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Abstract

We prove by elementary combinatorial methods that the number of factorizationsmstyie
(with n odd) into the product of twm-cycles is 2n — 1)!/(n 4+ 1). Moreover, wegeneralize our
method to the factorization of an even permutatiorgininto the product of twon-cycles, and we
present an algorithm giving all the factorizations of any odd permutati&j.i3 into the product of
an(n + 1)-cycle and am-cycle, where the fixed element of the second permutation is given.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

If o is an even permutation i, it is interesting to study its factorizations into the
product of twon-cycles. An argument attributed to Gleason (s&p proves that the
number of such factorizations is positive. Gleason’s argument also gives a recursive method
to construct all of them (seg]), but it is not suitable to obtain closed formulae for their
number, not even in special cases. Nevertheless, several authors obtained such formulae in
general or in special cases using &wer theory or combinatorial ideas.

In particular, it is known that the number of factorizations of an evaycleinto the
product of twon-cyclesis Zn — 1)!/(n + 1) (see B-5, 7]). In this paper, we give a further
proof of this formula, using elementary combinatorial arguments. We reduce the problem
to the computationfathe number of factorizations of agn + 1)-cycle into the product of
an(n + 1)-cycle and am-cycle, where the fixed element of the second factor is given. We
then rely on the fact that the number atforizations of an odd permutation$ into the
product of am-cycle and arin — 1)-cycle equals &h — 2)!. For the ldter fact, there exists
a mnstructive proof due to Bertram and \Wé],[and to Mach]6].

Then, we describe the generalization of our method to the factorization of any even
permutation inS, into the product of twon-cycles. This enables us to compute the number
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of such factorizations for some particular even permutations, different fraycles.
Finally, we give a recurs& proceure to find all the factorizations of typ@ + 1) - n
of an odd permutation i&, 1, where the fixd elemenbf the second factor is given.

We adopt the following notation and convention. Permutations act on the left, so that
the producta considered as a function meahs «, and themage of an elementunder
a is denoted byx®. If nis a positive integer, we I¢h] and[n]’ denote respectively the sets
{1,...,n}and{0, 1, ..., n}, andS, denote the symmetric group ¢m]’. We will generally
use primes to denote conjugacy classeS;of

2. Factorizationsof typen -n
Leto € S, be an even permutation. Define
F(o) ={(a,B) € Ch x Cn: 0 = B},

whereC,, is the conjigacy class of-cycles inS,. Forbrevity, we say that the elements of
F (o) are the factorizations of type- n of o. Our first aim & to conpute|F (o)| by means
of elementary combinatorial methods, at least in the eaiseann-cycle.

The main idea is the following. Set = (0 n)o, where 0 is to b considered as an extra
symbol. Note that’ is obtained fromy by inseting 0 aftern in the cycle ofo containing
n and leaving all the other cycles efunchanged. Thes' is odd and belongs t§,.

Fort € §,, let

F'(t) = {(y,8) € Ch,y x Cp i T = y8,0° = 0},

whereC|_ , andC, are respectively the conjugacy classes§jrof (n + 1)-cycles and of
permutations of typa- 1. The elements d¥'(z) are the factorizations afinto the product
of an(n+ 1)-cycle on[n]’ and a permutation which is the product ofraaycle on[n] and
the 1-cycle(0).

The first and fundamental result is the following.

Lemmal. Foro € S, there is a lijection between Fo) and F(o’), given by(a, B) —
(O, (0)B).

Proof. If (a, B) € F(0), theno’ = (0n)o = (0 n)aB = [(0 N)][(0)B]. Since(0 n)x is

an(n + 1)-cycle and(0) 8 fixes 0 ands of typen - 1, the maps well-defined.

Conversy, let (v, 8) € F'(o’). Then, y(n) = 0, sinces’(n) = 0 ands leaves 0 fixed.
Hence(0 n)y = (0)n andé = (0)0, with n andé being twon-cycles on[n]. Therdore,

the inverse map iy, §) — (n,0). O

Hence,our problem is reduced to the computation of the number of factorizations of
type (n + 1) - n of an odd permutation’, with 0 being the fixed element of the second
factor. Moreover, note thatf, §) is a factorizationirF’(¢"), we obtain the corresponding
factorization(n, 6) in F (o) by simply delg¢ing O in bothy ands.

Foroddr € S, let

G(r) ={(r,8) € Ch x Cn-1: 7 = yé}.
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Itis well known that|G(7)| = 2(nh—2)!. This was proved by different methods, and among
others there are also elementary aadursive proofs due to Bertram and W4j,[and to
Mach'[6].

For our purpose, we need to consider the factorizatior&(n) having the same fixed
element in the second factor. So we define, for edd S, andi € [n],

Gi(t) ={(y,8) € G(r) : i =i}.
Now, we have to distinguish between the case in whiclandhences’, is a cycle and
the general case.

2.1. Factorization of even n-cycles

Wheno is an evem-cycle, thenn is odd, ando’ is anodd (n + 1)-cycle. This case
corresponds to considering odetyclesrt. In thiscase, we are able to compute the number
of factorizations of typa - (n — 1) with given fixed elemenit.

Proposition 2. Lett € §, be an odd n-cycle. Then:
2(n—2)!
G = 22
Proof. Fori, j € [n], there isa bijedion betweerG; (r) andGj (7). Indeed, some power

" of r sendsi to j. Then he map(y, §) — (yth, th) gives the required bijection. Hence
G(1) is a dijoint union ofn subsets with the saamumber of elements, and the claim
follows. 0O

Putting together the previous results, we obtain the formula for the number of
factorizations of am-cycle into the product of twa-cycles.

Theorem 3. Leto € S, be an even n-cycle. Then:

F(o)] = 2(n — 1)!
(o2 = n + 1 .
Proof. By Lemmal |F(o)| = |F/(¢)|. Sinces’ is anodd (n + 1)-cycle onn + 1

elements, by the definition &' (¢’) and applyingProposition 2o o', we have F'(o')| =
2n—1l/(n+1). O

2.2. Factorization of even permutations

In the general case, is an even permtation, sa’ is odd. The corresponding case we
have to consider is that of a general odd permutatioe obtain the following result,
generdizing Proposition 2

Theorem 4. Lett be an odd permutation in,Sandi, j = 1,...,n.

1. Ifi and j belong to cycles of of the same length, thé; (v)| = |Gj(1)|.

2. Suppose that the pttion type ofr is 1% - - - n® (henced_[_, hey = n). Forh e [n],
let G(r,h) = Gx(r), where x isany fixed element dih] belonging to a cycle
of T of length h(let G(z,h) = @ when @ = 0). Then|G(r)| = 2(h — 2)! =
Y ho1henlG(z, ).
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Proof. If i andj belong to cycles of of the same length, then there exigte S, which
exchanges the cycles containimgand j, leaves altthe elements of thether cycles of
fixed, and sends to j. Sor? = r andi? = j, and the maypy, §) — (y?, §?) is a bijection
betweenG; (r) andGj (7).

The general formula follows by grouping together all the tef@gt)| with i in a cycle
of lengthh. O

As a special case, we are able to conegiienumber of factorizations of type - n of
some even peratations different fromm-cycles. First, we derive the corresponding result
for the factorizations of type- (n— 1) with given fixed elemat of some odd permutations.

Corollary 5. Lett € S, bean odd permutation with partition type k (so that ek= n,
and gk — 1) is odd). Ther|Gj (v)| = 22" ‘foralli < [n].

Proof. Itis a drect application ofTheorem 4 The sun equalske|Gj(t)| = n|Gj(t)|, for
alli e[n]. O

Now, we apply his result tas’, for o of suitable type.

Corollary 6. Leto € S, beaneven permutation with partition typgk — 1) - k® (so that
k(e+1) —1=n,andgk — 1) + kis eren). ThenF(o)| = 2(n — 1)!/(n+ 1).

Proof. By Lemma 1 |F(o)| = |F’(¢”)|. Up to conjigation by a transposition, we may
assume thah belongs to the cycle of length— 1. Thereforeg’ is odd, and has all the
cycles of the same lengttk, Herce, by applyingCorollary 5 to o/, we get|F’(c”)| =
2n-1D!/(n+1). O

3. Factorizationsof type(n +1) -n

Sinceour problem of factoring an even permutatiorin(and, in particular, an-cycle)
into the product of twon-cycles has been reduced to that of factoring an odd permutation
in §, (in particular, an(n 4+ 1)-cycle) into the product of atn + 1)-cycle and am-cycle
with 0 as fixed element of theesond factor, we present a recursive procedure to find all
the factorizations of the latter kind.

This procedure is derived from the algorithm for the computationatf the
factorizations of typ@ - (n — 1) of a permtation in §,, which can be found in4] and [6],
which, in turn, is basedn Gleason’s argument].

Proposition 7. The followingprocedure recursively computes all the factorizations in
F'(r), forany oddr € §,.

Letn>1,andt € §, odd.

If O° = 0, then there are no elements in F'(z).

Ifn=1,thent = (10) and F'(z) = {((1 0), (1))}.

If n > 2, up to conjugation, we can assume thatn® = 0.

Foreachh e [n— 1], withh £ 07, lett(n h0) = t(n):

thent is an odd permutation on [n — 1] which does not leave 0 fixed.

For each factorization (c, d) € F'(t), lety = c(n0) and § = d(n h):

then (y, §) € F'(7).



L. Cangelmi / European Journalf Combinatorics 24 (2003) 849-853 853

Proof. First, we show that the procedure is well defined. Assumingtha® and that O is
not a fixed element of, letm € [n] suchthatm® = 0. Thenm # 0 and wecan replace
with (M " so thain® = 0. Now, forh e [n — 1] with h # 07, thepermutationc (n h 0) is
odd and leaves fixed, so it can be written dsn), wheret is anodd permutation ofn—1]’
and does not leave 0 fixed. Then, for any factorizatiea cd, where(c, d) € F'(t), we
can write

t=t(n0h) =cd(n0)(n h)y = [c(n 0)][d(n h)],

sinced and(n 0) commute. Finallyc(n 0) is an(n + 1)-cycle andd(n h) is the product of
ann-cycle on[n] and the 1-cycl€0).

On the other hand, we have to verify that thegedure gives all the factorizations in
F’(r). Assumen > 2 andn’ = 0, and let(y, 8) € F'(r). Puth = n?, andnote that
h =£ 0, n, 0°. Then, definec andd by the relationg(n) = y(n 0) andd(n) = §(n h). It
turns out that is ann-cycle on[n — 1]’ andd is the product of an(n — 1)-cycle on[n — 1]
and(0). Moreover, we have

c(n)d(n) = y(n 0)d(n) = yd(nN)(n0) = y5(n hy(n 0) = 7(n h0).

Therefore, lettingz(n h 0) = t(n), we have(c,d) € F’(t) and clearly the given
factorization(y, 8) is obtained by the procedure for= n® and(c, d) defined above.

Finally, we prove that for differenh’s or different factorizations ot we always
obtain different factorizations of. Let (y1, 1) and (y»2, §2) be two factorizations in
F’(r) obtained, respectively, blg; and (cy, d;), andby h, and (cp, dz). Suppose that
(y1,61) = (y2, 62), and morever thatn® = 0. It follows at once that; = ¢, since
c1(n) = y1(n 0) = y2(n 0) = c»(n), and thah; = hy, sinceh; = n’t = n% = hy. Then
we getd; = dp, by observing that;(n) = §1(n hy) = 82(n hp) = da(n). O

Remark. We observe that this procedure does not appear to be suitable to derive a closed
formula for the number of factorizations B/ (), not even in special cases. The reason is
that the possibilities for the choice bfin the steps of the recursion ane— 2 orn — 1
depending on whether Gs different fromn or not. Namely, in the first case the cyclewof
containing 0 has length greater than 2,ilelin the second case such a cycle is jiurs0).

In the course of the procedure, we always meet both cases, regardless of the type of the
permutationr we start with, and it is not possible to control this phenomenon at each step.
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