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Paul Balister,a Béla Bollobás,a,b,1 Oliver Riordan,b and
Richard H. Schelpa

aDepartment of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA
bTrinity College, Cambridge CB2 1TQ, UK

Received 4 January 2002

Abstract

Let us write f ðn;D;C2kþ1Þ for the maximal number of edges in a graph of order n and

maximum degree D that contains no cycles of length 2k þ 1: For n
2
pDpn � k � 1 and n

sufficiently large we show that f ðn;D;C2kþ1Þ ¼ Dðn � DÞ; with the unique extremal graph a

complete bipartite graph.

r 2002 Published by Elsevier Science (USA).

There are numerous well-known results asserting that every graph on n vertices
with sufficiently many edges, or satisfying some natural degree conditions, contains
long cycles of certain lengths (see, for example, [5–7,13] or [2, Chapter 3]). More
recently, there are many similar results giving stronger conclusions under (sometimes
fairly specific) stronger assumptions (see, for example, [1,4,9–12]). Here we return to
the basic extremal question, imposing only the at first sight rather weak additional
condition that the graph has at least one vertex of large degree.
To be more specific, let G be a graph on n vertices, and let k be a fixed positive

integer. It is well known that if G has more than n2=4 edges and 2k þ 1pI1
2
ðn þ 3Þm;

then G contains a C2kþ1; a cycle of length 2k þ 1 (see, for example, [2, p. 150]). Since
KIn=2m;Jn=2n contains no odd cycles, the maximal number of edges in a graph
containing no C2kþ1 (the extremal number for C2kþ1) is In2=4m for sufficiently large
n: The main aim of this paper is to prove a considerable strengthening of this result:
we shall show that this extremal number for C2kþ1 becomes significantly smaller if we
specify that the maximum degree D of G takes a value somewhat larger than n=2: Let
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f ðn;D;C2kþ1Þ denote the maximal number of edges in a graph G of order n and
maximum degree D containing no C2kþ1: We shall show that if n is sufficiently large
and n=2pDpn � k � 1; then f ðn;D;C2kþ1Þ ¼ Dðn � DÞ with the unique extremal
graph a complete bipartite graph with classes of size D and n � D: Smaller values of D
are less interesting: when Don=2 and n is even the trivial upper bound of nD=2 is
attained by any D-regular balanced bipartite graph. It is surprising that simply
requiring one vertex in G of large degree can so affect the extremal number for odd
cycles, lowering it from In2=4m to Dðn � DÞ: As expected, even when DðGÞ is large
the family of bipartite graphs provides the extremal examples.
Although our main result is to calculate f ðn;D;C2kþ1Þ when n=2pDpn � k � 1;

we first give a result for the case DXn � k; for which we need a few lemmas. As in [3],
throughout the paper we use the following standard notation: for a graph G we write
VðGÞ for its vertex set, EðGÞ for its edge set, jGj for the number of vertices, eðGÞ for
the number of edges, DðGÞ for the maximum degree, and dðGÞ for the minimum
degree. For a vertex v of G we write GðvÞ for the set of neighbors of v in G; and for
UCVðGÞ; GUðvÞ for GðvÞ-U : We write dGðvÞ for the degree of v in G; or just dðvÞ
when it is clear which graph is meant, and G � v for the graph formed from G by
deleting v: Finally, for VCVðGÞ we write G½V � for the subgraph of G induced by V :

Lemma 1. Let G be a graph on n vertices that contains no C2kþ1; and let v be a vertex

of G with dGðvÞ ¼ DðGÞ ¼ n � 1� m: Let P be a maximal path in G � v with

endvertices x and y: Suppose that 2k > m þ 1; and that P has cX2k vertices. If none of

the neighbors of x lie closer to y on P than any neighbor of y then

minfdGðxÞ; dGðyÞgpm except in the special case when dGðxÞ ¼ dGðyÞ ¼ 3; m ¼ 2;
c ¼ 2k þ 1; and both endvertices of P are adjacent to v:

Proof. Suppose for a contradiction that dGðxÞ; dGðyÞXm þ 1: Let us write P as
x ¼ v1yvc ¼ y: Then by assumption there is a c such that if vi is a neighbor of x then
ipc; and if vj is a neighbor of y then jXc: Let vi be a neighbor of x and vj a neighbor
of y: If vvi0 and vvj0 are edges of G with i0oipjoj0 then the cycle vvi0yv1viyvjvcyvj0

lies in G: Since this cannot be of length 2k þ 1 we have

c� ði � i0 � 1Þ � ðj0 � j � 1Þa2k:

Now cX2k by assumption. If we had cX2k þ m then, as v has only m non-
neighbors, for some 1pipm þ 1 both vertices in fvi; viþ2k�1g would be joined to v;
forming a C2kþ1 in G: (The pairs are disjoint as 2k > m þ 1:) Thus 2kpcp2k þ
m � 1; and the value f ¼ cþ 2� 2k that the sum ði � i0Þ þ ðj0 � jÞ cannot take
satisfies

2pfpm þ 1: ð1Þ

Let r be the number of non-neighbors vt of v with toc; and s the number with
t > c: Let the neighbors of x on P be vi1 ;y; vid with 2 ¼ i1o?oid : Note that from
the maximality of P we have d ¼ dG�vðxÞ; so dXdGðxÞ � 1Xm: Suppose for a
contradiction that r ¼ 0: Since there are only m non-neighbors of v and at least m þ 1
neighbors of y; we have vhy; vhþ1vAEðGÞ for some h: (If yveEðGÞ then y has at least
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m þ 1 neighbors on P and the statement follows from the pigeonhole principle. If
yvAEðGÞ then the statement holds with h ¼ c� 1:) Also, cXd þ 1Xm þ 1 > c�
2k þ 1; so as v has no non-neighbors before vc we have vvc�2kþ1AEðGÞ: Thus the
ð2k þ 1Þ-cycle vvc�2kþ1yvhyyvhþ1 lies in G: Hence we may assume rX1: Similarly
sX1; so rpm � som and dXr þ 1:
If 1pqoid�r then one of the r þ 1 vertices vit�q; t ¼ d � r;y; d must be joined to

v: (Recall that v has r non-neighbors on P to the left of vc:) Hence we may choose
i � i0 ¼ q in the argument of the first paragraph. Moreover, at most one value of q

with id�rpqoid�rþ1 does not occur as a difference i � i0; since if i � i0aq for any i

and i0 then the non-neighbors of v on the left of vc must be precisely vid�rþ1�q;y; vid�q;
and this can only happen for at most one value of q:
Hence we may choose i and i0 so that i � i0 can take any value from 1 to id�r �

1Xd � r; and if d � r þ 1 is not possible then either d � r þ 2 is or id�rþ1 ¼
d � r þ 2: In particular if xv ¼ v1vAEðGÞ then either d � r þ 1 or d � r þ 2 is a
possible difference i � i0: Now dGðxÞ ¼ d if xveEðGÞ and dGðxÞ ¼ d þ 1 if xvAEðGÞ:
Thus i � i0 can take any value from 1 to dGðxÞ � r; or any value from 1 to dGðxÞ �
r þ 1 except dGðxÞ � r: Note that dGðxÞXm þ 1 by assumption while rpm � spm �
1; so dGðxÞ � rX2; and 1 is certainly a possible value of i � i0:
Arguing as above we can choose j0 � j to be any value from 1 to dGðyÞ � sX2 or

any value from 1 to dGðyÞ � s þ 1 except dGðyÞ � s: Now S ¼ dGðxÞ þ dGðyÞ � r �
sX2ðm þ 1Þ � m ¼ m þ 2: From the values taken by i � i0 and j0 � j we see that their
sum can always take any value from 2 to S � 2Xm: As this sum cannot take the
value f ; from (1) we see that S ¼ m þ 2; f ¼ m þ 1; and ði � i0Þ þ ðj0 � jÞ cannot take
the value S � 1: From the last fact we must be in the case where i � i0 cannot take
the value dGðxÞ � r; nor j0 � j the value dGðyÞ � s: Also, as ðdGðxÞ � r � 2Þ þ
ðdGðyÞ � s þ 1Þ ¼ S � 1; we must have dGðxÞ � r ¼ 2; and, similarly, dGðyÞ � s ¼ 2:
But now

mXr þ s ¼ dGðxÞ þ dGðyÞ � 4X2m � 2;

so mp2; and as mXr þ s; m ¼ 2: Equality in the equation above together with
dGðxÞ; dGðyÞXm þ 1 now gives dGðxÞ ¼ dGðyÞ ¼ 3; whence c ¼ 2k þ f � 2 ¼ 2k þ 1:
Finally, from the values not taken by i � i0 and j0 � j we have xv; yvAEðGÞ;
completing the proof. &

Note that in the proof above we did not use the fact that the length of the cycle is
odd, so the lemma applies with k a half-integer. We have stated it for C2kþ1 for
consistency with our notation in the rest of the paper.
The following is a variant of results of Ore and Pósa. We write H½P� for H½VðPÞ�:

Lemma 2. Let P ¼ v1v2yvc be a maximal path in a graph H; and let m ¼
dðv1Þ þ dðvcÞ: If there are indices 1piojpc with vj a neighbor of v1 and vi a neighbor

of vc then H½P� contains a cycle of length at least minfc;mg: In particular, if in

addition v1vh; vhvceEðGÞ for iohoj then either H½P� is Hamiltonian, or the cycle

C ¼ v1v2yvivcvc�1yvj has length at least m:
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Proof. Let us imitate the standard proof of Pósa’s theorem, as in [3, p. 106]. Suppose
that H½P� is not Hamiltonian. We may assume that every vertex vh with iohoj is not
a neighbor of either v1 or vc: Since P is maximal, the neighbors of v1 and vc are
vertices of P: Furthermore, there is no index h; 1phpc� 1; such that v1vhþ1 and
vhvc are both edges since otherwise v1v2yvhvcvc�1yvhþ1 is a Hamilton cycle in H½P�:
Consequently, the sets Gðv1Þ ¼ fvh: v1vhAEðGÞg and GþðvcÞ ¼ fvhþ1: vhvcAEðGÞg
are disjoint subsets of fv2; v3;y; viþ1; vj; vjþ1;y; vcg: Hence mpc� ðj � iÞ þ 1:
Since G contains the cycle v1v2yvivcvc�1yvj of length c� ðj � iÞ þ 1; the proof is
complete. &

We shall also need an old result of Erd +os and Gallai [8] proved using a method due
to Dirac [7]: if G is a graph on n vertices whose longest path has c edges, then
eðGÞpcn=2: (See, for example, [3].) The following lemma is a generalization of this
result which, although not needed here, is simple enough that it seems likely to find
applications elsewhere. For a vertex v of a graph G let us write cGðvÞ for the (edge)
length of a longest path in G starting at v:

Lemma 3. For every graph G we have

eðGÞp1

2

X
vAVðGÞ

cGðvÞ; ð2Þ

with equality if and only if every component of G is a complete graph.

Proof. We use induction on jGj:We assume that G is connected, as otherwise we are
done by induction.
Let P ¼ v1yvcþ1 be a longest path in G; so cGðv1Þ ¼ cGðvcþ1Þ ¼ c: We may

assume that cX2 as otherwise G is just a single edge or a single vertex and the result
holds. Suppose first that G contains a cycle C of length cþ 1: As G is connected and
any edge from a vertex on C to a vertex not on C would create a path longer than P;
the cycle C is a Hamilton cycle, i.e., G has only cþ 1 vertices. Also, cGðvÞ ¼ c for all
vAVðGÞ; so

eðGÞp
cþ 1

2

 !
¼ 1

2

X
vAVðGÞ

cGðvÞ;

with equality if and only if G is complete, as required.
From now on we assume as we may that G does not contain a cycle of

length cþ 1: Again we imitate the standard proof of Pósa’s Theorem.
For i ¼ 1; 2;y; c; v1viþ1 and vivcþ1 cannot both be edges of G: As P is a longest
path we have Gðv1Þ,Gðvcþ1ÞCP: Defining Gþðvcþ1Þ as in the proof of Lemma 2, we
thus have

Gðv1Þ-Gþðvcþ1Þ ¼ |

P. Balister et al. / Journal of Combinatorial Theory, Series B 87 (2003) 366–373 369



and

Gðv1Þ,Gþðvcþ1ÞCfv2;y; vcþ1g:

Hence dðv1Þ þ dðvcþ1Þ ¼ jGðv1Þj þ jGþðvcþ1Þjpc:
Without loss of generality, we may assume that dðv1Þpc=2: Let G0 ¼ G � v1: Then

by induction

eðG0Þp1

2

X
vAVðG0Þ

cG0 ðvÞp1

2

X
vAVðG0Þ

cGðvÞ ¼
1

2

X
vAVðGÞ

cGðvÞ �
c

2
; ð3Þ

as cGðv1Þ ¼ c: Since

eðGÞ ¼ eðG0Þ þ dðv1ÞpeðG0Þ þ c=2; ð4Þ

this proves (2). To complete the proof suppose that equality holds in (2). Then we
must have equality throughout (3) and (4). As G is connected and all the neighbors
of v1 lie on P; the graph G0 is connected, and by induction G0 is complete. Thus G

consists of the vertex v1 joined by c=2 edges to the complete graph G0: Since the
longest path starting at v1 has length c; G0 is Kc: However, the other endvertex w of
the path of length c starting at v1 has cGðwÞ ¼ c > cG0 ðwÞ ¼ c� 1; so the second
inequality in (3) is strict, a contradiction. &

Theorem 4. Let G be a graph with n vertices containing no C2kþ1 with maximum

degree D ¼ n � 1� m; mok: Then eðGÞpDþ ðk � 1Þðn � 1Þ:

Proof. We use induction on n: Since eðGÞpDþ n�1
2

� �
¼ Dþ ðn

2
� 1Þðn � 1Þ we may

assume that kon
2
: Hence kon

2
on � kpD: If xAVðGÞ has degree dGðxÞpk � 1 then

removing x gives a graph with no C2kþ1 and maximum degree D0; D� 1pD0pD:
Thus D0 ¼ ðn � 1Þ � 1� m0; m0ok; and by induction this graph has at most D0 þ
ðk � 1Þðn � 2Þ edges. Adding back x gives eðGÞpD0 þ ðk � 1Þðn � 2Þ þ dGðxÞpDþ
ðk � 1Þðn � 1Þ; as required. Similarly, if dGðxÞ ¼ k and x is adjacent to all vertices of
maximal degree, then D0oD and eðGÞpD0 þ ðk � 1Þðn � 2Þ þ dGðxÞpDþ ðk �
1Þðn � 1Þ: Hence we may assume that dðGÞXk; and that if x is a vertex of degree
k then there is some vertex of degree D that is not adjacent to x:
Select a vertex v of maximum degree and a (maximal) path P in G � v so that the

length of P is maximized (over all pairs ðv;PÞ). Label the vertices of P as x ¼
v1v2yvc�1vc ¼ y: If P has at most 2k � 1 vertices then all paths in G � v have (edge)
length at most 2k � 2; so by the Erd +os–Gallai result (or by Lemma 3) we have
eðG � vÞpð2k � 2Þðn � 1Þ=2 and the result follows. We may thus assume that cX2k:
We now consider two cases:
(i) Suppose first that none of the neighbors of x lie closer to y on P than any

neighbor of y: Since dðGÞXk > m; Lemma 1 implies that m ¼ 2; dGðxÞ ¼ dGðyÞ ¼ 3;
k ¼ 3; c ¼ 2k þ 1 ¼ 7; and v1v; vcvAEðGÞ: As v has only two non-neighbors and G

contains no C7; the non-neighbors of v are v2 and v6: Note that v1 has no neighbors
other than v off P: The only possible neighbors on P are v2 and v4 (otherwise G½P,v�
contains a C7), so v1 is joined to v4: Similarly v7 is joined to v4:
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None of the vertices outside P,fvg can have degree D since otherwise the path vP

would miss a vertex of degree D; contradicting the choice of P: Since G contains no
C7; the vertices v1; v2; v3; v5; v6; v7 are each non-adjacent to at least three vertices (for
example v2 is non-adjacent to v5; v6; v7; and v). Hence the only vertex on P that can
have degree D is v4: Thus x is a vertex of degree 3 ¼ k adjacent to all the degree D
vertices, contradicting the assumption above.
(ii) Now suppose there is a neighbor of x that is closer on P to y than some

neighbor of y: By Lemma 2, G � v contains a cycle of length at least r ¼
minfc; dG�vðxÞ þ dG�vðyÞg: However, G � v cannot contain a cycle C of length at
least 2k—otherwise, as v has fewer than k non-neighbors, v is joined to more than
half the vertices of C; and C,fvg contains a C2kþ1: As cX2k it follows that
dG�vðxÞ þ dG�vðyÞ ¼ ro2k: We can therefore assume without loss of generality that
dG�vðxÞpk � 1: Since dðGÞXk; we have dG�vðxÞ ¼ k � 1; xvAEðGÞ; and dG�vðyÞ ¼ k

or k � 1; so r ¼ 2k � 1 or 2k � 2: We claim also that y cannot have degree D; as
dG�vðyÞpk we have dGðyÞpk þ 1: Since kon

2
oD; it follows that if dGðyÞ ¼ D then

yvAEðGÞ and n ¼ cþ 1 ¼ 2k þ 1; whence vP is a C2kþ1; giving a contradiction. We
shall use this fact later: for any pair ðv;PÞ as at the start of the proof, neither
endvertex of P can have degree D: In particular, if vh has degree D then xvhþ1;
vh�1yeEðGÞ; otherwise we can find a pair ðv;P0Þ where P0 ends in the vertex vh of
degree D:
Our aim now is to show that contrary to our assumption there is a vertex z (one of

x and y) of degree k adjacent to all vertices of degree D in G: Note that all vertices
wav of degree D lie on P; as otherwise vP is a path longer than P avoiding the vertex
w of maximal degree. Let us also note that GPðxÞaGPðyÞ: (One of many ways to
check this is as follows: suppose that GPðxÞ ¼ GPðyÞ: Then dG�vðyÞ ¼ dG�vðxÞ ¼
k � 1; so as dðGÞXk we have yvAEðGÞ; and vP is a cycle. Thus ca2k; so c > 2k: But
vc�1 is a neighbor of y and thus by assumption of x; so G � v contains a cycle
xv2yvc�1 of length c� 1X2k: As noted above this gives a contradiction.)
Let i; j be a pair with ioj; xvj ; viyAEðGÞ and xvh; vhyeEðGÞ for iohoj: By

Lemma 2, the cycle C ¼ v1yvivcyvj has length jCjX2k � 2:
Suppose first that there is a vertex w ¼ vh with degree D where iohoj: As noted

above, xvhþ1; vh�1yeEðGÞ; so i þ 1ohoj � 1: Now if vh is adjacent to vrþ1 for any
neighbor vr of x or y with rXj we can find a cycle in G½P� of length at least jCj þ
2X2k; giving a contradiction as before. Similarly vh cannot be adjacent to vr�1 for
any neighbor vr of x or y with rpi: Since xyeEðGÞ and GPðxÞaGPðyÞ; there are at
least dG�vðxÞ þ 1 ¼ k non-neighbors of vh on P: But vh has degree D and thus only
mok non-neighbors in the whole of G:
As dGðxÞ ¼ k; by assumption there is a vertex w of degree D not adjacent to x: As

wav from the above we have w ¼ vh with hpi or hXj: Since vh has degree D; as
shown above vh�1yeEðGÞ; so vheGðxÞ,GþðyÞ: From the proof of Lemma 2, GðxÞ
and GþðyÞ are disjoint subsets of S ¼ fv2; v3;y; viþ1; vj; vjþ1;yvcg: As jSj ¼
jCjp2k � 1pdG�vðxÞ þ dG�vðyÞ þ 1; we see that vh is the unique element of S

missing from GðxÞ,GþðyÞ; and that jSj ¼ jCj ¼ 2k � 1 ¼ dG�vðxÞ þ dG�vðyÞ þ 1; so
dG�vðyÞ ¼ k � 1: Thus yvAEðGÞ: Now we can assume there is a vertex w0 ¼ vh0 of
degree D that is not adjacent to y: By a similar argument to the above,
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vh0þ1eGðxÞ,GþðyÞ: As there is only one missing vertex, h0 þ 1 ¼ h: But then
vh�1yv1vvcyvhþ1 is a path of length c avoiding a vertex vh of maximal degree but
ending in a vertex vh�1 ¼ vh0 of maximal degree, giving a contradiction. &

Lemma 5. Suppose that kX1 and nX2k2: If G is a graph with n vertices and maximum

degree D ¼ n � k � 1 containing no C2kþ1 then eðGÞpDðn � DÞ; with equality if and

only if G is a complete bipartite graph.

Proof. Note first that the case k ¼ 1 is trivial, as then G is in fact a subgraph of
K2;n�2: We assume from now on that kX2: Pick a vertex v of degree D and let
V ¼ fv1;y; vkg be the vertices that are not adjacent to v: If we remove one of the
vertices vi then by Theorem 4 we have eðG � viÞpDþ ðk � 1Þðn � 2Þ: Thus if

dGðviÞoDðn � DÞ � ðDþ ðk � 1Þðn � 2ÞÞ ¼ n � k2 þ k � 2

then we are done. Hence we can assume that dGðviÞXn � k2 þ k � 2 for all i ¼
1;y; k: Let U ¼ VðGÞWðV,fvgÞ ¼ GðvÞ:
Suppose V contains an edge v1v2; say. Construct a path starting with v1v2 and then

alternating between V and U through all the remaining vi as follows: if we have a
path v1v2u2v3yvi; ipk � 1; then pick uiAðGUðviÞ-GUðviþ1ÞÞWfu2;yui�1g and
extend the path by uiviþ1: (We are treating the labels ui and vi differently—the vi are
fixed vertices, only the ui are being chosen.) Finally, pick ukAGUðvkÞWfu2;y; uk�1g
and u1AGUðv1ÞWfu2;y; ukg to give a cycle vu1v1v2u2yvkuk of length 2k þ 1:
This will be possible if jGUðviÞ-GUðviþ1ÞjXk � 2 and jGUðviÞjXk for each i:

However jGUðviÞjXn � k2 � 1Xk and jGUðviÞ-GUðviþ1ÞjXn � 2k2 þ k � 1Xk � 2:
Hence we can suppose that V,fvg is an independent set.
Now suppose there is an edge u0u1; where u0; u1AU and u1AGðv1Þ: Recalling that

now GUðviÞ ¼ GðviÞ; construct a ð2k þ 1Þ-cycle vu0u1v1u2v2yvk�1uk by choosing
uiAðGðvi�1Þ-GðviÞÞWfu0; u1;y; ui�1g for i ¼ 2;y; k � 1 and ukAGðvk�1ÞW
fu0;y; uk�1g:
This succeeds provided jGðviÞ-Gðviþ1ÞjXk and jGðviÞjXk þ 1: However

jGðviÞjXjGðviÞ-Gðviþ1ÞjXn � 2k2 þ 3k � 3Xk þ 1 for kX2: Hence setting U 0 ¼Sk
i¼1 GðviÞDU we can now suppose that U 0 is an independent set and there are no

edges between U 0 and UWU 0: Every vertex of UWU 0 is joined to v; so there are no
paths of length 2k � 1 in G½UWU 0�: Hence by the Erd +os–Gallai result (or by Lemma
3) we have eðG½UWU 0�Þpðk � 1ÞjUWU 0j: The total number of edges in G is at most
Dþ ðk � 1ÞjUWU 0j þ jV jjU 0j: This in turn is at most Dþ kjU j ¼ Dðn � DÞ; with
equality iff U 0 ¼ U and G is a complete bipartite graph with classes V,fvg and
U : &

Theorem 6. If G is a graph on n vertices with maximum degree D containing no C2kþ1
and 2k2pDpn � k � 1; then eðGÞpDðn � DÞ; with equality if and only if G is a

complete bipartite graph.

Proof. If D ¼ n � k � 1 this is just Lemma 5. For Don � k � 1 pick a vertex x not
adjacent to some vertex v of maximal degree. Then 2k2pDðG � xÞ ¼ Dpðn � 1Þ �
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k � 1: Hence by induction on n; eðG � xÞpDðn � 1� DÞ: Hence eðGÞpDðn � DÞ
with equality iff G � x is a complete bipartite graph with class sizes D and n � 1� D
and x is a vertex of degree D: We cannot have xyAEðGÞ for a vertex y in the class of
size n � 1� D; as then y would have degree Dþ 1 in G; so G ¼ KD;n�D: &

Although the condition DXn=2 is not stated in the result above, it is only this case
that is interesting, as otherwise the trivial bound eðGÞpnD=2 is better. When
n=2pDpn � k � 1 and n is large enough Theorem 6 shows that f ðn;D;C2kþ1Þ ¼
Dðn � DÞ: Returning to the perhaps more natural formulation of a lower bound on n;
rather than D as in Theorem 6, for kX1 let n0ðkÞ be the minimal integer such that
f ðn;D;C2kþ1Þ ¼ Dðn � DÞ whenever nXn0ðkÞ and n=2pDpn � k � 1: Then by
Theorem 6 we have n0ðkÞp4k2: In the other direction we shall now show that
n0ðkÞXð1þ oð1ÞÞk2:
For any rX1 and kX1 consider the graph G formed by taking r copies of K2k

joined at a single vertex v and deleting k edges from v arbitrarily. Then G has
n ¼ ð2k � 1Þr þ 1 vertices, contains no C2kþ1 and has maximum degree DðGÞ ¼
n � k � 1: Since G � v is ð2k � 2Þ-regular, eðGÞ ¼ Dþ ðk � 1Þðn � 1Þ: Now Dþ ðk �
1Þðn � 1Þ � Dðn � DÞ ¼ k2 � n þ 1; so if npk2 then G is an example showing that
n0ðkÞ > n: In particular taking r ¼ Ik=2m shows that n0ðkÞXð1þ oð1ÞÞk2 when
k-N:
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