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Abstract

We prove by elementary combinatorial methods that the number of factorizations of ann-cycle
(with n odd) into the product of twon-cycles is 2(n − 1)!/(n + 1). Moreover, wegeneralize our
method to the factorization of an even permutation inSn into the product of twon-cycles, and we
present an algorithm giving all the factorizations of any odd permutation inSn+1 into the product of
an(n + 1)-cycle and ann-cycle, where the fixed element of the second permutation is given.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

If σ is an even permutation inSn, it is interesting to study its factorizations into the
product of twon-cycles. An argument attributed to Gleason (see [1]) proves that the
number of such factorizations is positive. Gleason’s argument also gives a recursive method
to construct all of them (see [2]), but it is not suitable to obtain closed formulae for their
number, not even in special cases. Nevertheless, several authors obtained such formulae in
general or in special cases using character theory or combinatorial ideas.

In particular, it is known that the number of factorizations of an evenn-cycle into the
product of twon-cycles is 2(n − 1)!/(n + 1) (see [3–5, 7]). In this paper, we give a further
proof of this formula, using elementary combinatorial arguments. We reduce the problem
to the computation of the number of factorizations of an(n + 1)-cycle into the product of
an(n + 1)-cycle and ann-cycle, where the fixed element of the second factor is given. We
then rely on the fact that the number of factorizations of an odd permutation inSn into the
product of ann-cycle and an(n − 1)-cycle equals 2(n − 2)!. For the latter fact, there exists
a constructive proof due to Bertram and Wei [4], and to Mach`ı [6].

Then, we describe the generalization of our method to the factorization of any even
permutation inSn into the product of twon-cycles. This enables us to compute the number
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of such factorizations for some particular even permutations, different fromn-cycles.
Finally, we give a recursive procedure to find all the factorizations of type(n + 1) · n
of an odd permutation inSn+1, where the fixed elementof the second factor is given.

We adopt the following notation and convention. Permutations act on the left, so that
the productαβ considered as a function meansβ ◦ α, and the image of an elementx under
α is denoted byxα. If n is a positive integer, we let[n] and[n]′ denote respectively the sets
{1, . . . , n} and{0, 1, . . . , n}, andS′

n denote the symmetric group on[n]′. We will generally
use primes to denote conjugacy classes ofS′

n.

2. Factorizations of type n ·n
Let σ ∈ Sn be an even permutation. Define

F(σ ) = {(α, β) ∈ Cn × Cn : σ = αβ},
whereCn is the conjugacy class ofn-cycles inSn. Forbrevity, we say that the elements of
F(σ ) are the factorizations of typen · n of σ . Our first aim is to compute|F(σ )| by means
of elementary combinatorial methods, at least in the caseσ is ann-cycle.

The main idea is the following. Setσ ′ = (0 n)σ , where 0 is to be considered as an extra
symbol. Note thatσ ′ is obtained fromσ by inserting 0 aftern in the cycle ofσ containing
n and leaving all the other cycles ofσ unchanged. Thenσ ′ is odd and belongs toS′

n.
For τ ∈ S′

n, let

F ′(τ ) = {(γ, δ) ∈ C′
n+1 × C′

n : τ = γ δ, 0δ = 0},
whereC′

n+1 andC′
n are respectively the conjugacy classes inS′

n of (n + 1)-cycles and of
permutations of typen·1. The elements ofF ′(τ ) are the factorizations ofτ into the product
of an(n+ 1)-cycle on[n]′ and a permutation which is the product of ann-cycle on[n] and
the 1-cycle(0).

The first and fundamental result is the following.

Lemma 1. For σ ∈ Sn, there is a bijection between F(σ ) and F′(σ ′), given by(α, β) �→
((0 n)α, (0)β).

Proof. If (α, β) ∈ F(σ ), thenσ ′ = (0 n)σ = (0 n)αβ = [(0 n)α][(0)β]. Since(0 n)α is
an(n + 1)-cycle and(0)β fixes 0 andis of typen · 1, the mapis well-defined.
Conversely, let (γ, δ) ∈ F ′(σ ′). Then, γ (n) = 0, sinceσ ′(n) = 0 andδ leaves 0 fixed.
Hence(0 n)γ = (0)η andδ = (0)θ , with η andθ being twon-cycles on[n]. Therefore,
the inverse map is(γ, δ) �→ (η, θ). �

Hence,our problem is reduced to the computation of the number of factorizations of
type (n + 1) · n of an odd permutationσ ′, with 0 being the fixed element of the second
factor. Moreover, note that if(γ, δ) is a factorization inF ′(σ ′), weobtain the corresponding
factorization(η, θ) in F(σ ) by simply deleting 0 in bothγ andδ.

Foroddτ ∈ Sn, let

G(τ ) = {(γ, δ) ∈ Cn × Cn−1 : τ = γ δ}.
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It is well known that|G(τ )| = 2(n−2)!. This was proved by different methods, and among
others there are also elementary and recursive proofs due to Bertram and Wei [4], and to
Machı̀ [6].

For our purpose, we need to consider the factorizations inG(τ ) having the same fixed
element in the second factor. So we define, for oddτ ∈ Sn andi ∈ [n],

Gi (τ ) = {(γ, δ) ∈ G(τ ) : i δ = i }.
Now, we have to distinguish between the case in whichσ , andhenceσ ′, is a cycle and

the general case.

2.1. Factorization of even n-cycles

Whenσ is an evenn-cycle, thenn is odd, andσ ′ is anodd (n + 1)-cycle. This case
corresponds to considering oddn-cyclesτ . In thiscase, we are able to compute the number
of factorizations of typen · (n − 1) with given fixed elementi .

Proposition 2. Let τ ∈ Sn be an odd n-cycle. Then:

|Gi (τ )| = 2(n − 2)!
n

.

Proof. For i , j ∈ [n], there isa bijection betweenGi (τ ) andG j (τ ). Indeed, some power

τh of τ sendsi to j . Then the map(γ, δ) �→ (γ τh
, δτh

) gives the required bijection. Hence
G(τ ) is a dijoint union ofn subsets with the same number of elements, and the claim
follows. �

Putting together the previous results, we obtain the formula for the number of
factorizations of ann-cycle into the product of twon-cycles.

Theorem 3. Letσ ∈ Sn be an even n-cycle. Then:

|F(σ )| = 2(n − 1)!
n + 1

.

Proof. By Lemma 1, |F(σ )| = |F ′(σ ′)|. Sinceσ ′ is an odd (n + 1)-cycle onn + 1
elements, by the definition ofF ′(σ ′) and applyingProposition 2to σ ′, we have|F ′(σ ′)| =
2(n − 1)!/(n + 1). �

2.2. Factorization of even permutations

In the general case,σ is an even permutation, soσ ′ is odd. The corresponding case we
have to consider is that of a general odd permutationτ . We obtain the following result,
generalizing Proposition 2.

Theorem 4. Let τ be an odd permutation in Sn, and i, j = 1, . . . , n.

1. If i and j belong to cycles ofτ of the same length, then|Gi (τ )| = |G j (τ )|.
2. Suppose that the partition type ofτ is 1e1 · · · nen (hence

∑n
h=1 heh = n). For h ∈ [n],

let G(τ, h) = Gx(τ ), where x isany fixed element of[n] belonging to a cycle
of τ of length h (let G(τ, h) = ∅ when eh = 0). Then|G(τ )| = 2(n − 2)! =∑n

h=1 heh|G(τ, h)|.
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Proof. If i and j belong to cycles ofτ of the same length, then there existsθ ∈ Sn which
exchanges the cycles containingi and j , leaves allthe elements of theother cycles ofτ
fixed, and sendsi to j . Soτ θ = τ andi θ = j , and the map(γ, δ) �→ (γ θ , δθ ) is a bijection
betweenGi (τ ) andG j (τ ).

The general formula follows by grouping together all the terms|Gi (τ )| with i in a cycle
of lengthh. �

As a special case, we are able to compute thenumber of factorizations of typen · n of
some even permutations different fromn-cycles. First, we derive the corresponding result
for the factorizations of typen·(n−1) with given fixed element of some odd permutations.

Corollary 5. Let τ ∈ Sn be an oddpermutation with partition type ke (so that ek= n,
and e(k − 1) is odd). Then|Gi (τ )| = 2(n−2)!

n , for all i ∈ [n].
Proof. It is a direct application ofTheorem 4. The sum equalske|Gi (τ )| = n|Gi (τ )|, for
all i ∈ [n]. �

Now, we apply this result toσ ′, for σ of suitable type.

Corollary 6. Let σ ∈ Sn bean even permutation with partition type(k − 1) · ke (so that
k(e+ 1) − 1 = n, and e(k − 1) + k is even). Then|F(σ )| = 2(n − 1)!/(n + 1).

Proof. By Lemma 1, |F(σ )| = |F ′(σ ′)|. Up to conjugation by a transposition, we may
assume thatn belongs to the cycle of lengthk − 1. Therefore,σ ′ is odd, and has all the
cycles of the same length,k. Hence, by applyingCorollary 5 to σ ′, we get|F ′(σ ′)| =
2(n − 1)!/(n + 1). �

3. Factorizations of type (n + 1) · n

Sinceour problem of factoring an even permutation inSn (and, in particular, ann-cycle)
into the product of twon-cycles has been reduced to that of factoring an odd permutation
in S′

n (in particular, an(n + 1)-cycle) into the product of an(n + 1)-cycle and ann-cycle
with 0 as fixed element of the second factor, we present a recursive procedure to find all
the factorizations of the latter kind.

This procedure is derived from the algorithm for the computation ofall the
factorizations of typen · (n − 1) of a permutation inSn, which can be found in [4] and [6],
which, in turn, is basedon Gleason’s argument [1].

Proposition 7. The followingprocedure recursively computes all the factorizations in
F ′(τ ), for any oddτ ∈ S′

n.

Let n ≥ 1, and τ ∈ S′
n odd.

If 0τ = 0, then there are no elements in F ′(τ ).
If n = 1, then τ = (1 0) and F ′(τ ) = {((1 0), (1))}.
If n ≥ 2, up to conjugation, we can assume that nτ = 0.
For each h ∈ [n − 1], with h �= 0τ , let τ (n h 0) = t (n):
then t is an odd permutation on [n − 1]′ which does not leave 0 fixed.
For each factorization (c, d) ∈ F ′(t), let γ = c(n 0) and δ = d(n h):
then (γ, δ) ∈ F ′(τ ).
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Proof. First, we show that the procedure is well defined. Assuming thatn ≥ 2 and that 0 is
not a fixed element ofτ , let m ∈ [n] suchthatmτ = 0. Thenm �= 0 and wecan replaceτ
with τ (m n), so thatnτ = 0. Now, forh ∈ [n − 1] with h �= 0τ , thepermutationτ (n h 0) is
odd and leavesn fixed, so it can be written ast (n), wheret is anodd permutation on[n−1]′
and does not leave 0 fixed. Then, for any factorizationt = cd, where(c, d) ∈ F ′(t), we
can write

τ = t (n 0 h) = cd(n 0)(n h) = [c(n 0)][d(n h)],
sinced and(n 0) commute. Finally,c(n 0) is an(n + 1)-cycle andd(n h) is the product of
ann-cycle on[n] and the 1-cycle(0).

On the other hand, we have to verify that the procedure gives all the factorizations in
F ′(τ ). Assumen ≥ 2 andnτ = 0, and let(γ, δ) ∈ F ′(τ ). Put h = nδ, andnote that
h �= 0, n, 0τ . Then, definec andd by the relationsc(n) = γ (n 0) andd(n) = δ(n h). It
turns out thatc is ann-cycle on[n − 1]′ andd is the product of an(n − 1)-cycle on[n − 1]
and(0). Moreover, we have

c(n)d(n) = γ (n 0)d(n) = γ d(n)(n 0) = γ δ(n h)(n 0) = τ (n h 0).

Therefore, lettingτ (n h 0) = t (n), we have(c, d) ∈ F ′(t) and clearly the given
factorization(γ, δ) is obtained by the procedure forh = nδ and(c, d) defined above.

Finally, we prove that for differenth’s or different factorizations oft we always
obtain different factorizations ofτ . Let (γ1, δ1) and (γ2, δ2) be two factorizations in
F ′(τ ) obtained, respectively, byh1 and (c1, d1), and by h2 and (c2, d2). Suppose that
(γ1, δ1) = (γ2, δ2), and moreover thatnτ = 0. It follows at once thatc1 = c2, since
c1(n) = γ1(n 0) = γ2(n 0) = c2(n), and thath1 = h2, sinceh1 = nδ1 = nδ2 = h2. Then
we getd1 = d2, by observing thatd1(n) = δ1(n h1) = δ2(n h2) = d2(n). �
Remark. We observe that this procedure does not appear to be suitable to derive a closed
formula for the number of factorizations inF ′(τ ), not even in special cases. The reason is
that the possibilities for the choice ofh in the steps of the recursion aren − 2 or n − 1
depending on whether 0τ is different fromn or not. Namely, in the first case the cycle ofτ

containing 0 has length greater than 2, while in the second case such a cycle is just(n 0).
In the course of the procedure, we always meet both cases, regardless of the type of the
permutationτ we start with, and it is not possible to control this phenomenon at each step.
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