal length of a minimal zero-sum sequence inG. Then 1+ r (n − 1) ≤ D(G),
and equality holds, ifG is a p-group. But even in the case wheren is a prime, up to
now only very little is known about the structure of minimal zero-sum sequences with
maximal length (the theory of non-unique factorizations in Krull monoids naturally leads
to questions about the structure of such sequences, cf. [5, 9, 17]). Theorem 6.2presents
a (sharp) structural result on zero-sumfree sequences with maximal length in elementary
p-groups (see alsoCorollary 6.3and the subsequent discussion). Ifn is not a prime power,
it is still a conjecture thatD(G) = 1 + r (n − 1) holds true. InTheorem 6.6we show that
a certain covering condition implies thatD(G) = 1 + r (n − 1). In our opinion this result
provides some theoretical evidence why the conjecture should be true and opens a way
how to tackle it.

2. Preliminaries

Let N denote the positive integers,N0 = N ∪ {0} andP ⊂ N the set of prime numbers.
For some primep ∈ P let vp : N → N0 denote thep-adic exponent whencen =∏

p∈P pvp(n) for everyn ∈ N. For integersa, b ∈ Z we set[a, b] = {x ∈ Z | a ≤ x ≤ b}.
Throughout, all Abelian groups will be written additively and forn ∈ N let Cn = Z/nZ

denote the cyclic group withn elements. LetG be a finite Abelian group. ThenG =
Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · | nr if |G| > 1 and withr = n1 = 1 if |G| = 1. Then
r = r(G) is called the rank ofG andnr = exp(G) is the exponent ofG. Whenever it is
convenient we considerG as anR-module forR = Z/nr Z. Clearly, theR-submodules of
G coincide with the subgroups. In particular, ifnr = p, thenG might be considered as an
r -dimensionalZ/pZ-vectorspace.

LetF(G) denote the free Abelian monoid with basisG. An elementS ∈ F(G) is called
a sequence in Gand will be written in the form

S =
∏
g∈G

gvg(S) =
l∏

i=1

gi ∈ F(G).

A sequenceT ∈ F(G) is called asubsequence of S, if there exists someT ′ ∈ F(G) such
thatS = T · T ′ (equivalently,vg(T) ≤ vg(S) for everyg ∈ G). As usual

σ(S) =
∑
g∈G

vg(S)g =
l∑

i=1

gi ∈ G
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denotes thesum of S,

|S| =
∑
g∈G

vg(S) = l ∈ N0

denotes thelength of Sand

Σ (S) =
{∑

i∈I

gi | ∅ �= I ⊂ [1, l ]
}

⊂ G

the set of all possible subsums ofS. Clearly, |S| = 0 if and only if S = 1 is the empty
sequence. We say that the sequenceS is

• zero-sumfree, if 0 /∈ Σ (S),
• a zero-sum sequence, if σ(S) = 0,
• a minimal zero-sum sequence, if it is a zero-sum sequence and each proper

subsequence is zero-sumfree.

All rings are commutative, they are supposed to have a unit element and allR-modules
are unitary. LetR be a commutative ring,M be a freeR-module with basisX1, . . . , Xl and
C an R-module. Thenr(M) = l denotes its rank, and for everyθ ∈ HomR(M, C) there
exists somec = (c1, . . . , cl ) ∈ Cl such that

θ = evc : M C

f =
l∑

i=1

λi Xi θ( f ) = f (c) =
l∑

i=1

λi ci ,

whenceθ is the evaluation homomorphism inc, and we use the notationθ( f ) = evc( f ) =
f (c) whenever it is convenient.

3. Coverings by proper cosets

Definition 3.1. Let R be a commutative ring andM an R-module.

(1) A subsetC ⊂ M is called aproper coset, if C = a + N for someR-submodule
N < M and somea ∈ M\N.

(2) For a subsetA ⊂ M let s(A, M) denote the smallest integers ∈ N0 ∪ {∞} such that
A\{0} is contained in the union ofs proper cosets.

By definition we haves(A, M) = 0 if and only if A ⊂ {0} ands(A, M) = 1 if and
only if A is contained in a proper coset.

In combinatorics various problems of the following type have been studied: find the
minimal number of (proper) affine hyperplanesH1, . . . , Hs, which cover a given finite set
of pointsA in a (real) finite-dimensional vector space. Of course, this minimal number is
the same which is needed by a minimal covering ofA by proper cosets, as is shown in the
following simple lemma.

Lemma 3.2. Let R be a field, M a free R-module of rank r∈ N and A ⊂ M a subset.
Thens(A, M) is the smallest integer s∈ N0 ∪ {∞} such that A\{0} ⊂ ⋃s

i=1 Hi where
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H1, . . . , Hs are affine hyperplanes (i.e. Hi = ai + Ni where all Ni are free R-submodules
of M with rank r − 1 and ai ∈ M\Ni ).

Proof. If N < M is an R-submodule anda ∈ M\N, then〈a〉R ∩ N = {0}. By base
extension we obtain someR-submoduleN∗ with N < N∗ < M, 〈a〉R ∩ N∗ = {0} and
with rank r − 1. Thus every proper coset can be blown up to an affine hyperplane and
since clearly every affine hyperplane not containing zero is a proper coset, the assertion
follows. �

In a series of papers coverings by so-called single-valued sets have been studied: letR
be a commutative ring,M a freeR-module of finite rank andC an R-module (mainly the
situationC = R was considered). A subsetA ⊂ M is called single-valued if there is some
θ ∈ HomR(M, C) and someb ∈ C\{0} such thatθ(A) = {b}.

In the following lemma we point out that in a wide class of rings single-valued sets
coincide with proper cosets.

Proposition 3.3. Let R be a commutative ring, M an R-module and∅ �= A ⊂ M\{0}.
(1) Suppose there exists some R-module C, someθ ∈ HomR(M, C) and some b∈

C\{0} such thatθ(A) = {b}. Thens(A, M) = 1.
(2) Suppose that A= A1 ∪ · · · ∪ As with s(Ai , M) = 1 for every i ∈ [1, s]. Then

there exist an R-algebraε : R → C, θ1, . . . , θs ∈ HomR(M, C) and elements
b1, . . . , bs ∈ C\{0} such thatθi (Ai ) = {bi } for every i ∈ [1, s]. Furthermore, if R
is an Artinian ring and an injective R-module and M a finitely generated R-module,
then C= R has the required property.

Proof. 1. If N = {m ∈ M | θ(m) = 0}, thenN < M is a properR-submodule and
A ⊂ a + N for everya ∈ A whences(A, M) = 1.

2. Suppose that for everyi ∈ [1, s] we haveAi ⊂ ai + Ni for someR-submodule
Ni < M and withai ∈ M\Ni . By standard construction we build anR-algebraC
out of theR-moduleB = ⊕s

i=1M/Ni : we setC = R ⊕ B, defineε : R → C by
ε(r ) = (r, 0) and define multiplication onC by (r, b)(r ′, b′) = (rr ′, rb′ + r ′b) for
all r, r ′ ∈ R and allb, b′ ∈ B. For everyi ∈ [1, s]

θi : M → B ↪→ C
m �→ (0, . . . , 0, m + Ni , 0, . . . , 0) = b �→ (0, b)

is an R-module homomorphism withθ(ai ) = bi �= 0, θi (Ni ) = {0} whence
θi (Ai ) ⊂ θi (ai + Ni ) = {bi }.

Suppose thatR is an Artinian ring, injective as anR-module andM a finitely generated
R-module. ThenR is zero-dimensional, semi-local and Noetherian. LetN < M be an
R-submodule anda ∈ M\N. By D. Eisenbud [6, Propositions 21.2 and 21.5]

ε : M/N HomR(HomR(M/N, R), R)

x + N (εx : θ �→ θ(x + N))

is an R-module isomorphism. Sincea + N �= 0 ∈ M/N, it follows thatεa �= 0 whence
there is someθ ∈ HomR(M/N, R) with θ(a + N) �= 0. If π : M → M/N denotes the
canonical projection, thenθ ◦ π : M → R satisfiesθ(N) = {0} andθ(a + N) �= 0. �
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In the following lemma we summarize some basic properties of thes(·, M)-invariant.

Lemma 3.4. Let R be a commutative ring, M an R-module and A, B ⊂ M.

(1) s(A, M) ≤ |A|.
(2) Let C be an R-module andθ ∈ HomR(M, C) such that0 /∈ θ(A\{0}). Then

s(A, M) ≤ |θ(A)|.
(3) s(A ∪ B, M) ≤ s(A, M) + s(B, M).
(4) If B ⊂ A with s(B, M) < s(A, M), then A\B �= ∅.
(5) Suppose that A= A1 ∪ · · · ∪ At where s(Ai , M) = 1 for all i ∈ [1, t] and

t = s(A, M). Then for every non-empty set I⊂ [1, t] we haves(
⋃

i∈I Ai , M) = |I |.
Proof. Without restriction we may suppose that 0/∈ A ∪ B.

1. SinceA = ⋃
a∈A(a + {0}), the assertion follows.

2. Since

A =
⋃

b∈θ(A)

(A ∩ θ−1(b))

and since byProposition 3.3(1) s(A ∩ θ−1(b), M) = 1, it follows thats(A, M) ≤
|θ(A)|.

3. If A = ⋃s(A,M)
i=1 Ai andB = ⋃s(B,M)

j =1 Bj with proper cosetsAi , Bj , thenA ∪ B is
the union of theA′

i s andB′
j s whences(A ∪ B, M) ≤ s(A, M) + s(B, M).

4. Suppose thatB ⊂ A ands(B, M) < s(A, M). ThenA = B ∪ (A\B) and

s(B, M) < s(A, M) ≤ s(B, M) + s(A\B, M)

whences(A\B, M) �= 0 andA\B �= ∅.
5. Obvious. �

Definition 3.5. Let R be a commutative ring andM a free R-module with basis
X1, . . . , Xl for somel ∈ N.

(1) For every0 �= k ∈ N
l
0 we set

Al
R(k) = Al (k) = A(k) =

{
l∑

i=1

ai Xi | 0≤ ai ≤ ki for everyi ∈ [1, l ]
}

⊂ M.

(2) Let G be an Abelian group andS = ∏l
i=1 gi ∈ F(G) a sequence inG. We set

Al
R(S) = A(S) =

{∑
i∈I

Xi | ∅ �= I ⊂ [1, l ],
∑
i∈I

gi = 0

}
⊂ Al

R(1).

In particular, we writeAl
R(1) = Al

R((1, . . . , 1)) and we may interpretAl
R(1) as the set

of vertices of the cube inM. Clearly, Al
R(k) depends on the choice of a basis inM but

s(Al
R(k), M) is independent of the basis whence we simply writes(Al

R(k), Rl ).
Whenever for a sequenceS one hass(Al

R(1)\Al
R(S), Rl ) < s(Al

R(1), Rl ), then
Al

R(S) �= ∅ whenceS is not zero-sumfree. In this way we shall give a new proof that
the Davenport constant ofCr

p equalsr (p − 1) + 1 (see the discussion afterTheorem 6.6).
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Lemma 3.6. Let R be a commutative ring, M an R-module,{X1, . . . , Xl } ⊂ M an
independent subset and1 �= S= ∏l

ν=1 Xmν
ν ∈ F(M).

(1) Σ (S) = Al
R(m)\{0} ⊂ 〈X1, . . . , Xl 〉R and S is zero-sumfree if and only if either

char(R) = 0 or m ∈ [0, char(R) − 1]l .
(2) Suppose that S is zero-sumfree and let0 �= k ≤ m and I ⊂ [1, l ]. Then

1 ≤ s

(
Σ

(
l∏

ν=1

Xkν
ν

)
, M

)
≤ s(Σ (S), M)

≤ s

(
Σ

( ∏
i∈[1,l ]\I

Xmi
i

)
, M

)
+
∑
i∈I

mi ≤
l∑

i=1

mi = |S|.

(3) If char(R) = n and p is a prime divisor of n with p< n and p < l, then
s(Al

R(1), Rl ) ≤ l − 1.

Proof. 1. By definition we haveΣ (S) = Al
R(m)\{0}. S is zero-sumfree if and only if

0 /∈ Σ (S) if and only if for everyk ≤ m the equation
∑l

ν=1 kν Xν = 0 implies that
k = 0. SinceX1, . . . , Xl are independent elements, the assertion follows.

2. SinceΣ (Xi )\{0} = {Xi } = Xi + {0} ⊂ M is a proper coset, it follows that

s(Σ (Xi ), M) = 1 for everyi ∈ [1, l ]. Since0 �= k ≤ m, we haveΣ
(∏l

ν=1 Xkν
ν

)
⊂

Σ (S) andLemma 3.4(3) implies thats
(
Σ
(∏l

ν=1 Xkν
ν

)
, M

)
≤ s(Σ (S), M).

Next we show that

s(Σ (S), M) ≤ s

(
Σ

(
l−1∏
i=1

Xmi
i

)
, M

)
+ ml

which implies the remaining inequalities by an inductive argument.
Let ν ∈ [1, ml ]. SinceS is zero-sumfree and{X1, . . . , Xl } is independent, we

obtain that

0 �= −νXl /∈ Σ

(
l−1∏
i=1

Xmi
i

)
⊂ 〈X1, . . . , Xl−1〉R

and thatνXl /∈ 〈X1, . . . , Xl−1〉R. Thus for

Bν = {νXl } +
(
Σ

(
l−1∏
i=1

Xmi
i

)
∪ {0}

)
⊂ {νXl } + 〈X1, . . . , Xl−1〉R

we obtain thats(Bν, Rl ) = 1. Since Σ (S) = Σ
(∏l−1

i=1 Xmi
i

)
∪ ⋃ml

ν=1 Bν ,

Lemma 3.4implies the assertion.
3. Suppose{X1, . . . , Xl } is a basis ofRl , char(R) = n and p a prime divisor ofn with

p < min{n, l }. For i ∈ N we set

Ai =
{∑

j ∈I

X j | I ⊂ [1, l ] with |I | = i

}
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and obtain that

evc(Ai ) = i + nZ wherec = (1 + nZ, . . . , 1 + nZ)

whences(Ai , Rl ) = 1. Furthermore,s(A1 ∪ Ap+1, Rl ) = 1, because

evc(A1) = n

p
+ nZ = evc(Ap+1) for c =

(
n

p
+ nZ, . . . ,

n

p
+ nZ

)
.

Thus we infer that

Al
R(1) =

⋃
i∈[1,l ]

Ai = (A1 ∪ Ap+1) ∪
⋃

i∈[1,l ]\{1,p+1}
Ai

which implies that

s(Al
R(1), Rl ) ≤ l − 1. �

Lemma 3.7. Let R be a commutative ring, l∈ N and k ∈ [1, l − 1]. In R[X, Yi, j | i ∈
[1, k], j ∈ [1, l ] ] we have the following polynomial identity:

∑
∅�=J⊂[1,l ]

(−1)|J |
k∏

i=1

(
X −

∑
j ∈J

Yi, j

)
= −Xk.

Proof. see Lemma 9.3 in [16]. �

Proposition 3.8. Let R be a commutative ring, M an R-module, C an R-algebra and
S a zero-sumfree sequence in M. SupposeΣ (S) = A1 ∪ · · · ∪ Ak where k < |S|
and θi (Ai ) = {bi } with θi ∈ HomR(M, C) and bi ∈ C\{0} for all i ∈ [1, k]. Then∏k

i=1 bk
i = 0.

Proof. Let b = ∏k
i=1 bi and fori ∈ [1, k] we setθ ′

i = b
bi

· θi ∈ HomR(M, C) whence
θ ′

i (Ai ) = {b}.
Suppose thatS = ∏|S|

ν=1 fν and let∅ �= J ⊂ [1, |S|]. SinceΣ (S) = A1 ∪ · · · ∪ Ak,
there exists someλ ∈ [1, k] such that

∑
j ∈J f j ∈ Aλ. This implies that

∑
j ∈J

θ ′
λ( f j ) = θ ′

λ

(∑
j ∈J

f j

)
= b

whence
k∏

i=1

(
b −

∑
j ∈J

θ ′
i ( f j )

)
= 0.

Using Lemma 3.8 withX = b andYi, j = θ ′
i ( f j ) we infer that 0= −bk. �

Theorem 3.9. Let R be a field, l∈ N and S be a zero-sumfree sequence in Rl .

(1) s(Σ (S), Rl ) ≥ |S|.
(2) If supp(S) ⊂ Rl is independent, thens(Σ (S), Rl ) = |S|.
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(3) Letk ∈ N
l if char(R) = 0, andk ∈ [0, char(R)−1]l otherwise. Thens(Al

R(k), Rl ) =∑l
i=1 ki .

Proof. (1) Assume to the contrary thats(Σ (S), Rl ) < |S|. ThenΣ (S) = A1 ∪ · · · ∪ Ak

with k < |S| ands(A1, Rl ) = · · · = s(Ak, Rl ) = 1. By Proposition 3.3there exist
θi ∈ HomR(Rl , R) andbi ∈ R\{0} such thatθi (Ai ) = {bi } for every i ∈ [1, k].
ThusProposition 3.8implies that

∏k
ν=1 bk

ν = 0 whencebν = 0 for someν ∈ [1, k],
a contradiction.

(2) Lemma 3.6(2) implies thats(Σ (S), Rl ) ≤ |S| whence the assertion follows from (1).

(3) If {X1, . . . , Xl } is a basis ofRl , then byLemma 3.6(1) T = ∏l
i=1 Xki

i is zero-
sumfree andΣ (T) = Al

R(k)\{0}. Hence the assertion follows from (2).�

Remark 3.10. For k = 1 andR = Z/pZ the result ons(Al
R(k), Rl ) was proved by Gao

in [11] and fork = 1 andR the real numbers a first proof was given by Alon and F¨uredi
in [1]. For further results of this type see also [4] and [16].

4. On s(M, M) for finite Abelian groups M

Let M be a finite Abelian group with exponent exp(M) = n. ThenM may be considered
as anR-module withR = Z/nZ and theR-submodules coincide with the subgroups of
M. SinceM is finite,Lemma 3.4shows that

s(M, M) ≤ |M| < ∞.

In this section we studys(M, M) and for simplicity we sets(M) = s(M, M).

Definition 4.1. We define a homomorphismL : (N, ·) → (N0,+) by

L : N → N0

n �→
∑
p∈P

vp(n)(p − 1).

Lemma 4.2. Let M be a finite Abelian group.

(1) If N < M is a subgroup, then

s(N) = s(N, M) ≤ s(M) ≤ s(N) + s(M/N).

(2) s(M) ≤ L(|M|).
(3) If s(M) = L(|M|), thens(N) = L(|N|) for all subgroups N< M.

Proof. (1) Let N < M, N\{0} = ⋃s(N)
i=1 (gi + Ni ), with all Ni < M and allgi ∈ M\Ni ,

and let M/N\{N} = ⋃s(M/N)

i=1 ((ai + N) + Hi /N) with all N < Hi < M and
all ai ∈ M\Hi . If x ∈ M\N, then there is somei ∈ [1, s(M/N)] such that
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x + N ∈ (ai + N) + Hi/N whence(x − ai ) + N ∈ Hi /N, x − ai ∈ Hi and
x ∈ ai + Hi . Thus

M\{0} =
s(N)⋃
i=1

(gi + Ni ) ∪
s(M/N)⋃

i=1

(ai + Hi )

whences(M) ≤ s(N) + s(M/N).
By definition we haves(N, M) ≤ s(N, N) ands(N, M) ≤ s(M, M). Hence

it remains to verify thats(N) ≤ s(N, M). Let N\{0} = ⋃t
i=1(gi + Ni ) with

t = s(N, M), Ni < M and gi ∈ M\Ni for every i ∈ [1, t]. By the minimality
of t we infer that there is some 0�= ti ∈ N ∩ (gi + Ni ) whenceti + Ni = gi + Ni

for everyi ∈ [1, t]. Therefore it follows that

N\{0} =
t⋃

i=1

((ti + Ni ) ∩ N) =
t⋃

i=1

(ti + (Ni ∩ N))

with ti ∈ N\(Ni ∩ N) for everyi ∈ [1, t]. This implies thats(N) = s(N, N) ≤ t =
s(N, M).

(2) We proceed by induction on|M|. If |M| = 1, thens(M) = 0 = L(1). Suppose that
|M| > 1 and letN < M be a subgroup of index(M : N) = p for some prime
p ∈ P. Then (1) and induction hypothesis imply that

s(M) ≤ s(N) + s(M/N) ≤ s(N) + (p − 1) = L(|N|) + (p − 1) = L(|M|).
(3) Suppose thats(M) = L(|M|). It suffices to show that for all subgroupsN < M with

(M : N) ∈ P we haves(N) = L(|N|). Then the assertion follows by induction. Let
p ∈ P andN < M a subgroup with(M : N) = p. Using (1) and (2) we infer that

L(|M|) = s(M) ≤ s(N) + (p − 1) ≤ L(|N|) + (p − 1) = L(|M|)
whences(N) = L(|N|). �

Lemma 4.3. Let M be a finite Abelian group andθ < M a subgroup.

(1) Let M\{0} = ⋃s(M)
i=1 (gi + Ni ) where, for every i∈ [1, s(M)], Ni < M is a subgroup

and gi ∈ M\Ni , and let I consist of those i∈ [1, s(M)] such that(gi + Ni )∩θ �= ∅.
If x + θ �⊂ ⋃

i∈I (gi + Ni ) for every x∈ M\θ , thens(M) ≥ s(θ) + s(M/θ).
(2) If s(M) ≥ s(θ) + s(M/θ), s(θ) = L(|θ |) and s(M/θ) = L(|M/θ |), then

s(M) = L(|M|).

Proof. 1. We setJ = [1, s(M)]\I . For everyi ∈ I there arehi ∈ Ni andti ∈ θ such
thatgi + hi = ti whencegi + Ni = ti + Ni , and sinceNi �= gi + Ni , it follows that
ti /∈ Ni . Thus we obtain that

(∗) θ\{0} =
⋃
i∈I

((ti + Ni ) ∩ θ) =
⋃
i∈I

(ti + (Ni ∩ θ)).

We assert that
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(∗∗) M/θ \ {θ} =
⋃
j ∈J

((gj + θ) + (Nj + θ)/θ)

is a covering by proper cosets. Then(∗) and(∗∗) imply that

s(M) = |I | + |J| ≥ s(θ) + s(M/θ).

Let i ∈ [1, s(M)]. If gi + θ ∈ (Ni + θ)/θ , then there is somehi ∈ Ni with
gi + θ = hi + θ whencegi ∈ Ni + θ and(gi + Ni ) ∩ θ �= ∅. Thus it follows
that(gj + θ) + (Nj + θ)/θ is a proper coset ofM/θ for every j ∈ J.
To verify equality, letx ∈ M\θ . Since x + θ �⊂ ⋃

i∈I (gi + Ni ), there
exists somey ∈ x + θ and somej ∈ J such thaty ∈ gj + Nj . Then
x + θ = y + θ ⊂ gj + Nj + θ whencex + θ ∈ (gj + θ) + (Nj + θ)/θ .

2. Lemma 4.2implies that

L(|M|) ≥ s(M) ≥ s(θ) + s(M/θ) = L(|θ |) + L(|M/θ |) = L(|M|)
whence the assertion follows.�

Proposition 4.4. Let M be a finite Abelian group.

(1) If M = M1 ⊕ M2 with gcd{|M1|, |M2|} = 1, thens(M) ≥ s(M1) + s(M2).
(2) If M = ⊕k

i=1Mi a direct decomposition into subgroups withgcd{|Mi |, |Mj |} = 1 for
all 1 ≤ i < j ≤ k ands(Mi ) = L(|Mi |) for every i∈ [1, k], thens(M) = L(|M|).

(3) If exp(M) = ∏s
i=1 pni

i ands((Cp
ni
i

)ri ) = L(|(Cp
ni
i

)ri |) where ri is the pi -rank of

M, thens(M) = L(|M|).
Proof. (1) Suppose thatM = M1 ⊕ M2. We verify the assumption ofLemma 4.3

with θ = M1. Then the assertion follows. With all notations as inLemma 4.3, let
x ∈ M\M1 whencex + M1 = b+ M1 for someb ∈ M2\{0}. Then there exists some
λ ∈ [1, s(M)] such thatb ∈ gλ + Nλ. It suffices to verify that

(gλ + Nλ) ∩ M1 = ∅
(whenceλ /∈ I andb /∈ ⋃i∈I (gi + Ni )).

We setNλ = H and since gcd{|M1|, |M2|} = 1, it follows thatH = H1 ⊕ H2
with Hi < Mi . Assume to the contrary that

(b + H ) ∩ M1 = (gλ + H ) ∩ M1 �= ∅.

Then there areh1 ∈ H1, h2 ∈ H2 andm1 ∈ M1 such thatb + h1 + h2 = m1
whenceb + h2 = m1 − h1 ∈ M1 ∩ M2 = {0}. Thereforeb = −h2 ∈ H2 < H and
gλ + H = b + H = H , a contradiction.

(2) Lemmas 4.2and4.3 imply that

L(|M|) =
k∑

i=1

L(|Mi |) =
k∑

i=1

s(Mi ) ≤ s(M) ≤ L(|M|).

(3) If for i ∈ [1, s] Mi denotes thepi -subgroup ofM, then Mi < (Cp
ni
i

)ri and

Lemma 4.2implies thats(Mi ) = L(|Mi |). Thus the assertion follows from (1).�
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Let M be a finite Abelianp-group. A subset{e1, . . . , et } ⊂ M is called independent,
if
∑t

i=1 mi ei = 0, with m1, . . . , mt ∈ Z, implies thatm1e1 = · · · = mtet = 0. Every
independent subset is contained in a maximal independent subset, and each two maximal
independent subsets have the same number of elements, which is denoted byr(M) and is
called therank of M. Let soc(M) = {x ∈ M | px = 0} denote thesocle of M. Then
soc(M) is anFp-vector space with dimFp(soc(M)) = r(soc(M)) = r(M).

Lemma 4.5. Let M be a finite Abelian p-group, N< M a subgroup, g∈ M\N and
θ = soc(M).

(1) If r(N) = r(M), thenθ < N.

(2) If g ∈ M\N, then there exists some N∗ < M such that N< N∗, pg ∈ N∗, g /∈ N∗
andr(N∗ + 〈g〉) = r(M).

(3) If r(N + 〈g〉) = r(M), pg ∈ N and(g + N) ∩ θ = ∅, thenr(N) = r(M).

(4) If M = (Cpn)r with r, n ∈ N and (g + N) ∩ θ �= ∅, then there are e∗ ∈ M and
N∗ < M such that M= 〈e∗〉 ⊕ N∗, N < N∗ and pn−1e∗ + N = g + N.

Proof. 1. Clearly, we have soc(N) < soc(M). If r(N) = r(M), then soc(N) and
soc(M) areFp-vector spaces with the same dimension whence soc(M) = soc(N) <

N.

2. Let g ∈ M\N andN1 = 〈N, pg〉. Assume to the contrary, thatg ∈ N1. Then there
area ∈ Z andh ∈ N such thatg = −a(pg)+ h whence(1+ ap)g = h. If x, y ∈ Z

with x ord(g)+y(1+ap) = 1, theng = (1−x ord(g))g = yh ∈ N, a contradiction.
If r(M) = r(N1 + 〈g〉), we setN∗ = N1. Suppose thatr(M) > r(N1 + 〈g〉)

and setN1 + 〈g〉 = ⊕t
i=1〈ei 〉 with t = r(N1 + 〈g〉). Then{e1, . . . , et } ⊂ M is

contained in a maximal independent subsetE ⊂ M whence|E| = r(M). We set
Q = 〈E\{e1, . . . , et }〉 and N∗ = N1 + Q. Then N < N1 < N∗, pg ∈ N∗ and
r(N∗ + 〈g〉) = r(M). Assume to the contrary thatg ∈ N∗. Then there aren ∈ N1
andq ∈ Q such thatg = n + q whenceq = g − n ∈ N1 + 〈g〉 ∩ Q = {0} and
g = n ∈ N1, a contradiction.

3. Suppose that(g + N) ∩ θ = ∅ andr(N + 〈g〉) = r(M). We assert that

soc(N) = soc(N + 〈g〉)
which implies thatr(N) = r(M). Obviously, soc(N) < soc(N+〈g〉), and we choose
somex ∈ soc(N + 〈g〉). Since pg ∈ N, we havex = ag + n with n ∈ N and
a ∈ [0, p−1]. Assume to the contrary thata > 0. Then there is somea′ ∈ [1, p−1]
and somek ∈ Z such thataa′ = 1+kp. Thena′x = g+n′ with n′ = kpg+a′n ∈ N.
Then 0= a′ px, butg + n′ ∈ g + N implies thatp(g + n′) �= 0, a contradiction.

4. Let M = (Cpn)r with r, n ∈ N and(g + N) ∩ θ �= ∅. Then there is somee ∈ θ

and somen ∈ N such thate = g − n whenceg + N = e + N. Sincee /∈ N and
pe = 0, it follows that〈e〉 ∩ N = {0}. There is somee∗ ∈ M with pn−1e∗ = e and
obviously〈e∗〉 ∩ N = {0}. ThenN is contained in a maximal subsetN∗ such that
〈e∗〉 ∩ N∗ = {0}. Thus we obtain thatM = 〈e∗〉 ⊕ N∗ (cf. [22], 4.2.7). �
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Proposition 4.6. Let M be a finite Abelian p-group.

(1) If M is elementary, thens(M) = L(|M|).
(2) If M is cyclic, thens(M) = L(|M|). �

Proof. (1) If M is elementary with basisX1, . . . , Xl , thenM = Al
Z/pZ((p−1, . . . , p−

1)) whence the assertion follows fromTheorem 3.9.
(2) Let M be a cyclic group. We proceed by induction on|M|. If |M| = p, then M

is elementary and the assertion follows from (1). To do the induction step, we set
θ = soc(M). If we can verify the assumption ofLemma 4.3, then the assertion
follows.

Let M\{0} = ⋃s(M)
i=1 (gi + Ni ) where, for everyi ∈ [1, s(M)], Ni < M

is a subgroup andgi ∈ M\Ni . Let I consist of thosei ∈ [1, s(M)] such that
(gi + Ni ) ∩ θ �= ∅. By Lemma 4.5we may suppose thatpgi ∈ Ni for every
i ∈ [1, s(M)].

Let x ∈ M\θ . We have to verify that

x + θ �⊂
⋃
i∈I

(gi + Ni ).

If λ ∈ [1, s(M)] with x ∈ gλ + Nλ, then 0�= px ∈ Nλ whence 1= r(Nλ) = r(M).
Thus θ < Nλ, (gλ + Nλ) ∩ θ ⊂ (gλ + Nλ) ∩ Nλ = ∅ whenceλ /∈ I and
x /∈ ⋃i∈I (gi + Ni ). �

Theorem 4.7. Let M be a finite Abelian group. If M= M1 ⊕ M2, where M1 is cyclic,
exp(M2) squarefree andgcd{|M1|, |M2|} = 1, thens(M) = L(|M|).
Proof. If M1 is cyclic, thenM1 is a direct sum of cyclic groups of prime power order. If
exp(M2) is squarefree, thenM2 is a direct sum of elementaryp-groups. Thus the assertion
follows fromPropositions 4.4and4.6. �

5. Zero sets

Zero sets play a crucial part in establishing the connection between covering problems
and zero-sum problems.

Definition 5.1. Let R be a commutative ring andC an R-module. A subsetA of a
finitely generated freeR-moduleM is called azero set over C, if 0 ∈ θ(A) for every
θ ∈ HomR(M, C).

We continue with a characterization of zero sets in the case whereC is a direct sum of
submodules. IfR is a field andC an R-vector space, then zero sets allow a very simple
characterization.

Proposition 5.2. Let R be a commutative ring, k∈ N and C= ⊕k
i=1Ci an R-module.

(1) For a subset A of some finitely generated free R-module M the following conditions
are equivalent:

(a) A is a zero set over C.
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(b) For every partition (resp. for every decomposition) A= A1 ∪ · · · ∪ Ak there is
some i∈ [1, k] such that Ai is a zero set over Ci .

(2) Suppose that R is a field and C1 = · · · = Ck = R. For a subset A⊂ Rl the following
conditions are equivalent:

(a) A is a zero set over C.
(b) A ∩ H �= ∅ for all submodules H< Rl with r(H ) ≥ l − k.

(3) Suppose that R= Z/pZ for some prime p∈ P and let C = Fq be the field with
q = pk elements. For a subset A⊂ 〈X1, . . . , Xl 〉R ⊂ R[X1, . . . , Xl ] the following
conditions are equivalent:

(a) A is a zero set over C.
(b)

∏
f ∈A f ∈ 〈Xq

i − Xi | i ∈ [1, l ]〉R.

Proof. 1. (a) (b) Assume to the contrary thatA = A1∪· · ·∪Ak and noAi is a zero
set overCi . Hence for everyi ∈ [1, k] there is someθi ∈ HomR(M, Ci ) such that
θi (Ai ) ⊂ Ci \{0}. Thereforeθ = (θ1, . . . , θk) ∈ HomR(M, C) andθ(A) ⊂ C\{0}, a
contradiction.

(b) (a) Assume to the contrary thatA is not a zero set overC. Then there is
someθ = (θ1, . . . , θk) ∈ HomR(M, C) such thatθ(A) ⊂ C\{0}. For i ∈ [1, k] we
setAi = {a ∈ A | θi (a) �= 0} and obtain thatA = A1 ∪ · · · ∪ Ak and noAi is a zero
set overCi , a contradiction.

2. Every submoduleH < Rl with r(H ) ≥ l − k is the intersection ofk (not necessarily
different) hyperplanes, sayH = H1 ∩ · · · ∩ Hk, and for everyHi there is some
θi ∈ HomR(Rl , R) such thatHi = ker(θi ). Thus A ∩ H �= ∅ if and only if there
is somea ∈ A such that forθ = (θ1, . . . , θk) ∈ HomR(Rl , Rk) we haveθ(a) = 0
whence the assertion follows.

3. A is a zero set overFq if and only if for all θ ∈ HomR(R[X1, . . . , Xl ], Fq) we have
0 ∈ θ(A), which holds if and only if for allc ∈ F

l
q there is somef ∈ A such that

f (c) = 0. This is equivalent to the fact that for allc ∈ F
l
q we have

∏
f ∈A f (c) = 0

and the assertion follows.�

In the following we want to point out that many classical problems in zero-sum theory
allow a straightforward formulation in terms of zero sets.

Let G be a finite Abelian group with exponentn. A first problem, which is still unsolved
for generalG, is to determine theDavenport constantD(G) of G which is defined as
the maximal length of a minimal zero-sum sequence inG (equivalently,D(G) is the
smallest integerl ∈ N such that every sequenceS ∈ F(G) with |S| ≥ l contains a
zero-sum subsequence). The paper of Erd¨os–Ginzburg–Ziv [10] was a starting point for
investigations of subsequences of given sequences which have sum zero and satisfy certain
additional properties. For a subset� ⊂ N let η�(G) denote the smallest integerl ∈ N such
that every sequenceS ∈ F(G) has a zero-sum subsequenceT with |T | ∈ �.

Clearly, ηN(G) is just the Davenport constantD(G) and the invariantsη�(G) for
� = {|G|}, � = {n} and� = [1, n] have found considerable attention in the literature (cf.
[8, 12, 19, 24] and the references given there). If� = {λ}, then we setηλ(G) = η�(G).
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Main Lemma 5.3. Let G be a finite Abelian group with exponent n, R= Z/nZ and
� ⊂ N a subset. Thenη�(G) is the smallest integer l∈ N such that the subset

A =
{∑

i∈I

Xi | I ⊂ [1, l ], |I | ∈ �

}
⊂ Al

R(1) ⊂ Rl = 〈X1, . . . , Xl 〉R

is a zero set over the R-module G.

Proof. Recall that for everyθ ∈ HomR(Rl , G) there is somec ∈ Gl such thatθ =
evc : Rl → G. A sequenceS = ∏l

i=1 ci ∈ F(G) has a zero-sum subsequence
T = ∏

i∈I ci with |T | = |I | ∈ � if and only if there exists somef ∈ A such that
evc( f ) = f ((c1, . . . , cl )) = 0. This implies the assertion.�

Hence in this interpretation of zero-sum problems we fix theR-moduleC (hereC =
Z/nZ) and vary over the ranks of the freeR-modulesM. This motivates the following
definition.

Definition 5.4. Let R be a commutative ring. For anR-moduleC we set

s∗(C) = sup{s(A, M) | A is a subset of a freeR-moduleM with finite rank and
A is not a zero set overC} ∈ N0 ∪ {∞}.

Proposition 5.5. Let R be a commutative ring and C an R-module.

(1) s∗(C) ≤ |C| − 1.
(2) A subset A of some free R-module M with finite rank, which satisfiess(A, M) ≥

ks∗(C) + 1, is a zero set over Ck.

Proof. (1) If a subsetA of some freeR-moduleM with finite rank is not a zero set over
C andθ ∈ HomR(M, C) such thatθ(A) ⊂ C\{0}, thenLemma 3.4(2) implies that

s(A, M) ≤ |θ(A)| ≤ |C| − 1.

Thus we obtain thats∗(C) ≤ |C| − 1.
(2) Let A be a set having the above properties and assume to the contrary, thatA is not a

zero set overCk. Then byProposition 5.2(1) there exists a partitionA = A1∪· · ·∪Ak

such that noAi is a zero set overC. This implies that

s(A, M) ≤
k∑

i=1

s(Ai , M) ≤ ks∗(C),

a contradiction. �
At the end of this section we want to show in an explicit example how zero-sum

problems can be attacked via zero sets (see alsoTheorem 6.6).
Let n ∈ N be a positive integer withn ≥ 2. An old conjecture, going back to Kemnitz,

states that

ηn(Cn ⊕ Cn) = 4n − 3.

It is easy to see thatηn(Cn ⊕ Cn) ≥ 4n − 3 and quite recently it was proved that for prime
powers we haveηn(Cn ⊕ Cn) ≤ 4n − 2 (see [14, 21, 23]).
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Main Lemma 5.6. Suppose that for every prime p∈ P and for

A =
{∑

i∈I

Xi | I ⊂ [1, l ], |I | = p

}
⊂ Rl = 〈X1, . . . , Xl 〉R,

where R= Z/pZ and l = 4p−3, we haves(A, Rl ) ≥ 2p−1. Thenηn(Cn⊕Cn) = 4n−3
for every n∈ N.

Proof. It suffices to verify that

(∗) ηn(Cn ⊕ Cn) ≤ 4n − 3.

Sinceηn(·) is multiplicative, it suffices to show(∗) for prime numbers.
Let p ∈ P be a prime number andR = Z/pZ. Using Proposition 5.5we infer that

s∗(R) ≤ p − 1 and

s(A, R4p−3) ≥ 2p − 1 ≥ 2(s∗(R)) + 1

whenceA is a zero set overR ⊕ R. Thus MainLemma 5.3implies thatηp(R ⊕ R) ≤
4p − 3. �

6. The case G = Cr
n

In this final section we concentrate on groupsG of the formG = Cr
n and study the

maximal possible length of minimal zero-sum sequences inG and consider the structure
of such sequences. To begin with, letG = Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · | nr .
Then it is easy to see thatD(G) ≥ 1 + ∑r

i=1(ni − 1). Equality holds forp-groups and
for groups with rankr ≤ 2, but for everyr ≥ 4 there are infinitely many groups for
which the above inequality is strict (see [13], Theorem 3.3 in [16, 18] and the references
cited there). Although forp-groups the precise value of the Davenport constant is known,
we have almost no information about the structure of minimal zero-sum sequencesSwith
|S| = D(G). We start with a structural result for such sequences in elementaryp-groups
(Theorem 6.2and Corollary 6.3). Then we consider the Davenport constant for groups
G = Cr

n wheren is not a prime power.

Lemma 6.1. Let G = Cr
n with n, r ∈ N, n ≥ 2 and S = ∏l

i=1 gi ∈ F(G). Then
s(Al

R(1)\Al
R(S), Rl ) ≤ r (n − 1) where R= Z/nZ.

Proof. Let {e1, . . . , er } be a basis ofG. For everyi ∈ [1, l ] we setgi = ∑r
ν=1 cν,i eν with

cν,i ∈ Z. Forν ∈ [1, r ] andm ∈ [1, n − 1] let

Aν,m =
{∑

i∈I

Xi ∈ Al
R(1) | I ⊂ [1, l ],

∑
i∈I

(cν,i + nZ) = m + nZ

}

⊂ 〈X1, . . . , Xl 〉R = Rl .

Thens(Aν,m, Rl ) = 1, since forcν = (cν,1 + nZ, . . . , cν,l + nZ) ∈ Rl we have

evcν (Aν,m) =
∑
i∈I

(cν,i + nZ) = m + nZ ∈ R\{0}.
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Hence it suffices to prove that

Al
R(1)\Al

R(S) ⊂
r⋃

ν=1

n−1⋃
m=1

Aν,m.

To verify the inclusion, letf = ∑
i∈I Xi ∈ Al

R(1)\Al
R(S) ⊂ Rl . Then

∑
i∈I gi �= 0

whence there exists someν ∈ [1, r ] with
∑

i∈I cν,i eν �= 0. Therefore,
∑

i∈I cν,i eν =
m + nZ for somem ∈ [1, n − 1] i.e. f ∈ Aν,m. �

Theorem 6.2. Let G be an elementary p-group and S∈ F(G) a zero-sumfree sequence
with maximal length. Then for every subsequence T of S and every cyclic subgroup H of
G we have|Σ (T) ∩ H | ≤ |T |.

Proof. Let R = Z/pZ, r ∈ N andH < G = (Z/pZ)r a cyclic subgroup. ForH = {0}
the assertion is obvious whence we suppose that|H | = p and setG = H ′ ⊕ H . Suppose
that

S =
r (p−1)∏

ν=1

aν and T =
r (p−1)∏

ν=r (p−1)+1−t

aν

with t = |T | ∈ N. If t ≥ p, the assertion is obvious. So we suppose thatt ≤ p − 1.
For everyi ∈ [1, |S|] we writeai = bi + ci with bi ∈ H ′ andci ∈ H and we set

U ′ =
l∏

ν=1

bν ∈ F(H ′) wherel = r (p − 1) − t .

Theorem 3.9implies thats(Al
R(1), Rl ) = l andLemma 6.1yields thats(Al

R(1)\Al
R(U ′),

Rl ) ≤ (r − 1)(p − 1). We have

Al
R(U ′) =

{∑
i∈I

Xi | I ⊂ [1, l ],
∑
i∈I

bi = 0

}

=
{∑

i∈I

Xi | I ⊂ [1, l ],
∑
i∈I

ai =
∑
i∈I

ci ∈ H

}
⊂ Rl = 〈X1, . . . , Xl 〉R.

Since 0/∈ Σ (S), it follows that

0 /∈
{∑

i∈I

ci =
∑
i∈I

ai | I ⊂ [1, l ],
∑
i∈I

bi = 0

}
= evc(Al

R(U ′)).

UsingLemma 3.4we infer that

|evc(Al
R(U ′))| ≥ s(Al

R(U ′), Rl )

≥ s(Al
R(1), Rl ) − s(Al

R(1)\Al
R(U ′), Rl )

≥ r (p − 1) − t − (r − 1)(p − 1)

= p − 1 − t .
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We set

A = Σ (T) ∩ H, A′ = A ∪ {0}, B = evc(Al
R(U ′)) and B′ = B ∪ {0}.

ThenA′ + B′ = A ∪ B ∪ (A + B) ∪ {0}, A ∪ B ∪ (A + B) ⊂ Σ (S) ∩ H ⊂ H\{0} and
|A ∪ B ∪ (A + B)| = |A′ + B′| − 1. Since 0 has exactly one representation of the form
0 = a+b for somea ∈ A′ and someb ∈ B′, a theorem of Kemperman ([20], Theorem 3.2)
implies that

|A′ + B′| ≥ |A′| + |B′| − 1.

Therefore we obtain that

p − 1 = |H\{0}| ≥ |A ∪ B ∪ (A + B)| ≥ |A′| + |B′| − 2
= |A| + |B| ≥ p − 1 + (|Σ (T) ∩ H | − |T |)

whence|Σ (T) ∩ H | ≤ |T |. �

Corollary 6.3. Let G be an elementary p-group and S∈ F(G) a zero-sumfree sequence
with maximal length. Then each two distinct elements of S are independent.

Proof. Let g1, g2 be two elements occurring in the sequenceS and suppose that they are
dependent. We have to show thatg1 = g2. Clearly H = 〈g1〉 = 〈g2〉 is a cyclic subgroup
of G andT = g1 · g2 is a subsequence ofS with Σ (T) = {g1, g2, g1 + g2} ⊂ H . Then
Theorem 6.2implies that|Σ (T) ∩ H | ≤ |T | = 2 whenceg1 = g2. �

Remark 6.4. Let G be an elementaryp group with rankr .

(1) Let S ∈ F(G) be a zero-sumfree sequence with lengthr (p − 1) andg ∈ G with
vg(S) = i ∈ [1, p − 1]. If H = 〈g〉 andT = gi , thenΣ (T) ∩ H = {νg | ν ∈ [1, i ]}
whence|Σ (T) ∩ H | = i = |T |. ThusTheorem 6.2is sharp in this case.

(2) We briefly discuss what is known about the structure of a minimal zero-sum sequence
S ∈ F(G) with maximal length i.e. with|S| = D(G) = r (p − 1) + 1.

(a) If r = 1, then it is obvious thatS has the formS = gp for some 0�= g ∈ G.
(b) If r = 2, it is conjectured that there exists someg ∈ G which occursp−1 times

in S (i.e. with vg(S) = p − 1; cf. Section 4 [13], [16] and [15]).
(c) If r ≥ 2p − 1, then there exists some minimal zero-sum sequenceT ∈ F(G)

with |T | = D(G), which is squarefree (i.e.vg(S) ≤ 1 for all g ∈ G; cf.
Theorem 7.3 in [16]).

Finally we study the Davenport constant for groupsG = Cr
n wheren is not necessarily

a prime power. It is still conjectured that for everyn ≥ 2 and everyr ≥ 1 we have

(∗) D(Cr
n) = r (n − 1) + 1

(see [2]) but up to now there is no strong evidence why this should be true (cf. [7],
page 462).

We conjecture that forR = Z/nZ and allr ∈ N

(∗∗) s(Ar (n−1)+1
R (1), Rr (n−1)+1) = r L(n) + 1.

After a further lemma we show in our final result that(∗∗) implies(∗).
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Proposition 6.5. Let R= Z/nZ for some n≥ 2 and A⊂ Rl for some l∈ N.

(1) If A is not a zero set over R, thens(A, Rl ) ≤ s(R, R) = L(n).
(2) If n is a product of distinct primes, thens(Al

R((n − 1, . . . , n − 1)), Rl ) = lL(n).
(3) If n is prime and l= r (n − 1) + 1 for some r∈ N0, thens(Al

R(1), Rl ) = r L(n) + 1.

Proof. 1. Theorem 4.7implies thats(R, R) = L(|R|) = L(n).
Let X1, . . . , Xl be a basis ofRl and forc ∈ Rl and f ∈ A let f (c) = evc( f ).

Suppose thatA is not a zero set overR. Then there exists somec ∈ Rl such that

{ f (c) | f ∈ A} ⊂ R\{0}.
Suppose that

R\{0} ⊂
t⋃

i=1

(ai + Hi )

wheret = s(R, R) and for alli ∈ [1, t] let Hi = 〈mi + nZ〉 with 1 < mi | n and
ai ∈ R\Hi . For i ∈ [1, t] let

Ai = { f ∈ A | f (c) ∈ ai + Hi }
and since for everyf ∈ Ai we have f ( n

mi
c) = n

mi
ai �= 0 ∈ Z/nZ, it follows that

s(Ai , Rl ) = 1. SinceA = A1 ∪ · · · ∪ At , we finally infer thats(A, Rl ) ≤ t .
2. By definition we haveAl

R((n − 1, . . . , n − 1)) = Rl whenceTheorem 4.7implies
thats(Rl , Rl ) = L(|Rl |) = L(nl ) = lL(n).

3. This follows fromTheorem 3.9and the definition ofL(·). �
Theorem 6.6. Let G = Cr

n with n, r ∈ N, n ≥ 2 and suppose that

s(Ar (n−1)+1
R (1), Rr (n−1)+1) = r L(n) + 1 where R= Z/nZ. Then D(G) = r (n − 1) + 1.

Proof. Assume to the contrary thatD(G) > r (n − 1) + 1. Then by
Lemma 5.3 Ar (n−1)+1

R (1) is not a zero set overG. By Proposition 5.2there exists a parti-

tion Ar (n−1)+1
R (1) = A1 ∪ · · · ∪ Ar such that noAi is a zero set overR. ThenLemma 3.4

andProposition 6.5imply that

s(Ar (n−1)+1
R (1), Rr (n−1)+1) ≤

r∑
i=1

s(Ai , Rr (n−1)+1) ≤ r L(n),

a contradiction. �
Finally we point out that our methods give two new proofs of the well-known fact that

D(Cr
p) = r (p − 1) + 1 (for a discussion of further proofs see [3], Section 6). Firstly, the

result follows fromTheorem 6.6andProposition 6.5(3). For a second proof, letS ∈ F(Cr
p)

be a sequence with|S| = l = r (p − 1) + 1. We have to show thatS is not zero-sumfree.
Lemma 6.1andProposition 6.5(3) imply that

s(Al
R(1)\Al

R(S), Rl ) ≤ r (p − 1) < r (p − 1) + 1 = s(Al
R(1), Rl )

whenceAl
R(S), Rl ) �= ∅ andS is not zero-sumfree.
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[1] N. Alon, F. Füredi, Covering the cube by affine hyperplanes, European. J. Combin. 14 (1993) 79–83.
[2] N. Alon, S. Friedland, G. Kalai, Regular subgraphs of almost regular graphs, J. Combin. Theory Ser. B 37

(1984) 79–91.
[3] N. Alon, Tools from higher algebra, in: Handbook of Combinatorics, vol. 2, North-Holland, 1995,

pp. 1749–1783.
[4] N. Alon, Combinatorial nullstellensatz, Combin. Probab. Comput. 8 (1999) 7–29.
[5] D.D. Anderson, Factorization in Integral Domains, Pure and Applied Mathematics, vol. 189, Marcel Dekker,

1997.
[6] D. Eisenbud, Commutative Algebra With a View Toward Algebraic Geometry, Graduate Texts in Mathe-

matics, vol. 150, Springer, 1995.
[7] R.C. Baker, W. Schmidt, Diophantine problems in variables restricted to the values of 0 and 1, J. Number

Theory 12 (1980) 460–486.
[8] Y. Caro, Zero-sum problems—a survey, Discrete Math. 152 (1996) 93–113.
[9] S. Chapman, On the Davenports constant, the cross number, and their application in factorization theory,

in: Zero-dimensional Commutative Rings, Lecture Notes in Pure Appl. Math., vol. 171, Marcel Dekker,
1995, pp. 167–190.

[10] P. Erdös, A. Ginzburg, A. Ziv, Theorem in the additive number theory, Bull. Research Council Israel 10
(1961) 41–43.

[11] W. Gao, On the additivity of integers, Adv. Math. 19 (1990) 488–492.
[12] W. Gao, A combinatorial problem on finite Abelian groups, J. Number Theory 58 (1995) 100–103.
[13] W. Gao, On Davenport’s constant of finite Abelian groups with rank three, Discrete Math. 222 (2000)

111–124.
[14] W. Gao, Note on a zero-sum problem, J. Combin. Theory Ser. A 95 (2001) 387–389.
[15] W. Gao, A. Geroldinger, On zero-sum sequences inZ/nZ⊕ Z/nZ (submitted).
[16] W. Gao, A. Geroldinger, On long minimal zero sequences in finite Abelian groups, Period. Math. Hungar.

38 (1999) 179–211.
[17] A. Geroldinger, Y.O. Hamidoune, Zero-sumfree sequences in cyclic groups and some arithmetical

application, J. Th´eor. des Nombres Bordeaux 14 (2002) 221–239.
[18] A. Geroldinger, R. Schneider, On Davenport’s constant, J. Combin. Theory Ser. A 61 (1992) 147–152.
[19] Y.O. Hamidoune, O. Ordaz, A. Ortunio, On a combinatorial theorem of Erd¨os, Ginzburg and Ziv, Combin.

Probab. Comput. 7 (1998) 403–412.
[20] J.H.B. Kemperman, On small sumsets in an Abelian group, Acta Math. 103 (1960) 63–88.
[21] A. Kemnitz, On a lattice point problem, Ars Combin. 16 (1983) 151–160.
[22] D. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, vol. 80, Springer, 1996.
[23] L. Ronyai, On a conjecture of Kemnitz, Combinatorica 20 (2000) 569–573.
[24] W. Schmid, On zero-sum subsequences in finite Abelian groups, Integers 1 (2001) A1.


	Zero-sum problems and coverings by proper cosets
	Introduction
	Preliminaries
	Coverings by proper cosets
	On s(M,M) for finite Abelian groups  M 
	Zero sets
	The case  G  = Cnr 
	Acknowledgements
	References


