

European Journal of Combinatorics

Intersecting families of permutations

Peter J. Cameron, C.Y. Ku
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

Received 4 April 2003; received in revised form 30 May 2003; accepted 30 May 2003

Abstract

Let S_{n} be the symmetric group on the set $X=\{1,2, \ldots, n\}$. A subset S of S_{n} is intersecting if for any two permutations g and h in $S, g(x)=h(x)$ for some $x \in X$ (that is g and h agree on x). Deza and Frankl (J. Combin. Theory Ser. A 22 (1977) 352) proved that if $S \subseteq S_{n}$ is intersecting then $|S| \leq(n-1)$!. This bound is met by taking S to be a coset of a stabiliser of a point. We show that these are the only largest intersecting sets of permutations. © 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The following theorem is proved by Deza and Frankl in [4]:
Theorem 1. Let S be an intersecting set of permutations of $\{1, \ldots, n\}$. Then $|S| \leq(n-1)$!.
Our main result is the following:
Theorem 2. Let $n \geq 2$ and $S \subseteq S_{n}$ be an intersecting set of permutations such that $|S|=(n-1)!$. Then S is a coset of a stabiliser of one point.

Suppose that the set S satisfying the conditions in Theorem 2 does not contain the identity element $I d$. Then taking a permutation $g \in S, S^{\prime}=g^{-1} S=\left\{g^{-1} h: h \in S\right\}$ now contains Id and again satisfies the conditions in Theorem 2. Hence, assuming Id $\in S$, it is enough to show that S is a stabiliser of one point.

For each $g \in S_{n}$, we say that a point x is fixed by g if $g(x)=x$. The set $\operatorname{Fix}(g)=$ $\{x \in X: g(x)=x\}$ is the fixed point set of g. Moreover if S is a subset of S_{n}, then $\operatorname{Fix}(S)=\{\operatorname{Fix}(g): g \in S\}$ is a family of subsets of X.

Let $x \in X, g \in S_{n}$. We define the fixing of the point x via g to be the permutation $g_{x} \in S_{n}$ such that
(i) if $g(x)=x$, then $g_{x}=g$,
(ii) if $g(x) \neq x$, then

$$
g_{x}(y)= \begin{cases}x & \text { if } y=x \\ g(x) & \text { if } y=g^{-1}(x) \\ g(y) & \text { if } y \neq x, y \neq g^{-1}(x)\end{cases}
$$

Inductively we define $g_{x_{1}, \ldots, x_{q}}$ to be the fixing of x_{q} via $g_{x_{1}, \ldots, x_{q-1}}$. We also say that a set of permutations S is closed under the fixing operation if the following holds:
for each $x \in X \quad$ and $\quad g \in S, g_{x} \in S$.
Using GAP [6], it is not difficult to establish our theorem if $n \leq 5$. So we may assume that $n \geq 6$. We now give the outline of our proof: we first show that a set of permutations S which satisfies the conditions in Theorem 2 is closed under the fixing operation (Theorem 8). This implies that $\operatorname{Fix}(S)$ is an intersecting family of subsets (that is $\operatorname{Fix}(g) \cap \operatorname{Fix}(h) \neq \emptyset$ for any $g, h \in S)$: this is the statement of Theorem 10. With these assumptions, we finally show that S must be a stabiliser of one point in Section 5 .

2. Preliminary results

A graph is vertex-transitive if any vertex can be mapped into any other by a graph automorphism. A subgraph of a graph is called a clique if any two of its vertices are adjacent. A coclique is a subgraph in which no two vertices are adjacent.
Theorem 3. Let Γ be a vertex transitive graph on n vertices. Suppose that T is a subset of the vertex set, and that the largest clique contained in T has size $|T| / m$. Then any clique S in Γ satisfies $|S| \leq n / m$. Equality implies that $|S \cap T|=|T| / m$.

Proof. Count pairs (v, g) with $v \in S, g \in \operatorname{Aut}(\Gamma)$ and $g(v) \in T$. For each $w \in T$ there are $|\operatorname{Aut}(\Gamma)| / n$ choices of g with $g(v)=w$; so the number of pairs is $|S| \cdot|\operatorname{Aut}(\Gamma)| / n \cdot|T|$. On the other hand, for any graph automorphism g, we have $|g(S) \cap T| \leq|T| / m$ (since $g(S) \cap T$ is a clique in T); so the number of pairs is at most $|T| / m \cdot|\operatorname{Aut}(\Gamma)|$. Thus

$$
|S| \cdot|\operatorname{Aut}(\Gamma)| / n \cdot|T| \leq|T| / m \cdot|\operatorname{Aut}(\Gamma)|
$$

so

$$
|S| \leq n / m
$$

If equality holds then $|g(S) \cap T|=|T| / m$ for all $g \in \operatorname{Aut}(\Gamma)$. Taking $g=I d$ gives the result.

If T is a coclique, then the largest clique it contains has size 1 , so the hypothesis holds with $m=|T|$. This gives the following:

Corollary 4. Let C be a clique and A a coclique in a vertex-transitive graph on n vertices. Then $|C| \cdot|A| \leq n$. Equality implies that $|C \cap A|=1$.
Theorem 5. Let S be an intersecting set of permutations of $\{1,2, \ldots, n\}$. Then $|S| \leq$ $(n-1)$!. If equality holds, then S contains exactly one row of each Latin square of order n.

Proof. Form a graph on the vertex set S_{n} by joining g and h if $g(i)=h(i)$ for some point i. It is clear that left multiplication by elements of S_{n} is a graph automorphism; so the graph is vertex-transitive. Let L be the set of rows of a Latin square. Then S is a clique and L is a coclique with $|L|=n$. So, by Corollary $4,|S| \leq n!/ n=(n-1)$!, and equality implies $|S \cap L|=1$.

We need another definition before stating the next result. Let g be a permutation in S_{n}. We define

$$
D(g)=\left\{w \in S_{n}: w(i) \neq g(i) \forall i=1, \ldots, n\right\} .
$$

Proposition 6. Let $n \geq 2 k$. Then, for any $g_{1}, g_{2}, \ldots, g_{k} \in S_{n}$, we have $D\left(g_{1}\right) \cap D\left(g_{2}\right) \cap$ $\cdots \cap D\left(g_{k}\right) \neq \emptyset$.

Proof. A permutation $h \in S_{n}$ belongs to $D\left(g_{1}\right) \cap D\left(g_{2}\right) \cap \cdots \cap D\left(g_{k}\right)$ if and only if it is a system of distinct representatives for the sets A_{1}, \ldots, A_{n}, where

$$
A_{i}=\left\{x: x \neq g_{1}(i) \text { and } x \neq g_{2}(i) \text { and } \ldots \text { and } x \neq g_{k}(i)\right\}
$$

Clearly $\left|A_{i}\right| \geq n-k$.
We must check the conditions of Philip Hall's Marriage Theorem. Let $A(J)=\bigcup_{j \in J} A_{j}$ for $J \subseteq\{1, \ldots, n\}$. We must show that $|A(J)| \geq|J|$ for all J. Clearly this holds if $|J| \leq n-k$, so we can suppose that $|J| \geq n-k+1$.

Take $x \in\{1, \ldots, n\}$. Then $x \notin A(J)$ if and only if, for all $j \in J$, there exists $i \in\{1, \ldots, k\}$ such that $x=g_{i}(j)$. But there are at most k pairs (i, j) with $x=g_{i}(j)$, since given i, the value of j is determined $\left(j=g_{i}^{-1}(x)\right)$. Since $|J| \geq n-k+1 \geq k+1$, this cannot hold for all $j \in J$. Thus $A(J)=\{1, \ldots, n\}$ and $|A(J)|=n \geq|J|$.

Remark. If the permutations g_{1}, \ldots, g_{k} are pairwise non-intersecting then the condition $n \geq 2 k$ can be weakened to $n \geq k+1$. Hence any $k \times n$ Latin rectangle (set of pairwise nonintersecting permutations) can be extended to a Latin square: this is the result of Marshall Hall (Theorem 7). Let g_{1}, \ldots, g_{k} be the rows of a Latin square of order k, extended to fix the points $k+1, \ldots, n$. Any permutation in $D\left(g_{1}\right) \cap \cdots \cap D\left(g_{k}\right)$ must have symbols from the set $k+1, \ldots, n$ in positions $1, \ldots, k$; so if $n \leq 2 k-1$, then no such permutation can exist.

Theorem 7 (Hall 1945). Every $k \times n$ Latin rectangle can be extended to some $n \times n$ Latin square.

3. Closure under fixing operation

Let $g \in S_{n}$ and $A \subseteq X$. If $g(A)=A$, then the permutation g restricted to A, denoted by $\left.g\right|_{A}$, is a bijection from A to itself, and so it is an element in $\operatorname{Sym}(A)$. However, in general, $\left.g\right|_{A}$, being a bijection between $|A|$-subsets of X, is a partial permutation.

Theorem 8. Let $S \subseteq S_{n}$ be an intersecting set of permutations such that $I d \in S$ and $|S|=(n-1)$! where $n \geq 6$. Then S is closed under the fixing operation.

$I d$	$:$	\cdots	x	\cdots	u	\cdots	y	\cdots
g	$:$	\cdots	y	\cdots	a_{u}	\cdots	x	\cdots
$\overline{I d}$	$:$	\cdots	\square	\cdots	u	\cdots	\square	\cdots
\bar{g}	$:$	\cdots	\square	\cdots	a_{u}	\cdots	\square	\cdots
\bar{h}	$:$	\cdots	\square	\cdots	b_{u}	\cdots	\square	\cdots
h	$:$	\cdots	y	\cdots	b_{u}	\cdots	x	\cdots
g_{x}	$:$	\cdots	x	\cdots	a_{u}	\cdots	y	\cdots

Fig. 1.

Proof. Assume that S is not closed under the fixing operation. Then there exists some $x \in X$ and $g \in S$ such that $g(x) \neq x$ and $g_{x} \notin S$. Now let $g=a_{1} a_{2} \ldots a_{x} \ldots a_{y} \ldots a_{n}$ where $a_{x} \neq x, a_{y}=x$. So

$$
g_{x}=a_{1} \ldots a_{x-1} a_{y} a_{x+1} \ldots a_{y-1} a_{x} a_{y+1} \ldots a_{n}
$$

We consider the following cases:
(i) $a_{x}=y$.

Let $X \backslash\{x, y\}=A$. Then $\overline{I d}=\left.I d\right|_{A}$ and $\bar{g}=\left.g\right|_{A}=\left.g_{x}\right|_{A}$ are elements in $\operatorname{Sym}(A)$. By Proposition 6, there exists $\bar{h} \in D(\overline{I d}) \cap D(\bar{g})$ since $n-2 \geq 4$. Now construct a permutation h on X as follows:

$$
h(i)= \begin{cases}\bar{h}(i) & \text { if } i \in A \\ y & \text { if } i=x \\ x & \text { if } i=y\end{cases}
$$

Then g_{x} and h form a $2 \times n$ Latin rectangle. By Theorem 7, there exists a $n \times n$ Latin square containing g_{x} and h. But observe that for any row r in this Latin square other than g_{x} and h, we must have $r \in D\left(g_{x}\right) \cap D(h)$ and hence $r \in D(g)$, that is r and g agree on no points in X. So $r \notin S$ since $g \in S$ and S is intersecting. Moreover h and $I d$ also agree on no points in X by construction and thus $h \notin S$ since $I d \in S$ and S is intersecting. Further $g_{x} \notin S$ by assumption. Hence no rows in this Latin square lie in S (see Fig. 1). But this contradicts Theorem 5.
(ii) $a_{x}=z \neq y$.

Let $A=X \backslash\{x, z\}$. So $\overline{I d}=\left.I d\right|_{A}$ is the identity in $\operatorname{Sym}(A)$. Now define another permutation \bar{g} on A as follows:

$$
\bar{g}(i)= \begin{cases}g(i) & \text { if } i \neq y \\ g(z) & \text { if } i=y\end{cases}
$$

But $|A|=n-2 \geq 4$, and so by Proposition 6, there exists a permutation $\bar{h} \in D(\overline{I d}) \cap D(\bar{g}) \subseteq \operatorname{Sym}(A)$. We now construct a permutation h_{*} on X as follows:

$$
h_{*}(i)= \begin{cases}\bar{h}(i) & \text { if } i \in A \\ z & \text { if } i=x \\ x & \text { if } i=z\end{cases}
$$

$I d$	$:$	\cdots	x	\cdots	u	\cdots	y	\cdots	z	\cdots
g	$:$	\cdots	z	\cdots	a_{u}	\cdots	x	\cdots	a_{z}	\cdots
$\overline{I d}$	$:$	\cdots	\square	\cdots	u	\cdots	y	\cdots	\square	\cdots
\bar{g}	$:$	\cdots	\square	\cdots	a_{u}	\cdots	a_{z}	\cdots	\square	\cdots
\bar{h}	$:$	\cdots	\square	\cdots	b_{u}	\cdots	b_{y}	\cdots	\square	\cdots
h_{*}	$:$	\cdots	z	\cdots	b_{u}	\cdots	b_{y}	\cdots	x	\cdots
h	$:$	\cdots	z	\cdots	b_{u}	\cdots	x	\cdots	b_{y}	\cdots
g_{x}	$:$	\cdots	x	\cdots	a_{u}	\cdots	z	\cdots	a_{z}	\cdots

Fig. 2.

We further construct a permutation h on X as follows:

$$
h(i)= \begin{cases}h_{*}(i) & \text { if } i \neq y, z \\ h_{*}(z)=x & \text { if } i=y \\ h_{*}(y) & \text { if } i=z\end{cases}
$$

We claim that g_{x} and h form a $2 \times n$ Latin rectangle. It is readily checked that g_{x} and h do not agree on all the points in X except perhaps on z. But $h(z)=h_{*}(y)=\bar{h}(y)$ and $\bar{h} \in D(\bar{g})$ and therefore $h(z) \neq \bar{g}(y)=g(z)=g_{x}(z)$. This proves the claim. By Theorem 7, there exists a $n \times n$ Latin square containing g_{x} and h.

Now observe that any row r in this Latin square, other than g_{x} and h, does not agree with g at any point in X. Moreover $g_{x} \notin S$ by assumption. So we are left to check if $h \in S$. By our construction, if h and $I d$ were to agree on some point i, then $i \neq x, y, z$. But this would imply that \bar{h} and $\overline{I d}$ must agree on some point. But this is a contradiction since $\bar{h} \in D(\overline{I d})$ (see Fig. 2). Hence $h \notin S$. But this shows that no rows in this Latin square lie in S, contradicting Theorem 5.

Hence the theorem is proved.

4. Fixed point sets intersect

Lemma 9. Let $g, h \in S_{n}$ be such that $g(x)=h(x)$ and $g(y) \neq h(y)$. Then $g_{x}(y) \neq h(y)$.
Proof. If $g(y)=x$ then $g_{x}(y)=g(x)=h(x) \neq h(y)$. If $g(y) \neq x$ then $g_{x}(y)=g(y) \neq$ $h(y)$.
Theorem 10. Let $S \subseteq S_{n}$ be an intersecting set of permutations which is closed under the fixing operation. Then $\operatorname{Fix}(S)$ is an intersecting family.
Proof. We claim that if $g, h \in S_{n}$ are such that $g(x)=h(x)$ and $g(y) \neq h(y)$ then $g_{x}(y) \neq h(y)$ and $g_{x} \in S$. This follows immediately from Lemma 9 and from the fact that S is closed under the fixing operation.

Assume that $\operatorname{Fix}(S)$ is not intersecting. Then there are $g \neq h \in S$ such that $\operatorname{Fix}(g) \cap \operatorname{Fix}(h)=\emptyset$. Let $B=\{x \in X: g(x)=h(x)\}$. Since S is intersecting, $B=\left\{x_{1}, \ldots, x_{k}\right\}$ for some positive integer k.

Let $w=g_{x_{1} \ldots x_{k}}$. By the first paragraph, $w(y) \neq h(y)$ for every $y \in X \backslash B$, and $w \in S$. If $w\left(x_{i}\right)$ were equal to $h\left(x_{i}\right)$ for some i, we would have $x_{i}=w\left(x_{i}\right)=h\left(x_{i}\right)=g\left(x_{i}\right)$, where
the last equality follows from $x_{i} \in B$. But then $\operatorname{Fix}(g) \cap \operatorname{Fix}(h) \neq \emptyset$, a contradiction. Hence $w(x) \neq h(x)$ for every $x \in X$. However, this is a contradiction with $w, h \in S$.

5. Proof of Theorem 2

We need the following well-known results in extremal set theory [1]:
Proposition 11 (LYM Inequality). Let \mathcal{A} be an antichain of subsets of an n-set X. Then

$$
\sum_{A \in \mathcal{A}}|A|!(n-|A|)!\leq n!
$$

Proposition 12 (Erdős-Ko-Rado [5]). If $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ is an intersecting family of k-subsets of an n-set X such that $k \leq n / 2$, then

$$
m \leq\binom{ n-1}{k-1}
$$

Lemma 13. If \mathcal{A} is an antichain of subsets of an n-set X such that $|A| \geq k$ for all $A \in \mathcal{A}$, then

$$
\sum_{A \in \mathcal{A}}(n-|A|)!\leq n!/ k!
$$

Proof.

$$
\sum_{A \in \mathcal{A}}(n-|A|)!\leq \sum_{A \in \mathcal{A}} \frac{|A|!}{k!}(n-|A|)!\leq n!/ k!
$$

by applying the LYM inequality.
We now give some observations:
Let $Y \subseteq X$ and $G=\operatorname{Sym}(X)=S_{n}$. We define $G_{(Y)}$ to be the set of all permutations $g \in S_{n}$ such that $g(y)=y$ for all $y \in Y$. Clearly $G_{(\{x\})}$ is the stabiliser of the point x and $\left|G_{(Y)}\right|=(n-|Y|)$!. Now if g is a permutation in S with the fixed point set $\operatorname{Fix}(g)=F$, then $g \in G_{(F)}$. Hence we deduce that

$$
|S| \leq \sum_{F \in \operatorname{Fix}(S)}\left|G_{(F)}\right|=\sum_{F \in \operatorname{Fix}(S)}(n-|F|)!.
$$

But we can do better. Observe that if $A \subseteq B$ for some $A, B \in \operatorname{Fix}(S)$, then $G_{(B)} \subseteq$ $G_{(A)}$.

Hence taking

$$
\mathcal{F}=\{F \in \operatorname{Fix}(S): F \text { is a minimal element in the poset }(\operatorname{Fix}(S), \subseteq)\}
$$

we now have

$$
|S| \leq \sum_{F \in \mathcal{F}}(n-|F|)!.
$$

Proof of Theorem 2. Assuming $I d \in S$, we want to show that S is a stabiliser of a point. We first note that the theorem is true for $n \leq 5$. This can be proved by hand or by computer using GAP [6]. (We are looking for cliques in the graph used in Theorem 5, which can be found using the clique finder in the GAP share package GRAPE.) Let $n \geq 6$. By Theorems 8 and 10, we can now assume that $\operatorname{Fix}(S)$ is intersecting. Let \mathcal{F} be the subset of $\operatorname{Fix}(S)$ as defined above. Then \mathcal{F} now is an intersecting antichain of subsets of X and it is not empty.

Obviously $\emptyset \notin \mathcal{F}$ since \mathcal{F} is intersecting. Moreover note that if a permutation g fixes more than $n-2$ points, then it must be the identity, and so $|\operatorname{Fix}(g)| \neq n-1$ for all $g \in S$, in particular, $|F| \neq n-1$ for all $F \in \mathcal{F}$. Also $X \notin \mathcal{F}$ since \mathcal{F} is an antichain. Hence we have $1 \leq|F| \leq n-2$ for all $F \in \mathcal{F}$.

Suppose that $\operatorname{Fix}(S)$ contains an element of size 1, say $\{x\}$. Then by the intersection property of Fix (S), all permutations in S fix the point x. Since $|S|=(n-1)$!, S now must be the stabiliser of x. So we can assume that $|\operatorname{Fix}(g)| \geq 2$ for all $g \in S$ and hence $|F| \geq 2$ for all $F \in \mathcal{F}$.

We then must have $\bigcap_{F \in \mathcal{F}} F=\emptyset$, for otherwise, by the definition of $\mathcal{F}, \bigcap_{F \in \operatorname{Fix}(S)}$ $F \neq \emptyset$, and hence all permutations in S fix a common point and the result follows.

Having made the above simplifications, our aim is to derive a contradiction by showing that $|S|<(n-1)$!. We achieve this by considering the following cases:

Case I. $|F| \geq 3$ for all $F \in \mathcal{F}$, that is \mathcal{F} has no element of size 2 . In this case, we have

$$
\begin{aligned}
|S| & \leq \sum_{F \in \mathcal{F}}(n-|F|)! \\
& =\sum_{\substack{F \in \mathcal{F} \\
3 \leq|F| \leq[n / 2]}}(n-|F|)!+\sum_{\substack{F \in \mathcal{F} \\
|F| \geq[n / 2]+1}}(n-|F|)! \\
& \leq \sum_{k=3}^{[n / 2]} a_{k}(n-k)!+\frac{n!}{([n / 2]+1)!},
\end{aligned}
$$

by Lemma 13, and a_{k} is the number of elements in \mathcal{F} having size k.
Then

$$
|S| \leq \sum_{k=3}^{[n / 2]}\binom{n-1}{k-1}(n-k)!+\frac{n!}{([n / 2]+1)!}
$$

by the Erdős-Ko-Rado Theorem. So

$$
\begin{align*}
|S| & \leq(n-1)!\sum_{k=3}^{[n / 2]} \frac{1}{(k-1)!}+\frac{n!}{([n / 2]+1)!} \\
& \leq(n-1)!\cdot \frac{4}{5}+\frac{n!}{([n / 2]+1)!} \tag{1}
\end{align*}
$$

since $\sum_{k=3}^{[n / 2]} \frac{1}{(k-1)!}<e-2<\frac{4}{5}$ where e is the natural exponent.

Hence it is enough to show that $\frac{n!}{(n n / 2]+1)!}<\frac{(n-1)!}{5}$. But this is true for $n \geq 8$. For $n=6,7$, it is readily checked from (1) that $|S|<(n-1)$!.

We conclude that if \mathcal{F} has no element of size 2 , then $|S|<(n-1)$! for all $n \geq 6$.
Case II. \mathcal{F} contains an element of size 2 .
Let $\mathcal{F}_{2}=\{F \in \mathcal{F}:|F|=2\}$.
Subcase (i). $\bigcap_{F \in \mathcal{F}_{2}} F=\emptyset$.
Without loss of generality, we can assume that $\{\{1,2\},\{1,3\},\{2,3\}\} \subseteq \mathcal{F}_{2}$ by the intersection property. Let $F \in \mathcal{F} \backslash\{\{1,2\},\{1,3\},\{2,3\}\}$. Since $F \cap\{2,3\} \neq \emptyset$, we have either $2 \in F$ or $3 \in F$. So this implies that $1 \notin F$ for otherwise $\{1,2\} \subseteq F$ or $\{1,3\} \subseteq F$ contradicts the antichain property of \mathcal{F}. But now $F \cap\{1,2\} \neq \emptyset$ and $F \cap\{1,3\} \neq \emptyset$ implies that $\{2,3\} \subseteq F$ contradicting that \mathcal{F} is an antichain. Hence $\mathcal{F}=\mathcal{F}_{2},\left|\mathcal{F}_{2}\right|=3$, and we deduce that $|S| \leq \sum_{F \in \mathcal{F}}(n-|F|)!=\sum_{F \in \mathcal{F}_{2}}(n-|F|)!=3(n-2)!<(n-1)!$ for $n \geq 6$.
Subcase (ii). $\bigcap_{F \in \mathcal{F}_{2}} F \neq \emptyset$.
Without loss of generality, we can assume that $\mathcal{F}_{2}=\{\{1, i\} \mid 2 \leq i \leq c\}$ for some $c \in\{2,3, \ldots, n\}$.

Now let

$$
\mathcal{D}=\left\{F \in \mathcal{F} \backslash \mathcal{F}_{2}: 1 \notin F\right\}, \quad \mathcal{E}=\left\{F \in \mathcal{F} \backslash \mathcal{F}_{2}: 1 \in F\right\}
$$

If g is a permutation with its fixed point set $\operatorname{Fix}(g)$ containing F for some $F \in \mathcal{D}$, then Fix (g) contains $\{2,3, \ldots, c\}$ since \mathcal{F} is intersecting. So $g \in G_{(\{2,3, \ldots, c\})}$.

Assume for a while that $c=n$. Then \mathcal{D} is empty for otherwise $\{2,3, \ldots, n\} \subseteq F$ for any $F \in \mathcal{D}$ would imply that $|F|>n-2$ which is a contradiction. Hence $\mathcal{F}=\mathcal{F}_{2} \cup \mathcal{E}$ and so all F in \mathcal{F} must contain 1 , that is, $\bigcap_{F \in \mathcal{F}} F \neq \emptyset$. But this is a contradiction. So $c \leq n-1$.

If $F \in \mathcal{E}$, then $\{1, x, y\} \subseteq F$ for some $x, y \notin\{2,3, \ldots, c\}$ since \mathcal{F} is an antichain. Hence there are at most $\binom{n-c}{2}$ choices for the unordered pair $\{x, y\}$. If g is a permutation with its fixed point set $\operatorname{Fix}(g)$ containing F for some $F \in \mathcal{E}$, then $g \in G_{(\{1, x, y\})}$. We now deduce that

$$
\begin{aligned}
|S| \leq & \sum_{F \in \mathcal{F}_{2}}(n-|F|)!+\left|G_{(\{2,3, \ldots, c\})}\right| \\
& +\sum_{B \in\binom{X \backslash 1,2, \ldots, c)}{2}}\left|G_{(\{1\} \cup B) \mid}\right| \\
\leq & (c-1)(n-2)!+(n-c+1)!+\binom{n-c}{2}(n-3)!.
\end{aligned}
$$

Assuming $3 \leq c \leq n-2$, we have $|S| \leq f(c)$ where $f(c)=c(n-2)!+\binom{n-c}{2}(n-3)$!. But $\frac{n-c}{2}<n-2$ implies that

$$
\frac{(n-c)(n-c-1)}{2}<(n-2)(n-c-1)
$$

since $n-c-1>0$. So

$$
\begin{aligned}
& \binom{n-c}{2}(n-3)!<(n-2)!(n-c-1) \\
& f(c)<(n-1)!
\end{aligned}
$$

and hence $|S|<(n-1)$! for $n \geq 6$.
If $c=n-1$, then

$$
|S| \leq \sum_{F \in \mathcal{F}_{2}}(n-|F|)!+\left|G_{(\{2,3, \ldots, n-1\})}\right|=(n-2)(n-2)!+2<(n-1)!
$$

for all $n \geq 6$.
We can now assume that $c=2$, that is, $\mathcal{F}_{2}=\{\{1,2\}\}$ for $n \geq 6$. Then $\mathcal{F}=\mathcal{F}_{2} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2}$ where

$$
\mathcal{B}_{1}=\left\{F \in \mathcal{F} \backslash \mathcal{F}_{2}: 1 \in F\right\}, \quad \mathcal{B}_{2}=\left\{F \in \mathcal{F} \backslash \mathcal{F}_{2}: 2 \in F\right\}
$$

Observe that $\mathcal{B}_{1} \cap \mathcal{B}_{2}=\emptyset$ since \mathcal{F} is an antichain. Also for each $i=1$, 2, if $F \in \mathcal{B}_{i}$, then F contains the set $\{i, a, b\}$ where $a, b \in X \backslash\{1,2\}$. Hence

$$
\begin{aligned}
|S| \leq & \sum_{F \in \mathcal{F}_{2}}(n-|F|)!+\sum_{\{a, b\} \in\binom{X \backslash\{1,2, \ldots, c\}}{2}}\left|G_{(\{1, a, b\}) \mid}\right| \\
& \left.+\sum_{\{a, b\} \in\binom{X \backslash\{1,2, \ldots, c\}}{2}} \right\rvert\, G_{(\{2, a, b\}) \mid} \\
\leq & (n-2)!+2 \cdot\binom{n-2}{2} \cdot(n-3)! \\
\leq & (n-2)(n-2)!<(n-1)!.
\end{aligned}
$$

We conclude that if \mathcal{F} has an element of size 2 , then $|S|<(n-1)$! for $n \geq 6$. Hence the result follows.

6. Open problems

Problem 1. What is the cardinality of the largest intersecting subset of S_{n} which is not contained in a coset of the stabiliser of a point, and what is the structure of such a set of maximum cardinality?

Consider the following set of permutations (for $n \geq 4$):

$$
S^{*}=\left\{g \in S_{n}: g(1)=1, g(i)=i \text { for some } i>2\right\} \cup\{t\},
$$

where t is the transposition interchanging 1 and 2 . Then S^{*} is clearly intersecting and is not contained in a coset of the stabilizer of a point. Moreover, S^{*} is a maximal intersecting set. It satisfies

$$
\left|S^{*}\right|=(n-1)!-d(n-1)-d(n-2)+1 \sim\left(1-e^{-1}\right)(n-1)!
$$

where $d(m)$ is the number of derangements in S_{m}.

We conjecture that, for $n \geq 6$, an intersecting subset not contained in a coset of a point stabiliser has size at most $(n-1)!-d(n-1)-d(n-2)+1$, and that a set meeting this bound has the form $g S^{*} h$ for some $g, h \in S_{n}$. Computation using GAP [6] shows that this is true for $n=6$.

A weaker conjecture is that there exists $c>0$ such that any intersecting set $S \subseteq S_{n}$ with $|S| \geq(1-c)(n-1)$! is contained in a coset of the stabiliser of a point.

Problem 2. Given $t \geq 1$, is there a number $n_{0}(t)$ such that, if $n \geq n_{0}(t)$, then a t-intersecting subset of S_{n} has cardinality at most $(n-t)$!, and that a set meeting the bound is a coset of the stabiliser of t points [2,3]? (A set S of permutations is said to be t-intersecting if $|\{x: g(x)=h(x)\}| \geq t$ for any $g, h \in S$.)

Deza and Frankl [4] showed that the bound $(n-t)$! holds if there exists a sharply t-transitive set of permutations of $\{1, \ldots, n\}$. (This is an immediate consequence of Corollary 4.) This holds, for example, if $t=2$ and n is a prime power. Even in this special case, however, our argument for identifying a set meeting the bound fails, because there is no analogue of Hall's theorem for sharply t transitive sets with $t>1$.

Acknowledgement

We would like to thank the referee for his remarks which have improved the presentation of the paper.

References

[1] I. Anderson, Combinatorics of Finite Sets. Clarendon Press, Oxford, 1987.
[2] P.J. Cameron, Metric and geometric properties of sets of permutations, in: M-M. Deza, P. Frankl, I.G. Rosenberg (Eds.), Algebraic, Extremal and Metric Combinatorics 1986. Cambridge University Press, 1986, pp. 39-53.
[3] P.J. Cameron, Permutations, in: Paul Erdős and his Mathematics. vol. II, Bolyai Society Mathematical Studies, Budapest, 2002, pp. 205-239.
[4] M. Deza, P. Frankl, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A (22) (1977) 352-360.
[5] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. 2 (12) (1961) 313-320.
[6] The GAP Group (2002). GAP—Groups, Algorithms, and Programming, Aachen, St Andrews. Available from: http://www-gap.dcs.st-and.ac.uk/~gap.

