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Abstract

We aim here at obtaining an explicit expression of the solution of the Dirichlet and Poisson
problems on graphs. To this end, we consider the Laplacian of a graph as a kernel on the vertex
set,V , in the framework of Potential Theory. Then, the properties of such a kernel allow us to obtain
for each proper vertex subset the equilibrium measure that solves the so-calledequilibrium problem.
As a consequence, the Green function of the Dirichlet problems, the generalized Green function of
the Poisson problems and the solution of the condenser principle are obtained solely in terms of
equilibrium measures for suitable subsets. In particular, we get a formula for the effective resistance
between any pair of vertices of a graph. Specifically,rxy = 1

n (νx(y) + νy(x)), whereνz denotes the
equilibrium measure for the setV − {z}. In any case, the equilibrium measure for a proper subset
is accomplished by solving a Linear Programming Problem.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well known that a flow of electric current in a network has a random walk as
probabilistic counterpart. This follows from the fact that both can be seen as the solution
of a suitable Dirichlet problem. When the network is finite and each edge has resistance
1, the network is modelled by a finite graph, and then the above-mentioned problem is
certainly a Dirichlet problem with respect to the discrete Laplacian of the graph [4, 8].

A classical Dirichlet problem is a boundary value problem with respect to the Laplacian
operator. Its solution could be expressed as a Dirichlet potential with respect to the Green
kernel [2, 11]. The main difficulty in this framework is to obtain an explicit expression of
such a solution, since the Green kernel is a power series.
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In the context of Graph Theory, the discrete Laplacian is no more than a matrix. Hence,
it can be considered as a kernel on the vertex set and therefore it is possible to build a
Potential Theory with respect to such a kernel. This point of view will take validity as the
Laplacian kernel enjoys properties that lead to obtaining explicit expressions of the solution
of the Dirichlet problems. With hindsight, we will show that the Laplacian kernel verifies
fundamental principles that allow solving the so-calledequilibrium problemfor any proper
vertex subset.

By solving equilibrium problems for suitable subsets, we will build the Green function
associated with each Dirichlet problem and hence its solution. This technique is also valid
to obtain the solution, when it exists, of the Poisson problem, that is, the “degenerate”
Dirichlet problem in which the boundary is empty. We also prove that the solution of the
Dirichlet problem with piecewise constant boundary condition 0–1 solves the so-called
condenser principle. The particular case where the boundary consists of two vertices allows
us to get a formula for the effective resistance between any pair of vertices of a graph.

To summarize, the results obtained here for the Dirichlet and Poisson problems mainly
hinge on the knowledge of the equilibrium measures that are solutions of appropriate
equilibrium problems. Let us point out that the properties of the Laplacian, considered
as a kernel in the framework of the Potential Theory, allow us to accomplish the effective
computation of such measures by solving Linear Programming Problems.

Throughout the paper,Γ = (V, E) denotes a (simple and finite) connected graph, with
vertex setV , |V | = n, and edge setE, |E| = m. The distance fromx to y is denoted
by d(x, y) andd = d(Γ ) = max{d(x, y) : x, y ∈ V(Γ )} stands for thediameterof Γ .
The set of vertices adjacent tox is denoted byΓ (x) and its cardinality is thedegreeof x,
δ(x) = |Γ (x)|. Given F ⊂ V , we denote byFc its complement inV , and we consider
the subsetsδ(F) = {x ∈ Fc : (x, y) ∈ E for somey ∈ F} and Ext(F) = Fc\δ(F).
In addition, for x ∈ F , we call exterior degree of x with respect to Fthe number
∂−(x) = |Γ (x) ∩ Fc|.

TheLaplacian matrixof Γ is then × n-matrixL = L(Γ ) indexed by the vertices ofΓ ,
whose entriesLxy are given byLxy = −1 if x is adjacent toy, in shortx ∼ y,Lxx = δ(x)

andLxy = 0 otherwise. The matrixL is symmetric and positive semidefinite. Finally,LF

will denote the(|F | × |F |)-matrix associated with the restriction ofL to the setF .

2. The equilibrium problem

In this section we present some results from Potential Theory that have been published
by the authors in [1]. However we include them for completeness and because they will
be used later. With this aim, we consider as underlying space the vertex setV of a graph
Γ and its Laplacian matrixL as a kernel onV . We take advantage of this new point of
view because the Laplacian of a graph, considered as a kernel, enjoys general properties
which can easily be applied to solve the Dirichlet and Poisson problems.

The setsM(V) andM+(V) of measures and positive measures onV are identified
with R

n and the positive cone ofRn, respectively. So, ifµ ∈ M(V), then itssupportand
its massare given byS(µ) = {x ∈ V : µ(x) �= 0} and‖µ‖ = ∑

x∈V |µ(x)|. For each
vertexx ∈ V , εx stands for the Dirac measure onx whereas the measure

∑
x∈V εx will
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be denoted by1. In addition, we denote byM1(V) the set of positive measures onV with
unit mass and ifF ⊂ V , M(F) = {µ ∈ M(V) : S(µ) ⊂ F}.

If µ ∈ M(V) thepotential ofµ is given by

Lµ(x) =
∑
y∼x

(µ(x) − µ(y)) = δ(x)µ(x) −
∑
y∼x

µ(y),

and theenergy ofµ is the value

I (µ) = 〈Lµ,µ〉 =
∑

(x,y)∈E

(µ(x) − µ(y))2,

where〈·, ·〉 denotes the standard inner product inR
n.

Let us start by showing that the Laplacian kernel verifies the energy and maximum
principles, which will be the key to solving theequilibrium problemfor a proper subsetF
of V :

Findν ∈ M+(F) such thatLν(x) = 1 if x ∈ F.

In fact, we will prove that this problem has a unique solutionνF ∈ M+(F) called the
equilibrium measure for F.

Proposition 2.1. The Laplacian kernel verifies the energy principle, i.e.L is strictly
positive definite on{µ ∈ M(V) : ∑

x∈V µ(x) = 0}.
Proof. It is clear thatI (µ) ≥ 0 for all µ ∈ M(V). Moreover,I (µ) = 0 iff µ(x) = µ(y)

when(x, y) ∈ E. Hence,I (µ) = 0 iff µ = a1, a ∈ R, sinceΓ is connected. �

Let us point out that the energy principle is well known (see for instance [5]). Moreover,
it is equivalent to the fact thatI is strictly convex onM1(V), that is,I (µ − ν) > 0 for all
µ, ν ∈ M1(V) with µ �= ν. To see this equivalence, it suffices to observe that{

µ ∈ M(V) :
∑
x∈V

µ(x) = 0

}
= {t (µ − ν) : t ≥ 0 andµ, ν ∈ M1(V)}.

Proposition 2.2. The Laplacian kernel verifies the maximum principle, i.e.

max
x∈V

Lµ(x) = max
x∈S(µ)

Lµ(x) for all µ ∈ M+(V).

Proof. Givenµ ∈ M+(V) andF = S(µ), it is verified thatLµ(x) = − ∑
y∼x µ(y) ≤ 0

if x ∈ δ(F) andLµ(x) = 0 if x ∈ Ext(F). Therefore it suffices to prove that there exists
a vertexx ∈ F such thatLµ(x) ≥ 0. Let x ∈ F such thatµ(x) = maxy∈F µ(y). Then
Lµ(x) ≥ 0. �

Next we tackle the solution of the equilibrium problem. With this aim, we first prove
the existence of measures whose potentials are constants.

Proposition 2.3. For each F ⊂ V there exists a uniqueσ ∈ M1(F) whose potential is
constant on F.
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Proof. Suppose thatσ ∈ M1(F) is such thatLσ(x) = a, a ∈ R, for all x ∈ F . Then
〈Lσ, σ 〉 = a and hencea = I (σ ). In particular this implies thata ≥ 0.

Now, we prove thatσ ∈ M1(F) verifiesLσ(x) = I (σ ) for all x ∈ F if and only if
Lσ(x) ≥ I (σ ) for all x ∈ F . Clearly, it is enough to prove the only if condition. Suppose
thatLσ(x) − I (σ ) ≥ 0 for all x ∈ F , then

0 ≤
∑

x∈S(σ )

(Lσ(x) − I (σ ))σ (x) = 〈Lσ, σ 〉 − I (σ ) = 0,

which implies thatLσ(x) = I (σ ) for all x ∈ S(σ ). ThereforeLσ(x) ≤ I (σ ) for all
x ∈ V , becauseL verifies the maximum principle and hence,Lσ(x) = I (σ ) for all x ∈ F .

On the other hand,Lσ(x) ≥ I (σ ) for all x ∈ F is equivalent to〈Lσ,µ − σ 〉 ≥ 0 for
all µ ∈ M1(F). But, this last condition is the Euler inequality relative to the minimization
problem

min
µ∈M1(F)

I (µ).

So, asI is convex onM1(F), σ verifies the Euler inequality iffI attains its minimum value
onM1(F) atσ . Furthermore, the extremal measure is unique sinceI is strictly convex on
M1(F). Finally, there exists an extremal measure becauseM1(F) is compact andI is
continuous. �

Corollary 2.4. For each F a proper subset of V there exists a unique equilibrium measure
for F, νF . Moreover, S(νF ) = F.

Proof. If σ is the measure given inProposition 2.3, then I (σ ) > 0 and it suffices to
considerνF = I (σ )−1σ .

On the other hand, suppose that there existsx ∈ F such thatνF (x) = 0. Then,
LνF (x) ≤ 0 contradicting thatLνF (x) = 1. �

We now prove a monotonicity property for the equilibrium measures. Roughly speaking,
the mass of the equilibrium measure at each vertex decreases when the vertex subset
decreases.

Proposition 2.5. If H ⊂ F are proper subsets of V , thenνF ≥ νH .

Proof. Let us denoteµ = νF − νH . It suffices to prove that ifx ∈ F is such that
µ(x) = minz∈F µ(z), thenµ(x) ≥ 0. Note thatLµ ≥ 0 in F and hence

0 ≤ Lµ(x) = δ(x)µ(x) −
∑
z∼x
z∈F

µ(z) ≤ ∂−(x)µ(x).

If ∂−(x) > 0, thenµ(x) ≥ 0. If ∂−(x) = 0, then 0≤ ∑
z∼x(µ(x) − µ(z)) ≤ 0. Therefore

µ(z) = µ(x) for all z ∼ x. Repeating this reasoning for a vertexz ∼ x and using the
fact thatΓ is connected andF is a proper set, there would exist a vertexw ∈ F such that
µ(w) = µ(x) and∂−(w) > 0. �

The proof of the above proposition shows in fact, thatLF is a monotone matrix, that is,
for eachµ ∈ M(F) such thatLF µ ≥ 0 it is verified thatµ ≥ 0 (see [7]).
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We will finish this section by giving two alternative ways to obtain the equilibrium
measure forF , or equivalently the unique measureσ of theProposition 2.3. The first one
is based on the energy minimization. Specifically, for eachF , σ can be obtained as the
solution of a Convex Quadratic Programming Problem, namely

min




∑
x,y∈F

L(x, y)µ(x)µ(y) : µ ≥ 0,
∑

µ(x) = 1


 .

The second method enables us to obtain the pair(σ, I (σ )) as the solution of a Linear
Programming Problem. To see this, we first prove thatσ is also the unique solution of a
suitable extremal problem relative to the potential.

Proposition 2.6. For each F⊂ V , the problem

min
µ∈M1(F)

max
x∈F

Lµ(x)

has as sole solution the unique measureσ ∈ M1(F) whose potential is constant on F.

Proof. From the proof ofProposition 2.3, Lσ(x) = I (σ ) for x ∈ F . Then,

I (σ ) = max
x∈F

Lσ(x) ≥ min
µ∈M1(F)

max
x∈F

Lµ(x).

Conversely, letµ ∈ M1(F) and considera = maxx∈F Lµ(x). Then,I (µ) = 〈Lµ,µ〉 ≤ a
which implies thatI (σ ) ≤ a and,a fortiori, I (σ ) ≤ minµ∈M1(F) maxx∈F Lµ(x). �

Adding a new variable that majorizes the potential values, the above min–max problem
can be re-written as a minimization problem in the following way:

min
{
a : µ ≥ 0,

∑
µ(x) = 1,LFµ ≤ a1

}
.

Clearly, this is a Linear Programming Problem whose unique solution is the couple
(σ, I (σ )).

3. Dirichlet and Poisson problems

In this section we will tackle the discrete version of two classical problems, namely
Dirichlet and Poisson problems, in the context of graphs. For this, we bear in mind the
natural identification between functions and measures on a finite space. Specifically, if
C(V) denotes the set of all real functions onV , thenC(V) ≡ M(V). This identification
will be used fruitfully in the rest of our work.

Given F a non-empty subset ofV , f ∈ C(F) andg ∈ C(Fc), theDirichlet problem
(see [2, p. 220]) consists in findingu ∈ C(V) such that

Lu = f in F,

u = g in Fc.
(1)
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The special caseF = V , which was considered in [4], will be called here thePoisson
problemfor V (see [10]). Therefore, the Poisson problem consists in findingu ∈ C(V)

such that

Lu = f in V. (2)

Our main goal is to obtain explicitly the solutions of both problems. To this end, we show
that the so-called Green functions can be obtained by solving either|F |+1 orn equilibrium
problems at most. Therefore, the Green functions could be obtained by solving Linear
Programming Problems.

Let us start solving the Dirichlet problem (1). Our methodology follows the standard
steps both in the discrete and in the continuous settings (see [6] for a reference in the graph
context).

Observe that this problem has at most a solution, since the homogeneous problem has
as unique solutionu = 0. As usual, the first step in the resolution of (1) is to transform
it into a semi-homogeneous problem. Specifically,u is a solution of (1) iff v = u − ĝ
satisfies

Lv = h in F,

v = 0 in Fc,
(3)

whereh = f − Lĝ and ĝ ∈ C(V) is given byĝ(x) = g(x) if x ∈ Fc and ĝ(x) = 0 if
x ∈ F .

A function G : V × F R is called theGreen functionfor F if Gy(·) = G(·, y) is
the solution of the semi-homogeneous Dirichlet problem forh = εy, wheny ∈ F , that is,

LGy = εy in F,

Gy = 0 in Fc.

Clearly, the Green function forF is unique and the solution of (3) is given by

v(x) =
∑
y∈F

G(x, y)h(y).

Next, we use the results of the preceding section to obtain an explicit formula of the
Green function.

Proposition 3.1. Let F be a proper subset of V andνF its equilibrium measure. If for
each y∈ F, νF

y denotes the equilibrium measure for F− {y}, the Green function for F is
given by

G(x, y) = νF (y)

‖νF ‖ − ‖νF
y ‖ (νF (x) − νF

y (x)).

Proof. Let y ∈ F and considerGy = νF (y)

‖νF‖−‖νF
y ‖ (νF − νF

y ). Then, Gy = 0 in Fc,

sinceS(νF ), S(νF
y ) ⊂ F . Moreover, asLνF = 1 in F andLνF

y = 1 in F − {y} then

L(νF − νF
y ) = (1 − LνF

y (y))εy in F . On the other hand,

‖νF
y ‖ = 〈LνF , νF

y 〉 = 〈νF ,LνF
y 〉 = ‖νF‖ − νF (y)(1 − LνF

y (y)).
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ThereforeLGy = εy in F , and henceG(x, y), x ∈ V , y ∈ F must be the Green function
for F . �

It is well known that the Green function of the Laplacian has important properties.
In particular,G is symmetric onF × F becauseL is symmetric. Furthermore, from the
monotonicity property given inProposition 2.5and from the obtained expression forG, it
follows that the Green function is non-negative.

Now let us consider the Poisson problem. To begin with, let us recall that the Poisson
problem has solution ifff verifies〈 f, 1〉 = 0; i.e. for a fixedz ∈ V , f = ∑

y∈V f (y)(εy −
εz). Moreover, ifu is a solution of (2), thenu + a1, a ∈ R is also a solution (see [4]).
Consequently, the equilibrium problem forV has no solution.

For a fixed vertexz ∈ V a functionGz : V × V R will be calledz-Green function
if for eachy ∈ V , Gz

y is a solution of the following Poisson problem,

LGz
y = εy − εz in V

and moreoverGz
y(z) = 0. Clearly, thez-Green function is unique and

u(x) =
∑
y∈V

Gz(x, y) f (y),

is the unique solution of (2) that verifiesu(z) = 0.
By using once again the equilibrium measure techniques, we get the expression of the

z-Green function.

Proposition 3.2. If for each y∈ V , νy denotes the equilibrium measure for V− {y}, the
z-Green function is given by

Gz(x, y) = 1

n
(νz(x) + νy(z) − νy(x)).

Proof. Clearly,Gz(z, y) = 0 for all y ∈ V . Moreover, for eachy ∈ V , 〈Lνy, 1〉 = 0, that
is, n − 1+ Lνy(y) = 0. Hence,Lνy = 1 − nεy andL(νz + νy(z)1 − νy) = L(νz − νy) =
n(εy − εz). �

To end this section we show that the verification of a well known result in electrostatics,
namely the condenser principle, is equivalent to the resolution of certain Dirichlet problem.

It is said that thecondenser principleis satisfied if for anyE, H ⊂ V , E ∩ H =
∅, E, H �= ∅, there existsu ∈ C(V) verifying:

Lu(x) = 0, 0 ≤ u(x) ≤ 1 if x ∈ (E ∪ H )c,

Lu(x) ≥ 0, u(x) = 1 if x ∈ E,

Lu(x) ≤ 0, u(x) = 0 if x ∈ H.

(4)

Proposition 3.3. Let E, H ⊂ V , E ∩ H = ∅, E, H �= ∅. Then, u is the solution of(4) iff
u is the solution of the following Dirichlet problem

Lu(x) = 0 if x ∈ (E ∪ H )c,

u(x) = 1 if x ∈ E,

u(x) = 0 if x ∈ H.

(5)
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Moreover,

u =
∑
x∈E

ν{x}∪F − νF

ν{x}∪F (x)
,

where F= (E ∪ H )c.

Proof. Firstly, we show that the above function is the solution of (5). Note thatS(u) ⊂
F ∪ E. Thereforeu = 0 in H . Besides,S(νF ) = F andS(ν{x}∪F ) = {x} ∪ F , and hence
from Corollary 2.4, u = 1 in E. Finally,Lu = 0 in F , sinceLν{x}∪F = 1 andLνF = 1
in F .

To conclude it suffices to prove that ifu is the solution of (5), thenu is the solution
of (4). FromProposition 2.5, ν{x}∪F ≥ νF and henceu ≥ 0. On the other hand, ify ∈ H ,
Lu(y) = − ∑

z∼y u(z) ≤ 0. Consider,v = 1 − u, thenv is the solution of

Lv(x) = 0 if x ∈ F,

v(x) = 0 if x ∈ E,

v(x) = 1 if x ∈ H.

Therefore, reasoning as above,v ≥ 0, Lv(y) ≤ 0 if y ∈ E anda fortiori u ≤ 1 and
Lu(y) ≥ 0 if y ∈ E. �

If we allow that H = ∅, then the condenser principle is known in the literature asthe
equilibrium principle for E relative to the Laplacian operator(see [2]) and it must not
be mistaken for the equilibrium with respect to the Laplacian kernel we have used here.
Note that unlike the continuous case, the equilibrium problem forE with respect to the
Laplacian operator is not outstanding, since its solution is obviouslyu = 1.

4. Applications

There exists a variety of Dirichlet and Poisson problems whose translation to the context
of networks and random walks has a wide range of applications. In this section we deal with
problem (5) in the special caseE = {x} andH = {y}. So, we considerΓ as an electrical
network in which each edge has unit resistance. For concepts and results not given here we
refer the reader to Doyle and Snell [8] and Biggs [3, 4].

One of the main problems in Network Theory is to calculate the effective resistance
between any pair of vertices. Ifx, y ∈ V , the effective resistancebetweenx and y is
defined asrxy = u(x) − u(y), whereu ∈ C(V) is any solution of the Poisson problem
Lu = εx − εy. Note thatrxy does not depend on the chosen solution andrxy = r yx.
Clearly, from the definition of they-Green function we can takeu(z) = Gy(z, x) and
hencerxy = Gy(x, x). Finally, fromProposition 3.2we get

rxy = 1

n
(νx(y) + νy(x)). (6)

Using this expression we can also get formulae for theeffective conductancebetween
x andy, which is defined asγxy = r −1

xy , or theescape probabilitydenoted byPesc(x, y).
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This parameter is the probability that a walk starting atx reachesy before it returns tox.
So, as known,Pesc(x, y) = γxy/δ(x) and hence

Pesc(x, y) = n

δ(x)(νx(y) + νy(x))
.

Some known results about the effective resistances can be proved by using (6). For
instance, the following one is originally due to Foster [9]:∑

(x,y)∈E

rxy = 1

2

∑
x

∑
y∼x

rxy = 1

n

∑
x

∑
y∼x

νx(y) = −1

n

∑
x

Lνx(x) = n − 1.

Although the effective resistance and the above concepts have been expressed here in
terms of the solution of a Poisson problem, they can also be obtained from the solution of
one of the Dirichlet problems raised in (5). Namely,

Lv = 0 in V − {x, y}
v(x) = 1
v(y) = 0.

(7)

To see that, letu be any solution of the Poisson problemLu = εx − εy. Then,v =
γxy(u − u(y)) verifiesv(x) = 1 by definition ofγxy andLv = γxyLu = γxy(εx − εy) = 0
in V −{x, y}, and hencev is the solution of (7). On the other hand,I (v) = γ 2

xyI (u) = γxy,
sinceI (u) = rxy. If we take againu = Gy

x we get that

v = νy − νx + νx(y)

νx(y) + νy(x)
.

Alternatively, fromProposition 3.3, v can be expressed by

v = νy − νxy

νy(x)
,

whereνxy is the equilibrium measure forV − {x, y}.
In the context of random walks,v(z) is the probability that if the walk starts atz it will

reachx before it reachesy.
Let us point out that to compute the effective resistance between any pair of vertices

it suffices to solven equilibrium problems and hencen Linear Programming Problems.
However, it is clear that the number of problems that we have to solve, could be drastically
reduced if we have additional information about the graph structure. The most striking case
appears whenΓ is a distance-regular graph in which it suffices to solve a unique Linear
Programming Problem.

This kind of graph has been studied by Biggs [3] and the authors [1]. Specifically,
we showed that in a distance-regular graph for each vertexx the equilibrium measureνx

is distributed by distances. This means that there exist 0< q1 < · · · < qd such that
νx(y) = qi iff d(x, y) = i . Therefore, in a distance-regular graph for any pair of vertices
x, y, the effective resistance and the escape probability between them are:

rxy = 2
qi

n
and Pesc(x, y) = n

2kqi
if d(x, y) = i ,
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wherek is the degree ofΓ . In particular,q1 = (n − 1)/k, since 1− n = Lνx(x) =
− ∑

z∼x νx(z) = −kq1. Hence, the effective resistance between adjacent vertices is
rxy = (n − 1)/m, a well known result also due to Foster.

We must note that there exist non-distance-regular graphs verifying that the equilibrium
measuresνx are distributed by distances. Therefore, the above results hold in such graphs.
For instance, this is the case of the “Buckyball” graph (see [5] for the definition of such a
graph).

Finally, we present the equilibrium measures and the effective resistances of some very
simple graphs for which the effective resistance is well known.

If Γ is a cycle,Cn, then

νx(y) = d(x, y)(n − d(x, y))

2
and rxy = d(x, y)(n − d(x, y))

n
.

If Γ is a path,Pn = {x1, . . . , xn}, then

νxi (x j ) = 1
2

{
d(xi , x j )(d(xi , xn) + d(x j , xn) + 1) if 1 ≤ i < j ≤ n
d(xi , x j )(d(xi , x1) + d(x j , x1) + 1) if 1 ≤ j < i ≤ n

andrxi x j = d(xi , x j ).
If Γ is a complete graph,Kn, thenνx(y) = 1 andrxy = 2/n.
If Γ is a bipartite complete graph,K p,q, with partite setsV0 andV1, then

νx(y) =




n

q
x, y ∈ V0

n − 1

q
x ∈ V0, y ∈ V1

n − 1

p
x ∈ V1, y ∈ V0

n

p
x, y ∈ V1

and rxy =




2

q
x, y ∈ V0

n − 1

m
x ∈ V0, y ∈ V1

2

p
x, y ∈ V1.
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