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Abstract

We aim here at obtaining an explicit expression of the solution of the Dirichlet and Poisson
problems on graphs. To this end, we consider the Laplacian of a graph as a kernel on the vertex
set,V, in the framework of Potential Theory. Then, the properties of such a kernel allow us to obtain
for each proper vertex subset the equilibrium measure that solves the soecpliéorium problem
As a consequence, the Green function of the Dirichlet problems, the generalized Green function of
the Poisson problems and the solution of the condenser principle are obtained solely in terms of
equilibrium measures for suitable subsets. In particular, we get a formula for the effective resistance
between any pair of vertices of a graph. Specifically,= %(vx(y) + vy (X)), wherevz denotes the
equilibrium measure for the s& — {z}. In any case, the equilibrium measure for a proper subset
is accomplished by solving a Linear Programming Problem.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well known that a flow of electric current in a network has a random walk as
probabilistic counterpart. This follows from the fact that both can be seen as the solution
of a suitable Dirichlet problem. When the network is finite and each edge has resistance
1, the network is modelled by a finite graph, and then the above-mentioned problem is
certainly a Dirichlet problem with respect to the discrete Laplacian of the grg@h [

A classical Dirichlet problem is a boundary value problem with respect to the Laplacian
operator. Its solution could be expressed as a Dirichlet potential with respect to the Green
kernel R, 11]. The main difficulty in this framework is to obtain an explicit expression of
such a solution, since the Green kernel is a power series.
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In the context of Graph Theory, the discrete Laplacian is no more than a matrix. Hence,
it can be considered as a kernel on the vertex set and therefore it is possible to build a
Potential Theory with respect to such a kernel. This point of view will take validity as the
Laplacian kernel enjoys properties that lead to obtaining explicit expressions of the solution
of the Dirichlet problems. With hindsight, we will show that the Laplacian kernel verifies
fundamental principles that allow solving the so-cabeghilibrium problenfor any proper
vertex subset.

By solving equilibrium problems for suitable subsets, we will build the Green function
associated with each Dirichlet problem and hence its solution. This technique is also valid
to obtain the solution, when it exists, of the Poisson problem, that is, the “degenerate”
Dirichlet problem in which the boundary is empty. We also prove that the solution of the
Dirichlet problem with piecewise constant boundary condition 0—1 solves the so-called
condenser principleThe particular case where the boundary consists of two vertices allows
us to get a formula for the effective resistance between any pair of vertices of a graph.

To summarize, the results obtained here for the Dirichlet and Poisson problems mainly
hinge on the knowledge of the equilibrium measures that are solutions of appropriate
equilibrium problems. Let us point out that the properties of the Laplacian, considered
as a kernel in the framework of the Potential Theory, allow us to accomplish the effective
computation of such measures by solving Linear Programming Problems.

Throughout the papef; = (V, E) denotes a (simple and finite) connected graph, with
vertex setV, |V| = n, and edge seE, |E| = m. The distance fronx to y is denoted
by d(x,y) andd = d(I") = max{d(x,y) : x,y € V(I")} stands for theliameterof I".

The set of vertices adjacent xois denoted by"(x) and its cardinality is thelegreeof x,
8(x) = |I'(x)|. Given F c V, we denote byF° its complement iV, and we consider
the subset$(F) = {x € F®: (x,y) € E forsomey € F} and ExtF) = F%\§(F).
In addition, forx € F, we call exterior degree of x with respect to the number
9~ (X) = |I"'(xX) N FC.

ThelLaplacian matrixof I" is then x n-matrix £ = £(I") indexed by the vertices df,
whose entrie€yxy are given byCxy = —1if X is adjacent tg, in shortx ~ y, Lyxx = 8(X)
andLyy = 0 otherwise. The matriX is symmetric and positive semidefinite. Finall,
will denote the(|F| x |F|)-matrix associated with the restriction 6fto the set-.

2. Theequilibrium problem

In this section we present some results from Potential Theory that have been published
by the authors inJ]. However we include them for completeness and because they will
be used later. With this aim, we consider as underlying space the vertexafed graph
I' and its Laplacian matrixC as a kernel oV, We take advantage of this new point of
view because the Laplacian of a graph, considered as a kernel, enjoys general properties
which can easily be applied to solve the Dirichlet and Poisson problems.

The setsM (V) and M™ (V) of measures and positive measures\brre identified
with R" and the positive cone d&", respectively. So, ift € M(V), then itssupportand
its massare given byS(u) = {x € V : u(x) # O} and|jull = > oy I(X)]. For each
vertexx € V, ex stands for the Dirac measure arwhereas the measupe, .\, ex Will
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be denoted by. In addition, we denote by11(V) the set of positive measures Wrwith
unitmassandif c V, M(F) = {u € M(V) : S(n) C F}.
If u e M(V) thepotential of u is given by

L) =Y () = pu(y)) = 800p0) = Y u(y),
y~X y~X

and theenergy ofyu is the value

L) = (Lp, ) =Y () — p(y))?,
(x,y)eE
where(-, -) denotes the standard inner producRih
Let us start by showing that the Laplacian kernel verifies the energy and maximum

principles, which will be the key to solving thegjuilibrium problenfor a proper subset
of V:

Findv e M*(F) such thatCv(x) = 1if x € F.

In fact, we will prove that this problem has a unique solutién e M*(F) called the
equilibrium measure for F

Proposition 2.1. The Laplacian kernel verifies the energy principle, i.s strictly
positive definite o € M(V) : >,y n(x) = 0}.

Proof. Itis clear thatl (u) > O for all ©x € M(V). Moreover,| () = 0 iff u(X) = u(y)
when(x, y) € E. Hence,l (u) = 0iff u = al, a € R, sincel" is connected. O

Let us point out that the energy principle is well known (see for instasiyeNloreover,
it is equivalent to the fact thatis strictly convex onML(V), that is,| (u — v) > 0 for all
w, v e MYV) with 1 # v. To see this equivalence, it suffices to observe that

:M e M(V): Z,L(x) = o} ={t(n—v):t>0andyu,ve MY(V)}.

xeV

Proposition 2.2. The Laplacian kernel verifies the maximum principle, i.e.

maxLu(X) = max Lu(x)  forall uw e MT (V).
xeV xeS(u)

Proof. Givenp € MT(V) andF = S(u), itis verified thatCu(x) = — dyxi(y) =0

if x € §(F) andLu(x) = 0if x € Ext(F). Therefore it suffices to prove that there exists
a vertexx € F such thatCu(x) > 0. Letx € F such thatu(x) = maxer u(y). Then
Lu(x)>0. O

Next we tackle the solution of the equilibrium problem. With this aim, we first prove
the existence of measures whose potentials are constants.

Proposition 2.3. For each F c V there exists a unique € M1(F) whose potential is
constanton F.
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Proof. Suppose that € ML(F) is such thatCo(x) = a,a € R, for allx € F. Then
(Lo, 0) = aand henca = | (0). In particular this implies thad > 0.

Now, we prove that € M*(F) verifies Lo (x) = | (o) for all x € F if and only if
Lo (X) > 1 (o) for all x € F. Clearly, it is enough to prove the only if condition. Suppose
thatLo(X) — | (o) > O forallx € F, then

0< ) (Lo() —1(©@)o(X) = (Lo,0) ~ | (0) =0,
xeS(o)

which implies thatCo (X) = 1 (o) for all X € S(o). ThereforeLo(x) < (o) for all
X € V, because verifies the maximum principle and hendgx (x) = | (o) forall x € F.
On the other handfo (xX) > | (o) for all x € F is equivalent to/Lo, u — o) > 0 for
all © € M(F). But, this last condition is the Euler inequality relative to the minimization
problem

min 1 (w).
neML(F)
So, ad is convex onM1(F), o verifies the Euler inequality iff attains its minimum value
on MY(F) ato. Furthermore, the extremal measure is unique sinisestrictly convex on
MZ(F). Finally, there exists an extremal measure becaut€F) is compact and is
continuous. O

Corollary 2.4. For each F a proper subset of V there exists a unique equilibrium measure
for F, vF. Moreover, $vF) = F.

Proof. If o is the measure given iRroposition 2.3then| (o) > 0 and it suffices to
considen’ =1 (o) 1o.

On the other hand, suppose that there existe F such thatv(x) = 0. Then,
LvF (x) < 0 contradicting thatvF (x) = 1. O

We now prove a monotonicity property for the equilibrium measures. Roughly speaking,
the mass of the equilibrium measure at each vertex decreases when the vertex subset
decreases.

Proposition 2.5. If H ¢ F are proper subsets of V, theft > v,

Proof. Let us denotex = v™ — vM. It suffices to prove that ik € F is such that

w(X) = mingeg n(2), thenu(x) > 0. Note thatCu > 0in F and hence

0= Lu(x) = 800(X) = Y (@) <8~ ()u(X).

If 37(x) > 0, thenu(x) > 0.If3~(x) =0, then0< ), (1 (X) — u(2)) < 0. Therefore
w2 = u(x) for all z ~ x. Repeating this reasoning for a vertex~ x and using the
fact thatI" is connected ané is a proper set, there would exist a vertexe F such that
ww) = pu(x)ando—(w) > 0. O

The proof of the above proposition shows in fact, thatis a monotone matrix, that is,
for eachu € M(F) suchthatC . > O itis verified thatw > O (see F]).
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We will finish this section by giving two alternative ways to obtain the equilibrium
measure folF, or equivalently the unique measureof the Proposition 2.3The first one
is based on the energy minimization. Specifically, for e&clo can be obtained as the
solution of a Convex Quadratic Programming Problem, namely

min s > LOREOuY) tn=0,) pux) =1

X,yeF

The second method enables us to obtain the @ait (¢)) as the solution of a Linear
Programming Problem. To see this, we first prove thadd also the unique solution of a
suitable extremal problem relative to the potential.

Proposition 2.6. For each FC V, the problem

min  maxLu(X)
uweML(F) xeF

has as sole solution the unique meastire M*(F) whose potential is constant on F.

Proof. From the proof ofProposition 2.3L0 (X) = | (o) for x € F. Then,

| () =maxLo(X) > min  maxLu(X).
xeF ueMl(F) xeF
Conversely, lett € M1(F) and considea = maxcg L (X). Then,| (n) = (Lu, n) < a
which implies thatl (o) < a and,a fortiori, | (o) < minﬂeMl(F) maxxer Lu(x). O

Adding a new variable that majorizes the potential values, the above min—max problem
can be re-written as a minimization problem in the following way:

min[a:MZO,ZM(X)zl,ﬁpufal}.

Clearly, this is a Linear Programming Problem whose unique solution is the couple
(o, 1(0)).

3. Dirichlet and Poisson problems

In this section we will tackle the discrete version of two classical problems, namely
Dirichlet and Poisson problems, in the context of graphs. For this, we bear in mind the
natural identification between functions and measures on a finite space. Specifically, if
C(V) denotes the set of all real functions ¥ thenC(V) = M (V). This identification
will be used fruitfully in the rest of our work.

Given F a non-empty subset &f, f € C(F) andg € C(F°), the Dirichlet problem
(see B, p. 220]) consists in finding € C(V) such that

Lu=f inF,
u=g in FC.

1)
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The special cas& = V, which was considered ird], will be called here thdoisson
problemfor V (see [L(]). Therefore, the Poisson problem consists in finding C(V)
such that

Lu=f inV. )

Our main goal is to obtain explicitly the solutions of both problems. To this end, we show
that the so-called Green functions can be obtained by solving ¢Rferl orn equilibrium
problems at most. Therefore, the Green functions could be obtained by solving Linear
Programming Problems.

Let us start solving the Dirichlet problem)( Our methodology follows the standard
steps both in the discrete and in the continuous settings@s&® b reference in the graph
context).

Observe that this problem has at most a solution, since the homogeneous problem has
as unique solutiom = 0. As usual, the first step in the resolution @j {s to transform
it into a semi-homogeneous problem. Specificallys a solution of 1) iff v = u — @
satisfies

Lv=h inF,

v=0  inFC (3)
whereh = f — £g and§ € C(V) is given byg(x) = g(x) if x € F¢andg(x) = 0 if
x e F.

AfunctionG : V x F — R is called theGreen functiorfor F if Gy(-) = G(-,y) is
the solution of the semi-homogeneous Dirichlet problentfer ¢y, wheny € F, that is,

£Gy == 8y |n F,
Gy=0 in FC.
Clearly, the Green function fdf is unique and the solution o8] is given by
v) = Y G, Y)h(y).
yeF

Next, we use the results of the preceding section to obtain an explicit formula of the
Green function.

Proposition 3.1. Let F be a proper subset of V and its equilibrium measure. If for
each ye F, "xf denotes the equilibrium measure for+{y}, the Green function for F is
given by

vF(y)
G(X,y) = —=—>—=F (x) —vf (%)).
V= FI= gl Y
i _ F F — 0in EC
Proof. Lety € F and consideiGy = e vy Then,Gy = 0 in F°¢,
y

sinceS(vF), S(vf) C F. Moreover, asLvF = 1in F andLvj = 1in F — {y} then
LOF =) = (1 - Lv] (y))ey in F. On the other hand,

g Il = (£vF,vf) = wF, Lvf) = 1T —vF ()@= Lvf ().
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ThereforeLGy = ¢y in F, and henc&(x, y), x € V, y € F must be the Green function
forF. O

It is well known that the Green function of the Laplacian has important properties.
In particular,G is symmetric onF x F becauseC is symmetric. Furthermore, from the
monotonicity property given iProposition 2.5nd from the obtained expression far it
follows that the Green function is non-negative.

Now let us consider the Poisson problem. To begin with, let us recall that the Poisson
problem has solution iff verifies(f, 1) = 0;i.e.forafixedz e V, f = Zyev f(y)(ey—
£z). Moreover, ifu is a solution of 2), thenu + al, a € R is also a solution (seef]).
Consequently, the equilibrium problem férhas no solution.

For a fixed vertex € V a functionG? : V x V — R will be calledz-Green function
if for eachy € V, G§, is a solution of the following Poisson problem,

LGf,:ey—eZ inV

and moreoveG§(z) = 0. Clearly, thez-Green function is unique and

ue) =y G*(x, y) f(y),

yeVv

is the unique solution ot that verifiesu(z) = 0.
By using once again the equilibrium measure technigues, we get the expression of the
z-Green function.

Proposition 3.2. If for each ye V, vy denotes the equilibrium measure for-V{y}, the
z-Green function is given by

1
G%(x,y) = £ (0200 £ vy (2) = vy ().

Proof. Clearly,G?*(z, y) = 0 for ally € V. Moreover, for eacly € V, (Lvy, 1) = 0, that
n(Sy - 82). O

To end this section we show that the verification of a well known result in electrostatics,
namely the condenser principle, is equivalent to the resolution of certain Dirichlet problem.
It is said that thecondenser principlés satisfied if foranyfg, H ¢ V, ENH =
@, E, H # @, there existal € C(V) verifying:

Lu(x) =0, O<ux)<1l ifxe(EUH)S,
Lu(x) >0, ux)=1 if X € E, 4)
Lux) <0, ux)=0 if x e H.

Proposition3.3. LetE,HcC V, ENH =@, E, H # @. Then, u is the solution ¢#) iff
u is the solution of the following Dirichlet problem

Lux)=0 if x e (EUH)C
ux) =1 if x € E, (5)
ux)=0 if x € H.
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Moreover,
XJUF F

{ _

V %

u= Z U{X}UF(X) ’
xXeE

where F= (E U H)®.

Proof. Firstly, we show that the above function is the solution®)f Note thatS(u)
F U E. Thereforeu = 0 in H. BesidesS(vF) = F andS(v*YF) = {x} U F, and hence
from Corollary 2.4 u = 1in E. Finally, Cu = 0 in F, sinceCv*VF = 1and£vF =1
in F.

To conclude it suffices to prove thatifis the solution of §), thenu is the solution
of (4). FromProposition 2.5vYF > ,F and hencer > 0. On the other hand, if € H,
Lu(y) = — Zz~y u(z) < 0. Considerp = 1 — u, thenv is the solution of

Ly(X)=0 ifxeF,
v(X) =0 if X € E,
v(X) =1 if x e H.

Therefore, reasoning as abowe> 0, Lv(y) < 0if y € E anda fortiori u < 1 and
Lu(y) >0ifye E. O

If we allow thatH = ¢, then the condenser principle is known in the literatur¢éhas
equilibrium principle for E relative to the Laplacian operatsee P]) and it must not
be mistaken for the equilibrium with respect to the Laplacian kernel we have used here.
Note that unlike the continuous case, the equilibrium problenmEavith respect to the
Laplacian operator is not outstanding, since its solution is obviaustyl.

4. Applications

There exists a variety of Dirichlet and Poisson problems whose translation to the context
of networks and random walks has a wide range of applications. In this section we deal with
problem §) in the special cask& = {x} andH = {y}. So, we considef” as an electrical
network in which each edge has unit resistance. For concepts and results not given here we
refer the reader to Doyle and Sndd] pnd Biggs B, 4].

One of the main problems in Network Theory is to calculate the effective resistance
between any pair of vertices. ¥, y € V, the effective resistancbetweenx andy is
defined asxy = u(x) — u(y), whereu e C(V) is any solution of the Poisson problem
Lu = ex — ey. Note thatryy does not depend on the chosen solution Byd= ryx.
Clearly, from the definition of the/-Green function we can taka(z) = GY(z, x) and
hencerxy = GY(x, x). Finally, fromProposition 3.2ve get

1
Fxy = ﬁ(vx(y) + vy(X)). (6)

Using this expression we can also get formulae fordfiective conductandsetween

x andy, which is defined agyxy = rx—yl, or theescape probabilitglenoted byPesd(X, ).
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This parameter is the probability that a walk starting aéachesy before it returns to.
So, as knownPesdX, y) = yxy/8(X) and hence

n
80O (x(y) + vy (x))”

Some known results about the effective resistances can be proved by Gsif@n
instance, the following one is originally due to Fostélr [

DITEED 35 BIVEES B) BUNIY R PR

(x.y)eE X y~x X yx

PesdX, y) =

Although the effective resistance and the above concepts have been expressed here in
terms of the solution of a Poisson problem, they can also be obtained from the solution of
one of the Dirichlet problems raised if)( Namely,

,C'U:O inV—{X:y}
v(x) =1 (7)
v(y) =0.

To see that, leti be any solution of the Poisson problefu = ex — ey. Then,v =
yxy(U—u(y)) verifiesv(x) = 1 by definition ofyxy andLv = yxyLu = yxy(ex —ey) =0
inV —{Xx, y}, and hence is the solution of 7). On the other hand,(v) = )/Xzyl () = yxy,
sincel (u) = ryy. If we take againu = G} we get that

vy = ux + ux(y)
x(Y) + vy (x)
Alternatively, fromProposition 3.3v can be expressed by

Vy — Vxy
vy(X)

wherewvyy is the equilibrium measure forf — {x, y}.

In the context of random walks(z) is the probability that if the walk starts aft will
reachx before it reachegy.

Let us point out that to compute the effective resistance between any pair of vertices
it suffices to solven equilibrium problems and henaelLinear Programming Problems.
However, itis clear that the number of problems that we have to solve, could be drastically
reduced if we have additional information about the graph structure. The most striking case
appears whei’ is a distance-regular graph in which it suffices to solve a unique Linear
Programming Problem.

This kind of graph has been studied by Big@ &nd the authorsl]. Specifically,
we showed that in a distance-regular graph for each vertée equilibrium measurey
is distributed by distances. This means that there exist @1 < --- < qg such that
vx(y) = q; iff d(x,y) = i. Therefore, in a distance-regular graph for any pair of vertices
X, Y, the effective resistance and the escape probability between them are:

q _on .
m and PesdX, y) = G if d(x,y) =1,

rxy=2
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wherek is the degree of . In particular,qr = (n — 1)/k, since 1— n = Lvgx(X) =
—-> (@ = —ka. Hence, the effective resistance between adjacent vertices is
rxy = (n —1)/m, a well known result also due to Foster.

We must note that there exist non-distance-regular graphs verifying that the equilibrium
measuresy are distributed by distances. Therefore, the above results hold in such graphs.
For instance, this is the case of the “Buckyball” graph (&édr the definition of such a
graph).

Finally, we present the equilibrium measures and the effective resistances of some very
simple graphs for which the effective resistance is well known.

If I"is a cycleCy, then

d(x, y)(n —d(x, y)) _ d(x, y)(n —d(x, y)).

vx(y) = > and Ixy n
If I"is apathP, = {X1, ..., Xn}, then
b (X)) = 1 d(xXi, Xj)(d(Xi, Xn) + d(Xj, Xn) + 1) @f1 < i. < j <n
PP 2 1d i, xp) Ak, x) +d(xj,x) +1)  ifl<j<i<n

andrXin = d(Xi, Xj).
If I" is a complete graptKn, thenvy (y) = 1 andryy = 2/n.
If I"is a bipartite complete grapKp q, with partite setd/o andVy, then

n
. X’YEVO
d E X,y € Vo
n—1 ’
T XEV(),yEV]_ 2_1
vx(y) = n_1 and  ryy= xeVo,yeVi
E— XEV]_,yEV()
np — X,y € V1.
— X,y e Vi P
p
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