www.sciencedirect.com

More about shifting techniques

R. Ahlswede, H. Aydinian, L.H. Khachatrian
Department of Mathematics, Bielefeld University, Bielefeld, Germany

Received 13 December 2001; received in revised form 20 February 2003; accepted 24 February 2003

Abstract

We discovered a new and simple shifting technique. It makes it possible to prove results on shadows like the Kruskal-Katona theorem without any additional arguments.

As another application we obtain the following new result. For $s, d, k \in \mathbb{N}, 1 \leq d \leq s, d \leq k$ define the subclass of $\binom{\mathbb{N}}{k}$ (the k-subsets of $\left.\mathbb{N}\right) \mathcal{B}(k, s, d)=\left\{B \in\binom{\mathbb{N}}{k}:|B \cap[1, s]| \geq d\right\}$. Let $\mathcal{A} \subset \mathcal{B}(k, s, d)$ and $|\mathcal{A}|=m$. Then the cardinality of the ℓ-shadow of \mathcal{A} is minimal if \mathcal{A} consists of the first m elements of $\mathcal{B}(k, s, d)$ in colexicographic order. A more general form of this result is given as well. Other applications are to be expected. © 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Shifting; Shadow; Kruskal-Katona theorem

1. Introduction

\mathbb{N} denotes the set of positive integers and the set $\{1, \ldots, n\}$ is abbreviated as [n]. Given $k \in \mathbb{N}$ and $X \subset \mathbb{N}$ we denote

$$
2^{X}=\{F: F \subset X\}, \quad\binom{X}{k}=\{F \subset X:|F|=k\} .
$$

Recall the well-known exchange or shifting operation $S_{i j}$ which was introduced by Erdős et al. [2]. For a family $\mathcal{B} \subset 2^{[n]}$ and $B \in \mathcal{B}$ set

$$
\begin{aligned}
& S_{i j}(B)= \begin{cases}\{i\} \cup(B \backslash\{j\}), & \text { if } i \notin B, j \in B,\{i\} \cup(B \backslash\{j\}) \notin \mathcal{B}, \\
B, & \text { otherwise }\end{cases} \\
& S_{i j}(\mathcal{B})=\left\{S_{i j}(B): B \in \mathcal{B}\right\} .
\end{aligned}
$$

Although the shifting operation was introduced in [2] to prove intersection theorems, it turned out to be a powerful tool to obtain many other important results in extremal set theory. An excellent survey on it is given by Frankl [3].

Later on we will distinguish between left shifting, if $i<j$, and right shifting, if $i>j$.
We say that \mathcal{B} is left shifted (right shifted) if $S_{i j}(\mathcal{B})=\mathcal{B}$ for all $1 \leq i<j \leq n$ (for all $1 \leq j<i$)

We also say that \mathcal{B} is left shifted with respect to an element $u \in[n]$ if $S_{i u}(\mathcal{B})=\mathcal{B}$ for all $1 \leq i<u$.

The following simple properties of the shifting operation are well known (see e.g. [3]).
Proposition. (i) $\left|S_{i j}(\mathcal{B})\right|=|\mathcal{B}|$
(ii) Any family $\mathcal{B} \subset\binom{[n]}{k}$ can be brought to a left shifted (right shifted) family by repeatedly applying left (right) shifts.

For any $1 \leq \ell \leq k$ the ℓ-shadow of a family $\mathcal{A} \subset\binom{X}{k}$ is defined by

$$
\partial_{\ell}(\mathcal{A})=\left\{F \in\binom{X}{\ell}: \exists A \in \mathcal{A}: F \subset A\right\}
$$

Define the colexicographic (colex) order for the elements $A, B \in\binom{\mathbb{N}}{k}$ as follows:
$A \prec B \Leftrightarrow \max ((A \backslash B) \cup(B \backslash A)) \in B$, where the operation "max" is taken in the natural order on \mathbb{N}.

We denote by $L(k, m)$ the initial m members of $\binom{\mathbb{N}}{k}$ in the colex order.
The well-known Kruskal-Katona (KK) theorem was discovered in 1963 by Kruskal [5], in 1966 by Katona [4], and in 1967 by Lindström and Zetterström [6].

Theorem KK (Kruskal-Katona). Let $\mathcal{A} \subset\binom{\mathbb{N}}{k},|\mathcal{A}|=m$, then

$$
\left|\partial_{\ell}(\mathcal{A})\right| \geq\left|\partial_{\ell}(L(k, m))\right| .
$$

Let us mention the following important property of the shifting operation (see [3]).
Lemma 1.1. Let $\mathcal{B} \subset\binom{[n]}{k}$, then $\partial_{\ell}\left(S_{i j}(\mathcal{B})\right) \subseteq S_{i j}\left(\partial_{\ell}(\mathcal{B})\right)$, i.e. $\left|\partial_{\ell}\left(S_{i j}(\mathcal{B})\right)\right| \leq\left|\partial_{\ell}(\mathcal{B})\right|$.
There is an elegant proof of theorem KK due to Frankl [3] where Lemma 1.1, induction (on m and k), and the cascade representation of m are used. (For a short proof see also Daykin [1].)

In this paper we introduce a new shifting operation which makes it possible to prove results like theorem KK using only shifting and nothing in addition. In particular we prove that any finite family $\mathcal{A} \subset\binom{\mathbb{N}}{k}$ can be brought to $L(k,|\mathcal{A}|)$ (applying the new shifting) with nonincreasing size of its shadow.

2. The main tool: new shifting

For $\mathcal{B} \subset\binom{\mathbb{N}}{k}$ and $u \in \mathbb{N}$ define the families

$$
\mathcal{B}_{u}=\{B \in \mathcal{B}: u \in B\}, \quad \mathcal{B}_{\bar{u}}=\mathcal{B} \backslash \mathcal{B}_{u}
$$

We introduce now an operation which we call right-left shifting ($R L$-shifting). Given a family $\mathcal{A} \subset\binom{[n]}{k}$ and integers $1 \leq j \leq i<u$ the $R L$-shift $S_{i j \mid u}(\mathcal{A})$ consists of two parts:

P1. First we apply the right shift $S_{i j}$ to \mathcal{A}_{u}.
P2. Next we apply iteratively left shifts $S_{r u}, r=1, \ldots, u-1$, to the family $S_{i j}\left(\mathcal{A}_{u}\right) \cup \mathcal{A}_{\bar{u}}$.
More formally one can write

$$
S_{i j \mid u}(\mathcal{A}) \triangleq S_{u-1 u}\left(\ldots S_{2 u}\left(S_{1 u}\left(S_{i j}\left(\mathcal{A}_{u}\right) \cup \mathcal{A}_{\bar{u}}\right)\right) \ldots\right)
$$

The idea behind this operation is to get from family \mathcal{A} a family with fewer sets containing u. Whereas in part P1 "place is made at the left" for replacements of u, in part P2 the left shifting of u is actually done.

Clearly if $u \notin \bigcup_{A \in \mathcal{A}} A$, then $\mathcal{A}_{u}=\varnothing$ and $S_{i j \mid u}(\mathcal{A})=\mathcal{A}$. In this case the $R L$-shift $S_{i j \mid u}$ leaves \mathcal{A} unchanged. It is important that we included $R L$-shifts with $i=j$. Here every $1 \leq i<u S_{i i \mid u}$ makes no changes on a considered \mathcal{A} in part P1. However, in part P2 \mathcal{A} is transformed into $S_{u-1 u}\left(\ldots S_{2 u}\left(S_{1 u}(\mathcal{A})\right) \ldots\right)$, left shifted with respect to u. With such operations we can obtain a left shifted family.

Given $\mathcal{A} \subset\binom{[n]}{k}$ and $u \in \bigcup_{A \in \mathcal{A}} A$ let $R L_{u}(\mathcal{A})$ be the set of all families which can be obtained from \mathcal{A} by iteratively applying $R L$-shifts $S_{i j \mid u}$. Then we say that \mathcal{A} is $R L_{u}$-stable if for every $\mathcal{A}^{\prime} \in R L_{u}(\mathcal{A})$ we have $\left|\mathcal{A}_{u}^{\prime}\right|=\left|\mathcal{A}_{u}\right|$ (equivalently $\mathcal{A}_{\bar{u}}^{\prime}=\mathcal{A}_{\bar{u}}$).

We also say that \mathcal{A} is $R L$-stable if \mathcal{A} is $R L_{u}$-stable for all $u \in \bigcup_{A \in \mathcal{A}} A$.
Lemma 2.1. Suppose a family $\mathcal{A} \subset\binom{[n]}{k}$ with $|\mathcal{A}|=m$ is $R L$-stable, then $\mathcal{A}=L(k, m)$.
Proof. Note first that \mathcal{A} is left shifted, since in particular we have for all $1 \leq r<u \leq n$ and any $1 \leq i<u S_{r u}(\mathcal{A})=S_{i i \mid u}(\mathcal{A})=\mathcal{A}$.

Let $A=\left\{a_{1}, \ldots, a_{k}\right\} \in \mathcal{A}, a_{1}<\cdots<a_{k}$. Given element $a_{t} \in A$ with $t<a_{t}$ observe that the $R L_{a_{t}}$-stability implies that \mathcal{A} contains the set $\left\{a_{t}-t, \ldots, a_{t}-1, a_{t+1}, \ldots, a_{k}\right\}$. Hence by left shiftedness \mathcal{A} contains all sets $B=\left\{b_{1}, \ldots, b_{k}\right\} \prec A$ with $b_{t}<a_{t}$, $b_{t+1}=a_{t+1}, \ldots, b_{k}=a_{k}$. For $a_{t}=t$ this is obvious since there is no such B. Since \mathcal{A} is $R L_{a_{t}}$-stable for all $a_{t}, t=1, \ldots, k$ we infer that \mathcal{A} contains every set $B \in\binom{[n]}{k}$ which precedes A in the colex order.
Lemma 2.2. Any family $\mathcal{A} \subset\binom{[n]}{k}$ can be brought to an $R L$-stable family, i.e. to $L(k,|\mathcal{A}|)$, by repeatedly applying $R L$-shifts.

Proof. Let $\mathcal{A} \subset\binom{\mathbb{N}}{k}$ be a finite family with $|\mathcal{A}|=m$ and let $r(\mathcal{A})$ denote the maximal element of $\bigcup_{A \in \mathcal{A}} \mathcal{A}$. Also let \mathcal{A} be already left shifted. We apply now an $R L$-shift $S_{i j \mid r_{0}}$ with $r_{0} \triangleq r(\mathcal{A})$. Clearly for the resulting family $\mathcal{A}^{\prime}=S_{i j \mid r_{0}}(\mathcal{A})$ with $r_{1} \triangleq r\left(\mathcal{A}^{\prime}\right)$ we have $r_{0}-1 \leq r_{1} \leq r_{0}$. We consider two cases.
(i) $\left|\mathcal{A}_{r_{0}}^{\prime}\right|<\left|\mathcal{A}_{r_{0}}\right|$. In this case we apply left shifts to \mathcal{A}^{\prime} reducing it to a left shifted family.
(ii) $\left|\mathcal{A}_{r_{0}}^{\prime}\right|=\left|\mathcal{A}_{r_{0}}\right|$ (correspondingly $r_{0}=r_{1}$ and $\mathcal{A}_{\bar{r}_{0}}=\mathcal{A}_{\bar{r}_{1}}^{\prime}$). By definition of the $R L$ shift \mathcal{A}^{\prime} is left shifted with respect to the element r_{1}. Moreover $\mathcal{A}_{\bar{r}_{1}}^{\prime}$ is left shifted since $\mathcal{A}_{\bar{r}_{0}}$ is left shifted.

Thus in both cases w.l.o.g. we may assume that \mathcal{A}^{\prime} is left shifted with respect to r_{1}, and $\mathcal{A}_{\bar{r}_{1}}^{\prime}$ is left shifted. However note that \mathcal{A}^{\prime} is not necessarily a left shifted family. Next we apply an $R L$-shift $S_{i j \mid r_{1}}\left(\mathcal{A}^{\prime}\right)$ for some $1 \leq j<i<r_{1}$ transforming \mathcal{A}^{\prime} to a new family $\mathcal{A}^{\prime \prime}$ which is left shifted with respect to the biggest element $r_{2} \triangleq r\left(\mathcal{A}^{\prime \prime}\right) \leq r_{1}$ and $\mathcal{A}_{\bar{r}_{2}}^{\prime \prime}$ is left shifted, etc.

The described procedure cannot be continued indefinitely. After finitely many $R L$-shifts we will come to a family \mathcal{A}^{*} with a biggest element r such that r cannot be decreased anymore by $R L$-shifts. Since each $R L$-shift $S_{i j \mid r}$ does not increase $\left|\mathcal{A}_{r}^{*}\right|$ (which is lower bounded) we finally end up with an $R L_{r}$-stable family \mathcal{B}. Note that this with the left
 Further we repeat the described procedure, applying now $R L$-shifts $S_{i j \mid r-1}$ and assuming that \mathcal{B} is left shifted. Note that since $S_{i j \mid u}\left(\mathcal{B}_{\bar{r}}\right)=\mathcal{B}_{\bar{r}}$ for all $1 \leq j \leq i<u \leq n$ we may proceed only for \mathcal{B}_{r} applying $R L$-shifts $S_{i j \mid u}$ for $u=\max \left(\bigcup_{B \in \mathcal{B}_{r}} B \backslash\{r\}\right)$. Continuing this procedure we finally obtain an $R L$-stable family \mathcal{F}, or equivalently $\mathcal{F}=L(k,|\mathcal{A}|)$.

3. Shadows and RL-shifting

In addition to Lemma 1.1 for shadows we have the following property of shifting.
Lemma 3.1. Let $\mathcal{A} \subset\binom{\mathbb{N}}{k}$ be left shifted with respect to element u, (i.e. $S_{i u}(\mathcal{A})=\mathcal{A}$ for all $1 \leq i<u$) then for any $1 \leq j<i<u$ one has

$$
\begin{equation*}
\left|\partial_{\ell}\left(S_{i j}\left(\mathcal{A}_{u}\right) \cup \mathcal{A}_{\bar{u}}\right)\right| \leq\left|\partial_{\ell}(\mathcal{A})\right| \tag{3.1}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\partial_{\ell}(\mathcal{A})=\partial_{\ell}\left(\mathcal{A}_{u}\right) \cup \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right) \tag{3.2}
\end{equation*}
$$

We can assume that $\mathcal{A}_{u}, \mathcal{A}_{\bar{u}} \neq \varnothing$, since if $\mathcal{A}_{u}=\varnothing$ (3.1) is trivial and if $\mathcal{A}_{\bar{u}}=\varnothing$ we apply Lemma 1.1.

Let us denote $\mathcal{B}=\partial_{\ell}\left(\mathcal{A}_{u}\right)$. Then we can write $\mathcal{B}=\mathcal{B}_{u} \dot{\cup} \mathcal{B}_{\bar{u}}\left(\mathcal{B}_{u} \cap \mathcal{B}_{\bar{u}}=\varnothing\right)$.
For a set $A \in \mathcal{A}_{u}$ let $1 \leq s<u$ be an element such that $s \notin A$. Since \mathcal{A} is left shifted with respect to u we have $A^{\prime} \triangleq((A \backslash\{u\}) \cup\{s\}) \in \mathcal{A}_{\bar{u}}$.

Therefore $A \backslash\{u\}=A^{\prime} \backslash\{s\}$ which implies that for any ℓ-subset (ℓ-shadow) $E \subset A$ with $u \notin E$ one has $E \in \partial_{\ell}\left(\left\{A^{\prime} \backslash\{s\}\right\}\right)=\partial_{\ell}(\{A \backslash\{u\}\}) \subset \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right)$.

This implies that $\mathcal{B}_{\bar{u}} \subset \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right)$ and hence with (3.2) and the definition of \mathcal{B}

$$
\begin{equation*}
\partial_{\ell}(\mathcal{A})=\mathcal{B}_{u} \dot{\cup} \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right) \tag{3.3}
\end{equation*}
$$

Consider now a right $\operatorname{shift} S_{i j}\left(\mathcal{A}_{u}\right)$ for some $1 \leq j<i<u$, and denote $\mathcal{D}=$ $\partial_{\ell}\left(S_{i j}\left(\mathcal{A}_{u}\right)\right)$.

We have

$$
\begin{equation*}
\partial_{\ell}\left(S_{i j}\left(\mathcal{A}_{u}\right) \cup \mathcal{A}_{\bar{u}}\right)=\partial_{\ell}\left(S_{i j}\left(\mathcal{A}_{u}\right)\right) \cup \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right)=\mathcal{D} \cup \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right)=\left(\mathcal{D}_{u} \cup \dot{\mathcal{D}_{\bar{u}}}\right) \cup \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right) . \tag{3.4}
\end{equation*}
$$

Suppose now $B \in \mathcal{A}_{u}$ so that $j \in B$ and $i \notin B$. Then clearly $B^{\prime} \triangleq((B \backslash\{u\}) \cup\{i\}) \in \mathcal{A}_{\bar{u}}$ and $B^{\prime} \backslash\{j\}=S_{i j}(B) \backslash\{u\}$. This implies that for any ℓ-subset $F \subset S_{i j}(B)$ with $u \notin F$ we have

$$
F \in \partial_{\ell}\left(\left\{B^{\prime} \backslash\{j\}\right\}\right)=\partial_{\ell}\left(\left\{S_{i j}(B) \backslash\{u\}\right\}\right) \subset \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right) .
$$

Thus $\mathcal{D}_{\bar{u}} \subset \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right)$ and with (3.4)

$$
\begin{equation*}
\partial_{\ell}\left(S_{i j}\left(\mathcal{A}_{u}\right) \cup \mathcal{A}_{\bar{u}}\right)=\mathcal{D}_{u} \dot{\cup} \partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right) . \tag{3.5}
\end{equation*}
$$

Further by (3.3) $\left|\partial_{\ell}(\mathcal{A})\right|=\left|\mathcal{B}_{u}\right|+\left|\partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right)\right|$, and by (3.5) $\left|\partial_{\ell}\left(S_{i j}\left(\mathcal{A}_{u}\right) \cup \mathcal{A}_{\bar{u}}\right)\right|=\left|\mathcal{D}_{u}\right|+$ $\left|\partial_{\ell}\left(\mathcal{A}_{\bar{u}}\right)\right|$.

But $\left|\mathcal{D}_{u}\right| \leq\left|\mathcal{B}_{u}\right|$ by Lemma 1.1, which completes the proof.
Clearly Lemmas 1.1 and 3.1 imply
Lemma 3.2. Suppose $\mathcal{A} \subset\binom{[n]}{k}$ is left shifted with respect to element u, then for any $1 \leq j<i<u$ one has

$$
\left|\partial_{\ell}\left(S_{i j \mid u}(\mathcal{A})\right)\right| \leq\left|\partial_{\ell}(\mathcal{A})\right| .
$$

4. A proof of an improved Kruskal-Katona theorem

Theorem 4.1. Any family $\mathcal{A} \subset\binom{\mathbb{N}}{k}$ with $|\mathcal{A}|=m$ can be brought by RL-shifts (with monotonically decreasing size of the ℓ-shadow in each step) to the initial segment of size m in the colex order.

Proof. To prove the theorem we just note that at each step of the procedure described in the proof of Lemma 2.2 we apply an $R L$-shift $S_{i j \mid u}$ to a family which is left shifted with respect to the element u. This with Lemma 3.2 gives the result.

5. A new result

For $s, d, k \in \mathbb{N}, 1 \leq d \leq s, d \leq k$ define the following subclass of $\binom{\mathbb{N}}{k}$:

$$
\mathcal{B}(k, s, d)=\left\{B \subset\binom{\mathbb{N}}{k}:|B \cap[1, s]| \geq d\right\}
$$

Denote by $L_{m} \mathcal{B}(k, s, d)$ the first m elements of $\mathcal{B}(k, s, d)$ in the colex order.

Theorem 5.1. Let $\mathcal{A} \subset \mathcal{B}(k, s, d)$ with $|\mathcal{A}|=m$, then for $\ell \leq k$

$$
\left|\partial_{\ell}(\mathcal{A})\right| \geq\left|\partial_{\ell}\left(L_{m} \mathcal{B}(k, s, d)\right)\right| .
$$

Proof. We may assume again that \mathcal{A} is left shifted. We want to show now that by applying certain types of $R L$-shifts \mathcal{A} can be brought to the initial segment of $\mathcal{B}(k, s, d)$ in the colex order.

Note first that if $|A \cap[1, s]|>d$ for all $A \in \mathcal{A}$ we can apply $R L$-shifts proceeding as in the proof of Lemma 2.2. Thus suppose there exists an $A \in \mathcal{A}$ with $|A \cap[1, s]|=d$. We apply now only $R L$-shifts of type

RL1: $S_{i j \mid u}(\mathcal{A})$ for any $1 \leq j \leq i \leq s$ and $i, j<u \leq r(r=r(\mathcal{A}))$,
RL2: $S_{i j \mid u}(\mathcal{A})$ for any $s+1 \leq j \leq i<u \leq r$. Note that the obtained families are still in $\mathcal{B}(k, s, d)$.

Using the same arguments as in the proof of Lemma 2.2 we infer that \mathcal{A} can be brought to an $R L$-stable family with nonincreasing size of the shadow. Note that the stability here is defined with respect to $R L$-shifts of type $R L 1$ or $R L 2$. But now we can easily see that \mathcal{A} is nothing else but the first m members of $\mathcal{B}(k, s, d)$ in the colex order. This is clear because the $R L$-stability with respect to $R L 1$ and $R L 2$ implies that if $A \in \mathcal{A}, B \prec A$ and $B \in \mathcal{B}(k, s, d)$ then $B \in \mathcal{A}$.

One can prove a more general statement using the same approach.
Let $\mathbb{N}=\left[1, s_{1}\right] \cup\left[s_{1}+1, s_{2}\right] \cup \cdots \cup\left[s_{t-1}+1, s_{t}\right] \cup\left\{s_{t}+1, \ldots,\right\}, d_{1} \leq d_{2} \leq \cdots \leq$ $d_{t} \leq k, d_{i} \leq s_{i}(i=1, \ldots, t)$.

Define

$$
\mathcal{B}=\left\{B \in\binom{\mathbb{N}}{k}:\left|B \cap\left[1, s_{i}\right]\right| \geq d_{i}, i=1, \ldots, t\right\} .
$$

Let also $L_{m} \mathcal{B}$ be the first m elements of \mathcal{B} in the colex order.
Theorem 5.2. Let $\mathcal{A} \subset \mathcal{B}$ and $|\mathcal{A}|=m$, then

$$
\left|\partial_{\ell}(\mathcal{A})\right| \geq\left|\partial_{\ell}\left(L_{m} \mathcal{B}\right)\right| .
$$

References

[1] D.E. Daykin, A simple proof of the Kruskal-Katona Theorem, J. Combin. Theory Ser. A 17 (1974) 252-253.
[2] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961) 313-320.
[3] P. Frank1, The shifting technique in extremal set theory, in: Surveys in Combinatorics, Lond. Math. Soc. Lect. Note Ser., vol. 123, 1987, pp. 81-110.
[4] G. Katona, A theorem of finite sets, in: Proceedings of Tihany Conference, 1966, Budapest, 1968, pp. 187207.
[5] J. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, University of California Press, Berkeley-Los Angeles, 1963, pp. 251-278.
[6] B.A. Lindström, M.O. Zetterström, A combinatorial problem in the K-adic number systems, Proc. Amer. Math. Soc. 18 (1967) 166-170.

