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Abstract

We discovered a new and simple shifting technique. It makes it possible to prove results on
shadows like the Kruskal–Katona theorem without any additional arguments.

As another application we obtain the following new result. Fors, d, k ∈ N, 1 ≤ d ≤ s, d ≤ k

define the subclass of

(
N

k

)
(the k-subsets ofN) B(k, s, d) =

{
B ∈

(
N

k

)
: |B ∩ [1, s]| ≥ d

}
. Let

A ⊂ B(k, s, d) and|A| = m. Then the cardinality of the�-shadow ofA is minimal ifA consists of
the firstm elements ofB(k, s, d) in colexicographic order. A more general form of this result is given
as well. Other applications are to be expected. © 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

N denotes the set of positive integers and the set{1, . . . , n} is abbreviated as[n]. Given
k ∈ N andX ⊂ N we denote

2X = {F : F ⊂ X},
(

X
k

)
= {F ⊂ X : |F | = k}.

Recall the well-known exchange or shifting operationSi j which was introduced by
Erdős et al. [2]. For a familyB ⊂ 2[n] andB ∈ B set

Si j (B) =
{{i} ∪ (B � { j}), if i /∈ B, j ∈ B, {i} ∪ (B � { j}) /∈ B,

B, otherwise

Si j (B) = {Si j (B) : B ∈ B}.
Although the shifting operation was introduced in [2] to prove intersection theorems,

it turned out to be a powerful tool to obtain many other important results in extremal set
theory. An excellent survey on it is given by Frankl [3].

Later on we will distinguish between left shifting, ifi < j , and right shifting, ifi > j .
We say thatB is left shifted (right shifted) ifSi j (B) = B for all 1 ≤ i < j ≤ n (for all

1 ≤ j < i ).
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We also say thatB is left shifted with respect to an elementu ∈ [n] if Siu(B) = B for
all 1 ≤ i < u.

The following simple properties of the shifting operation are well known (see e.g. [3]).

Proposition. (i) |Si j (B)| = |B|

(ii) Any family B ⊂
([n]

k

)
can be brought to a left shifted (right shifted) family by

repeatedly applying left (right) shifts.

For any 1≤ � ≤ k the�-shadow of a familyA ⊂
(

X
k

)
is defined by

∂�(A) =
{

F ∈
(

X
�

)
: ∃A ∈ A : F ⊂ A

}
.

Define the colexicographic (colex) order for the elementsA, B ∈
(

N

k

)
as follows:

A ≺ B ⇔ max((A � B) ∪ (B � A)) ∈ B, where the operation “max” is taken in the
natural order onN.

We denote byL(k, m) the initial m members of

(
N

k

)
in the colex order.

The well-known Kruskal–Katona (KK) theorem was discovered in 1963 by Kruskal [5],
in 1966 by Katona [4], and in 1967 by Lindstr¨om and Zetterstr¨om [6].

Theorem KK (Kruskal–Katona).Let A ⊂
(

N

k

)
, |A| = m, then

|∂�(A)| ≥ |∂�(L(k, m))|.
Let us mention the following important property of the shifting operation (see [3]).

Lemma 1.1. Let B ⊂
([n]

k

)
, then ∂�(Si j (B)) ⊆ Si j (∂�(B)), i.e. |∂�(Si j (B))| ≤ |∂�(B)|.

There is an elegant proof of theorem KK due to Frankl [3] whereLemma 1.1, induction
(on m andk), and the cascade representation ofm are used. (For a short proof see also
Daykin [1].)

In this paper we introduce a new shifting operation which makes it possible to prove
results like theorem KK using only shifting and nothing in addition. In particular we prove

that any finite familyA ⊂
(

N

k

)
can be brought toL(k, |A|) (applying the new shifting)

with nonincreasing size of its shadow.

2. The main tool: new shifting

ForB ⊂
(

N

k

)
andu ∈ N define the families

Bu = {B ∈ B : u ∈ B}, Bū = B � Bu.
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We introduce now an operation which we call right–left shifting (RL-shifting). Given

a familyA ⊂
([n]

k

)
and integers 1≤ j ≤ i < u the RL-shift Si j |u (A) consists of two

parts:

P1. First we apply the right shiftSi j toAu .

P2. Next we apply iteratively left shiftsSru , r = 1, . . . , u−1, to the familySi j (Au)∪Aū .

More formally one can write

Si j |u (A) � Su−1u(. . . S2u(S1u(Si j (Au) ∪ Aū)) . . .).

The idea behind this operation is to get from familyA a family with fewer sets
containingu. Whereas in part P1 “place is made at the left” for replacements ofu, in
part P2 the left shifting ofu is actually done.

Clearly if u /∈ ⋃
A∈A A, thenAu = ∅ andSi j |u (A) = A. In this case theRL-shift Si j |u

leavesA unchanged. It is important that we includedRL-shifts with i = j . Here every
1 ≤ i < u Sii|u makes no changes on a consideredA in part P1. However, in part P2A
is transformed intoSu−1u(. . . S2u(S1u(A)) . . .), left shifted with respect tou. With such
operations we can obtain a left shifted family.

GivenA ⊂
([n]

k

)
andu ∈ ⋃

A∈A A let RLu(A) be the set of all families which can be

obtained fromA by iteratively applyingRL-shiftsSi j |u . Then we say thatA is RLu -stable
if for everyA′ ∈ RLu(A) we have|A′

u | = |Au | (equivalentlyA′̄
u = Aū).

We also say thatA is RL-stable ifA is RLu -stable for allu ∈ ⋃
A∈A A.

Lemma 2.1. Suppose a family A ⊂
([n]

k

)
with |A| = m is RL-stable, then A = L(k, m).

Proof. Note first thatA is left shifted, since in particular we have for all 1≤ r < u ≤ n
and any 1≤ i < u Sru(A) = Sii|u (A) = A.

Let A = {a1, . . . , ak} ∈ A, a1 < · · · < ak . Given elementat ∈ A with t < at observe
that theRLat -stability implies thatA contains the set{at − t, . . . , at − 1, at+1, . . . , ak}.
Hence by left shiftednessA contains all setsB = {b1, . . . , bk} ≺ A with bt < at ,
bt+1 = at+1, . . . , bk = ak . For at = t this is obvious since there is no suchB. Since

A is RLat -stable for allat , t = 1, . . . , k we infer thatA contains every setB ∈
([n]

k

)

which precedesA in the colex order. �

Lemma 2.2. Any family A ⊂
([n]

k

)
can be brought to an RL-stable family, i.e. to

L(k, |A|), by repeatedly applying RL-shifts.

Proof. Let A ⊂
(

N

k

)
be a finite family with|A| = m and letr(A) denote the maximal

element of
⋃

A∈AA. Also letA be already left shifted. We apply now anRL-shift Si j |r0

with r0 � r(A). Clearly for the resulting familyA′ = Si j |r0(A) with r1 � r(A′) we have
r0 − 1 ≤ r1 ≤ r0. We consider two cases.
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(i) |A′
r0

| < |Ar0|. In this case we apply left shifts toA′ reducing it to a left shifted
family.

(ii) |A′
r0

| = |Ar0| (correspondinglyr0 = r1 andAr̄0 = A′̄
r1

). By definition of theRL-
shift A′ is left shifted with respect to the elementr1. MoreoverA′̄

r1
is left shifted

sinceAr̄0 is left shifted.

Thus in both cases w.l.o.g. we may assume thatA′ is left shifted with respect tor1, and
A′̄

r1
is left shifted. However note thatA′ is not necessarily a left shifted family. Next we

apply anRL-shift Si j |r1(A′) for some 1≤ j < i < r1 transformingA′ to a new familyA′′
which is left shifted with respect to the biggest elementr2 � r(A′′) ≤ r1 andA′′̄

r2
is left

shifted, etc.
The described procedure cannot be continued indefinitely. After finitely manyRL-shifts

we will come to a familyA∗ with a biggest elementr such thatr cannot be decreased
anymore byRL-shifts. Since eachRL-shift Si j |r does not increase|A∗

r | (which is lower
bounded) we finally end up with anRLr -stable familyB. Note that this with the left

shiftedness ofBr̄ implies (as we observed in the proof ofLemma 2.1) thatBr̄ =
([r − 1]

k

)
.

Further we repeat the described procedure, applying nowRL-shifts Si j |r−1 and assuming
that B is left shifted. Note that sinceSi j |u(Br̄ ) = Br̄ for all 1 ≤ j ≤ i < u ≤ n
we may proceed only forBr applying RL-shifts Si j |u for u = max(

⋃
B∈Br

B � {r}).
Continuing this procedure we finally obtain anRL-stable familyF , or equivalently
F = L(k, |A|). �

3. Shadows and RL-shifting

In addition toLemma 1.1for shadows we have the following property of shifting.

Lemma 3.1. Let A ⊂
(

N

k

)
be left shifted with respect to element u, (i.e. Siu (A) = A for

all 1 ≤ i < u) then for any 1 ≤ j < i < u one has

|∂�(Si j (Au) ∪ Aū)| ≤ |∂�(A)|. (3.1)

Proof. We have

∂�(A) = ∂�(Au) ∪ ∂�(Aū). (3.2)

We can assume thatAu,Aū �= ∅, since ifAu = ∅ (3.1) is trivial and ifAū = ∅ we
applyLemma 1.1.

Let us denoteB = ∂�(Au). Then we can writeB = Bu ∪̇Bū(Bu ∩ Bū = ∅).
For a setA ∈ Au let 1 ≤ s < u be an element such thats /∈ A. SinceA is left shifted

with respect tou we haveA′ � ((A � {u}) ∪ {s}) ∈ Aū .
ThereforeA � {u} = A′

� {s} which implies that for any�-subset (�-shadow)E ⊂ A
with u /∈ E one hasE ∈ ∂�({A′

� {s}}) = ∂�({A � {u}}) ⊂ ∂�(Aū).
This implies thatBū ⊂ ∂�(Aū) and hence with (3.2) and the definition ofB

∂�(A) = Bu ∪̇ ∂�(Aū). (3.3)
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Consider now a right shiftSi j (Au) for some 1 ≤ j < i < u, and denoteD =
∂�(Si j (Au)).

We have

∂�(Si j (Au) ∪ Aū) = ∂�(Si j (Au)) ∪ ∂�(Aū) = D ∪ ∂�(Aū) = (Du ∪̇Dū) ∪ ∂�(Aū).

(3.4)

Suppose nowB ∈ Au so thatj ∈ B andi /∈ B. Then clearlyB ′ � ((B � {u}) ∪ {i}) ∈ Aū

andB ′
� { j} = Si j (B) � {u}. This implies that for any�-subsetF ⊂ Si j (B) with u /∈ F

we have

F ∈ ∂�({B ′
� { j}}) = ∂�({Si j (B) � {u}}) ⊂ ∂�(Aū).

ThusDū ⊂ ∂�(Aū) and with (3.4)

∂�(Si j (Au) ∪ Aū) = Du ∪̇ ∂�(Aū). (3.5)

Further by (3.3) |∂�(A)| = |Bu| + |∂�(Aū)|, and by (3.5) |∂�(Si j (Au) ∪ Aū)| = |Du | +
|∂�(Aū)|.

But |Du| ≤ |Bu| by Lemma 1.1, which completes the proof.�

ClearlyLemmas 1.1and3.1imply

Lemma 3.2. Suppose A ⊂
([n]

k

)
is left shifted with respect to element u, then for any

1 ≤ j < i < u one has

|∂�(Si j |u(A))| ≤ |∂�(A)|.

4. A proof of an improved Kruskal–Katona theorem

Theorem 4.1. Any family A ⊂
(

N

k

)
with |A| = m can be brought by RL-shifts (with

monotonically decreasing size of the �-shadow in each step) to the initial segment of size
m in the colex order.

Proof. To prove the theorem we just note that at each step of the procedure described in
the proof ofLemma 2.2we apply anRL-shift Si j |u to a family which is left shifted with
respect to the elementu. This withLemma 3.2gives the result. �

5. A new result

For s, d, k ∈ N, 1 ≤ d ≤ s, d ≤ k define the following subclass of

(
N

k

)
:

B(k, s, d) =
{

B ⊂
(

N

k

)
: |B ∩ [1, s]| ≥ d

}
.

Denote byLmB(k, s, d) the firstm elements ofB(k, s, d) in the colex order.
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Theorem 5.1. Let A ⊂ B(k, s, d) with |A| = m, then for � ≤ k

|∂�(A)| ≥ |∂�(LmB(k, s, d))|.
Proof. We may assume again thatA is left shifted. We want to show now that by applying
certain types ofRL-shiftsA can be brought to the initial segment ofB(k, s, d) in the colex
order.

Note first that if|A ∩ [1, s]| > d for all A ∈ A we can applyRL-shifts proceeding as
in the proof ofLemma 2.2. Thus suppose there exists anA ∈ A with |A ∩ [1, s]| = d. We
apply now onlyRL-shifts of type

RL1: Si j |u(A) for any 1≤ j ≤ i ≤ s andi , j < u ≤ r(r = r(A)),
RL2: Si j |u(A) for anys + 1 ≤ j ≤ i < u ≤ r . Note that the obtained families are still in

B(k, s, d).

Using the same arguments as in the proof ofLemma 2.2we infer thatA can be brought
to anRL-stable family with nonincreasing size of the shadow. Note that the stability here
is defined with respect toRL-shifts of typeRL1 or RL2. But now we can easily see that
A is nothing else but the firstm members ofB(k, s, d) in the colex order. This is clear
because theRL-stability with respect toRL1 andRL2 implies that if A ∈ A, B ≺ A and
B ∈ B(k, s, d) thenB ∈ A. �

One can prove a more general statement using the same approach.
Let N = [1, s1] ∪ [s1 + 1, s2] ∪ · · · ∪ [st−1 + 1, st ] ∪ {st + 1, . . . , }, d1 ≤ d2 ≤ · · · ≤

dt ≤ k, di ≤ si (i = 1, . . . , t).
Define

B =
{

B ∈
(

N

k

)
: |B ∩ [1, si ]| ≥ di , i = 1, . . . , t

}
.

Let alsoLmB be the firstm elements ofB in the colex order.

Theorem 5.2. Let A ⊂ B and |A| = m, then

|∂�(A)| ≥ |∂�(LmB)|.
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