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Abstract

Let us write f(n,4; Cyry1) for the maximal number of edges in a graph of order n and
maximum degree 4 that contains no cycles of length 2k + 1. For §<A<n—k—1 and n
sufficiently large we show that f(n, 4; Cor+1) = 4(n — 4), with the unique extremal graph a
complete bipartite graph.
© 2002 Published by Elsevier Science (USA).

There are numerous well-known results asserting that every graph on n vertices
with sufficiently many edges, or satisfying some natural degree conditions, contains
long cycles of certain lengths (see, for example, [5-7,13] or [2, Chapter 3]). More
recently, there are many similar results giving stronger conclusions under (sometimes
fairly specific) stronger assumptions (see, for example, [1,4,9-12]). Here we return to
the basic extremal question, imposing only the at first sight rather weak additional
condition that the graph has at least one vertex of large degree.

To be more specific, let G be a graph on n vertices, and let k be a fixed positive
integer. It is well known that if G has more than n?/4 edges and 2k + 1< (n +3) |,
then G contains a Cy;. 1, a cycle of length 2k + 1 (see, for example, [2, p. 150]). Since
K| 4j2),1n/27 contains no odd cycles, the maximal number of edges in a graph
containing no Cy 1 (the extremal number for Cy 1) is | #n?/4 | for sufficiently large
n. The main aim of this paper is to prove a considerable strengthening of this result:
we shall show that this extremal number for Cy;; becomes significantly smaller if we
specify that the maximum degree 4 of G takes a value somewhat larger than n/2. Let
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f(n,4; Cyy1) denote the maximal number of edges in a graph G of order n and
maximum degree 4 containing no Cy,y;. We shall show that if # is sufficiently large
and n/2<A<n—k—1, then f(n,4; Cyry1) = 4(n — A) with the unique extremal
graph a complete bipartite graph with classes of size 4 and n — 4. Smaller values of 4
are less interesting: when A4 <n/2 and n is even the trivial upper bound of n4/2 is
attained by any A-regular balanced bipartite graph. It is surprising that simply
requiring one vertex in G of large degree can so affect the extremal number for odd
cycles, lowering it from | n?/4 | to A(n — A). As expected, even when 4(G) is large
the family of bipartite graphs provides the extremal examples.

Although our main result is to calculate f(n, 4; Cyy1) when n/2<A<n —k — 1,
we first give a result for the case 4 >n — k, for which we need a few lemmas. As in [3],
throughout the paper we use the following standard notation: for a graph G we write
V(G) for its vertex set, E(G) for its edge set, |G| for the number of vertices, e(G) for
the number of edges, 4(G) for the maximum degree, and 6(G) for the minimum
degree. For a vertex v of G we write I'(v) for the set of neighbors of v in G, and for
UcV(G), T'y(v) for I'(v)n U. We write dg(v) for the degree of v in G, or just d(v)
when it is clear which graph is meant, and G — v for the graph formed from G by
deleting v. Finally, for V< V(G) we write G[V] for the subgraph of G induced by V.

Lemma 1. Let G be a graph on n vertices that contains no Cyi1, and let v be a vertex
of G with dg(v)=4(G)=n—1—m. Let P be a maximal path in G—v with
endvertices x and y. Suppose that 2k > m + 1, and that P has ¢ =2k vertices. If none of
the neighbors of x lie closer to y on P than any neighbor of y then
min{dg(x),dc(y)} <m except in the special case when dg(x) =dg(y) =3, m =2,
¢ =2k + 1, and both endvertices of P are adjacent to v.

Proof. Suppose for a contradiction that dg(x), dg(y)=m + 1. Let us write P as
x =v;...vy, = y. Then by assumption there is a ¢ such that if v; is a neighbor of x then
i<c, and if v; is a neighbor of y then j>c. Let v; be a neighbor of x and v; a neighbor
of y. If vuy and vv; are edges of G with ' <i<j </ then the cycle vvy...v1v;...vjv,... 05
lies in G. Since this cannot be of length 2k + 1 we have

(—(i—i—1)=( —j—1)#2k.

Now />=2k by assumption. If we had />2k +m then, as v has only m non-
neighbors, for some 1 <i<m + 1 both vertices in {v;, v; 1211} would be joined to v,
forming a Cy.y) in G. (The pairs are disjoint as 2k > m + 1.) Thus 2k </ <2k +
m— 1, and the value f' =7+ 2 — 2k that the sum (i — )+ (j/ —j) cannot take
satisfies

2<f<m+ 1. (1)

Let r be the number of non-neighbors v, of v with r<¢, and s the number with
t > c. Let the neighbors of x on P be v;,, ..., v;, with 2 =i} < --- <i,;. Note that from
the maximality of P we have d = dg_,(x), so d>dg(x) — 1=m. Suppose for a
contradiction that » = 0. Since there are only m non-neighbors of v and at least m + 1
neighbors of y, we have v,y, v,+1v€ E(G) for some h. (If yv¢ E(G) then y has at least
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m + 1 neighbors on P and the statement follows from the pigeonhole principle. If
yve E(G) then the statement holds with h=/¢—1.) Also, czd+12m+1>/¢—
2k + 1, so as v has no non-neighbors before v, we have vv,_y1 € E(G). Thus the
(2k + 1)-cycle vvs_pgs1...v4p... 511 lies in G. Hence we may assume > 1. Similarly
s=z1,sor<m—s<mand d>=r+ 1.

If 1<g<iy_, then one of the r + 1 vertices v;,_,, t =d —r, ..., d must be joined to
v. (Recall that v has r non-neighbors on P to the left of v..) Hence we may choose
i — i = ¢ in the argument of the first paragraph. Moreover, at most one value of ¢
with iy, <g<iy_,.1 does not occur as a difference i — 7/, since if i — i’ #¢ for any i
and 7' then the non-neighbors of v on the left of v. must be precisely v;, .., g, ..., Uiy,
and this can only happen for at most one value of g.

Hence we may choose i and i’ so that i — i can take any value from 1 to i;_, —
1>d—r, and if d —r+ 1 is not possible then either d —r+2 is or iy, =
d —r+ 2. In particular if xv = vjve E(G) then either d —r+1 or d—r+2is a
possible difference i — i'. Now dg(x) = d if xv¢ E(G) and dg(x) = d + 1 if xve E(G).
Thus i — i can take any value from 1 to dg(x) — r, or any value from 1 to dg(x) —
r+ 1 except dg(x) — r. Note that dg(x)>m + 1 by assumption while r<m — s<m —
1, so dg(x) —r=2, and 1 is certainly a possible value of i — 7'.

Arguing as above we can choose j/ — j to be any value from 1 to dg(y) — s=2 or
any value from 1 to dg(y) — s+ 1 except dg(y) —s. Now S = dg(x) +dg(y) —r —
s=2(m+ 1) —m = m+ 2. From the values taken by i — #/ and ;' — j we see that their
sum can always take any value from 2 to S — 2>m. As this sum cannot take the
value f, from (1) we see that S =m + 2, f =m+ 1, and (i — i) + (j/ —j) cannot take
the value S — 1. From the last fact we must be in the case where i — i’ cannot take
the value dg(x) —r, nor j/—j the value dg(y) —s. Also, as (dg(x)—r—2)+
(dg(y) —s+1) =S —1, we must have dg(x) — r = 2, and, similarly, dg(y) — s = 2.
But now

mzr+s=dg(x)+dc(y) —4=2m— 2,

so m<2, and as m>=r+s, m = 2. Equality in the equation above together with
dg(x), dg(y)=m + 1 now gives dg(x) = dg(y) = 3, whence / =2k +f —2 =2k + 1.
Finally, from the values not taken by i—i and j/—j we have xv,yve E(G),
completing the proof. [

Note that in the proof above we did not use the fact that the length of the cycle is
odd, so the lemma applies with k& a half-integer. We have stated it for Cy.; for
consistency with our notation in the rest of the paper.

The following is a variant of results of Ore and Pdsa. We write H[P] for H[V (P)].

Lemma 2. Let P=uvv,...v; be a maximal path in a graph H, and let m =
d(vy) + d(vs). If there are indices 1 <i<j</ with v; a neighbor of v\ and v; a neighbor
of vy then H[P] contains a cycle of length at least min{/,m}. In particular, if in
addition v\vy,, vyv, ¢ E(G) for i<h<j then either H[P] is Hamiltonian, or the cycle
C = v1vy...0;0,0/-1 ...v; has length at least m.
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Proof. Let us imitate the standard proof of Pdsa’s theorem, as in [3, p. 106]. Suppose
that H[P] is not Hamiltonian. We may assume that every vertex v, with i </ <j is not
a neighbor of either v; or v,. Since P is maximal, the neighbors of v; and v, are
vertices of P. Furthermore, there is no index i, 1 <h</ — 1, such that vyv,,; and

vuv, are both edges since otherwise vy v, ... v,0,0/_1 ... 0541 is @ Hamilton cycle in H[P].
Consequently, the sets I'(v)) = {v;: viv, € E(G)} and I't (vy) = {vpy1: vpv, € E(G)}
are disjoint subsets of {vs,v3,...,0i41,0), V41, ..., 0/} Hence m</ — (j—i)+ 1.

Since G contains the cycle vjv;...v;0,0,_; ...v; of length / — (j — i) + 1, the proof is
complete. [

We shall also need an old result of Erdds and Gallai [8] proved using a method due
to Dirac [7]: if G is a graph on n vertices whose longest path has / edges, then
e(G)</n/2. (See, for example, [3].) The following lemma is a generalization of this
result which, although not needed here, is simple enough that it seems likely to find
applications elsewhere. For a vertex v of a graph G let us write /(v) for the (edge)
length of a longest path in G starting at v.

Lemma 3. For every graph G we have

(63 Y /o), @

veV(G)
with equality if and only if every component of G is a complete graph.

Proof. We use induction on |G|. We assume that G is connected, as otherwise we are
done by induction.

Let P=v;...v0,41 be a longest path in G, so Z¢(v1) =¢¢(v/11) =¢. We may
assume that />2 as otherwise G is just a single edge or a single vertex and the result
holds. Suppose first that G contains a cycle C of length / 4+ 1. As G is connected and
any edge from a vertex on C to a vertex not on C would create a path longer than P,
the cycle C is a Hamilton cycle, i.e., G has only / + 1 vertices. Also, /¢(v) = £ for all
veV(G), so

e<c)<</;1>= S alv),
veV(G)

N —

with equality if and only if G is complete, as required.

From now on we assume as we may that G does not contain a cycle of
length /+ 1. Again we imitate the standard proof of Podsa’s Theorem.
For i=1,2,...,7, vjvix; and vjvsy cannot both be edges of G. As P is a longest
path we have I'(v;) UT'(vs41) = P. Defining I't (v/41) as in the proof of Lemma 2, we
thus have

F(U])F\F+(U/+1) :(b
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and
L)l (vrgr) {2, ooy 741}

Hence d(vl) +d(U/+1) = ‘F(U1)| + |F+(U/+1)‘</.
Without loss of generality, we may assume that d(v) <//2. Let G’ = G — v;. Then
by induction

(G)<y X lel)<y X lel) =5 O lolt) -4 )

ve V(@) ve V(G") ve V(G)
as /g(vy) = ¢. Since
e(G) = e(G") +d(v)<e(G) +7/2, (4)

this proves (2). To complete the proof suppose that equality holds in (2). Then we
must have equality throughout (3) and (4). As G is connected and all the neighbors
of vy lie on P, the graph G’ is connected, and by induction G’ is complete. Thus G
consists of the vertex v; joined by //2 edges to the complete graph G’. Since the
longest path starting at v has length 7, G’ is K,. However, the other endvertex w of
the path of length / starting at vy has /g(w) =¢ > /@(w) =/ — 1, so the second
inequality in (3) is strict, a contradiction. [

Theorem 4. Let G be a graph with n vertices containing no Coy1 with maximum
degree A =n—1—m, m<k. Then e(G)<A+ (k—1)(n—1).

Proof. We use induction on n. Since ¢(G)<4 + (";') = 4+ (¢ —1)(n — 1) we may
assume that k<4. Hence k <}<n — k<4.If xe V(G) has degree ds(x) <k — 1 then
removing x gives a graph with no Cy;;; and maximum degree 4’, 4 — 1<4'<A.
Thus A= (n—1) — 1 —n/, m' <k, and by induction this graph has at most 4’ +
(k —1)(n —2) edges. Adding back x gives e(G)<A + (k—1)(n —2) + dg(x) <4 +
(k—1)(n — 1), as required. Similarly, if ds(x) = k and x is adjacent to all vertices of
maximal degree, then A'<4 and e(G)<A + (k—1)(n—2)+dg(x) <A+ (k —
1)(n —1). Hence we may assume that J(G)>=k, and that if x is a vertex of degree
k then there is some vertex of degree 4 that is not adjacent to x.

Select a vertex v of maximum degree and a (maximal) path P in G — v so that the
length of P is maximized (over all pairs (v, P)). Label the vertices of P as x =
vivy...v.—1v, = . If P has at most 2k — 1 vertices then all paths in G — v have (edge)
length at most 2k — 2, so by the Erdds—Gallai result (or by Lemma 3) we have
e(G —v)<(2k —2)(n — 1)/2 and the result follows. We may thus assume that /> 2k.

We now consider two cases:

(1) Suppose first that none of the neighbors of x lie closer to y on P than any
neighbor of y. Since §(G) =k > m, Lemma 1 implies that m = 2, dg(x) = dg(y) = 3,
k=3,/=2k+1=7, and viv,v,ve E(G). As v has only two non-neighbors and G
contains no C7, the non-neighbors of v are v; and vs. Note that v; has no neighbors
other than v off P. The only possible neighbors on P are v, and v4 (otherwise G[PuUv)
contains a C7), so v; is joined to v4. Similarly vy is joined to vy.
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None of the vertices outside Pu {v} can have degree 4 since otherwise the path vP
would miss a vertex of degree A4, contradicting the choice of P. Since G contains no
C, the vertices vy, vy, v3, Us, Ug, b7 are each non-adjacent to at least three vertices (for
example v, is non-adjacent to vs, vg, v7, and v). Hence the only vertex on P that can
have degree 4 is vs. Thus x is a vertex of degree 3 = k adjacent to all the degree 4
vertices, contradicting the assumption above.

(i) Now suppose there is a neighbor of x that is closer on P to y than some
neighbor of y. By Lemma 2, G —v contains a cycle of length at least r =
min{/, dg_,(x) + dg_»(y)}. However, G — v cannot contain a cycle C of length at
least 2k—otherwise, as v has fewer than k& non-neighbors, v is joined to more than
half the vertices of C, and Cu{v} contains a Cyy1. As />2k it follows that
dg—y(x) + dg—,(y) = r<2k. We can therefore assume without loss of generality that
dg_,(x)<k — 1. Since 6(G) =k, we have dg_,(x) =k — 1, xve E(G), and dg_,(y) = k
or k—1,s0r=2k—1 or 2k —2. We claim also that y cannot have degree 4; as
dg—.(y) <k we have dg(y)<k + 1. Since k<4< 4, it follows that if d(y) = 4 then
yeE(G)and n=¢+1=2k+ 1, whence vP is a Cyy1, giving a contradiction. We
shall use this fact later: for any pair (v, P) as at the start of the proof, neither
endvertex of P can have degree 4. In particular, if v, has degree 4 then xvj i,
vp-1y¢ E(G); otherwise we can find a pair (v, P') where P’ ends in the vertex vy of
degree A.

Our aim now is to show that contrary to our assumption there is a vertex z (one of
x and y) of degree k adjacent to all vertices of degree 4 in G. Note that all vertices
w#v of degree 4 lie on P, as otherwise vP is a path longer than P avoiding the vertex
w of maximal degree. Let us also note that I'p(x)#I'p(y). (One of many ways to
check this is as follows: suppose that I'p(x) = I'p(y). Then dg_,(y) = dg—,(x) =
k — 1,s0as 0(G) =k we have yve E(G), and vP is a cycle. Thus / # 2k, so / > 2k. But
vs—1 1s a neighbor of y and thus by assumption of x, so G — v contains a cycle
xvy...vs_1 of length £ — 1>2k. As noted above this gives a contradiction.)

Let i, j be a pair with i<j, xv;, v;ye E(G) and xv;, v,y ¢ E(G) for i<h<j. By
Lemma 2, the cycle C = v;...v0,...v; has length |C|>2k — 2.

Suppose first that there is a vertex w = v, with degree 4 where i<h<j. As noted
above, xvpi1, v—1y¢ E(G), so i + 1<h<j— 1. Now if v, is adjacent to v, for any
neighbor v, of x or y with r>j we can find a cycle in G[P] of length at least |C| +
2>2k, giving a contradiction as before. Similarly v, cannot be adjacent to v,_; for
any neighbor v, of x or y with r<i. Since xy¢ E(G) and I'p(x)# I p(y), there are at
least dg_,(x) + 1 = k non-neighbors of v, on P. But v, has degree 4 and thus only
m <k non-neighbors in the whole of G.

As dg(x) = k, by assumption there is a vertex w of degree 4 not adjacent to x. As
w#v from the above we have w = v, with A<i or h>j. Since v, has degree 4, as
shown above v,_1y¢ E(G), so vy ¢ I'(x)uI'"(y). From the proof of Lemma 2, I'(x)
and I'*(y) are disjoint subsets of S = {vs,v3,...,0i41,0), 041, ...0¢}. As |S|=
|C1<2k — 1<dg_p(x) + dg-s(y) + 1, we see that v, is the unique element of S
missing from I'(x) U I'"(y), and that |S| = |C| = 2k — | = dg_,(x) + d6-—v(¥) + 1, s0O
dg—y(y) =k — 1. Thus yve E(G). Now we can assume there is a vertex w' = vy of
degree 4 that is not adjacent to y. By a similar argument to the above,
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w1 ¢(x)uTt(y). As there is only one missing vertex, 7/ + 1 =/h. But then
Up_1...0100/... 05y 18 a path of length / avoiding a vertex v, of maximal degree but
ending in a vertex v,_; = vy of maximal degree, giving a contradiction. [

Lemma 5. Suppose that k=1 and n=2k>. If G is a graph with n vertices and maximum
degree A =n —k — 1 containing no Coiyy then e(G)<A(n — A), with equality if and
only if G is a complete bipartite graph.

Proof. Note first that the case k =1 is trivial, as then G is in fact a subgraph of
K>,_>. We assume from now on that k>2. Pick a vertex v of degree 4 and let
V = {vi,...,uc} be the vertices that are not adjacent to v. If we remove one of the
vertices v; then by Theorem 4 we have ¢(G — v;) <4 + (k— 1)(n — 2). Thus if

de(w)<dn—A)— A+ (k-1)n=2))=n—k*+k—-2

then we are done. Hence we can assume that dg(v;))=n—k*>+k—2 for all i =
I,....;k. Let U = V(G)\(Vu{v}) =T(v).

Suppose V' contains an edge v;v,, say. Construct a path starting with v;v, and then
alternating between 7 and U through all the remaining v; as follows: if we have a
path vjvupvs...v;, i<k —1, then pick u;e(I'y(v))Ty(vipr))\{uz, ...u;—1} and
extend the path by u,;v;1. (We are treating the labels u; and v; differently—the v; are
fixed vertices, only the u; are being chosen.) Finally, pick u e Iy (vg) \{uz, ..., up—1}
and u; eIy (v)\{ua, ..., ux} to give a cycle vuyvjvaus ... vxuy of length 2k + 1.

This will be possible if |I'y(v))"y(vis1)|=k —2 and |T'y(v;)|=k for each i.
However |I'y(v;)|=n—k* — 1>k and |Ty(v;)) Ty (vis1)|=n— 26> +k — 1>k — 2.

Hence we can suppose that VU {v} is an independent set.

Now suppose there is an edge uou;, where ug, u; € U and u; € I'(v;). Recalling that
now I'y(v;) = I'(v;), construct a (2k + 1)-cycle vuguviupvs...v5—1ux by choosing
wie(L(vi)nT(v))\{uo, 1y ...,us—} for i=2,...;k—1 and wurel(v—1)\
{uo, ceey ukfl}.

This succeeds provided |I'(v;)nI'(viy1)|=k and |I'(v;)|=k+1. However
|T(v)| = | (v) AT (vis1)|=n — 2k* + 3k — 3=k + 1 for k>2. Hence setting U’ =
Uf-;l I'(v;)< U we can now suppose that U’ is an independent set and there are no
edges between U’ and U\ U’. Every vertex of U\ U’ is joined to v, so there are no
paths of length 2k — 1 in G[U\ U']. Hence by the Erd6s—Gallai result (or by Lemma
3) we have e(G[UN\U']) < (k — 1)|]UN\U’|. The total number of edges in G is at most
A+ (k= 1D|UNU|+ |V||U'|. This in turn is at most 4 + k|U| = A(n — 4), with
equality iff U’ = U and G is a complete bipartite graph with classes VU {v} and
u. d

Theorem 6. If G is a graph on n vertices with maximum degree A containing no Cpj
and 2k*<A<n —k — 1, then e(G)<A(n— A), with equality if and only if G is a
complete bipartite graph.

Proof. If A =n— k — 1 this is just Lemma 5. For 4<n — k — 1 pick a vertex x not
adjacent to some vertex v of maximal degree. Then 2k <A(G —x) =A< (n— 1) —
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k — 1. Hence by induction on n, e(G —x)<A(n—1—4). Hence e¢(G)<A(n— 4)
with equality iff G — x is a complete bipartite graph with class sizes 4 andn — 1 — 4
and x is a vertex of degree 4. We cannot have xye E(G) for a vertex y in the class of
size n — 1 — 4, as then y would have degree 4+ 11in G, so G =Ky,—4. O

Although the condition 4 >n/2 is not stated in the result above, it is only this case
that is interesting, as otherwise the trivial bound e(G)<n4/2 is better. When
n/2<A<n—k—1 and n is large enough Theorem 6 shows that f(n, 4; Cory1) =
A(n — A). Returning to the perhaps more natural formulation of a lower bound on n,
rather than A4 as in Theorem 6, for k>1 let ny(k) be the minimal integer such that
f(n,4; Coy1) = A(n — A4) whenever n=no(k) and n/2<A<n—k—1. Then by
Theorem 6 we have ng(k)<4k>. In the other direction we shall now show that
no(k)=(1+o(1))k2.

For any r>1 and k>1 consider the graph G formed by taking r copies of Ky
joined at a single vertex v and deleting k& edges from v arbitrarily. Then G has
n= 2k — 1)r+ 1 vertices, contains no Cyy; and has maximum degree A4(G) =
n—k—1.Since G —vis (2k — 2)-regular, ¢(G) = 4 + (k — 1)(n — 1). Now 4 + (k —
D(n—1)—A(n—A4)=k*>—n+1, so if n<k® then G is an example showing that
no(k) > n. In particular taking r= | k/2 | shows that ng(k)>(1+ o(1))k* when
k— 0.
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