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Abstract

We discovered a new and simple shifting technique. It makes it possible to prove results on
shadows like the Kruskal-Katona theorem without any additional arguments.
As another application we obtain the following new result. §ad, k e N, 1 <d <s,d <k
define the subclass fil (the k-subsets ofN) B(k,s,d) = {B ¢ EI :BN[1,s]| >d;. Let
A C B(k, s, d) and|.A| = m. Then the cardinality of thé-shadow ofA is minimal if A consists of
the firstm elements oB3(k, s, d) in colexicographic order. A more general form of this result is given
as well. Other applications are to be expected. © 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

N denotes the set of positive integers and thg ket. ., n} is abbreviated af]. Given
k e NandX c N we denote

2X = {F:F c X}, (E):{FCX:|F|=k}.
Recall the well-known exchange or shifting operat@®p which was introduced by
Erdds et al. P]. For a familyB c 2"l andB € B set

S/ (B) = {ifuB~{jh, ifigB,jeB{i}jUBN{j}¢D5,
! ~ |8, otherwise

Sj(B) =({Sj(B): BeB).

Although the shifting operation was introduced Bj fo prove intersection theorems,
it turned out to be a powerful tool to obtain many other important results in extremal set
theory. An excellent survey on it is given by FranR].[

Later on we will distinguish between left shifting,iif< j, and right shifting, ifi > j.

We say thaf3 is left shifted (right shifted) if§; (8) = Bforall1 <i < j < n (forall
1<j<i).
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We also say thaB is left shifted with respect to an elemante [n] if Sy(B) = B for
alll<i <u.
The following simple properties of the shifting operation are well known (see3)g. [

Proposition. (i) |Sj(B)| = |B]

(i) Any family B C [E]) can be brought to a left shifted (right shifted) family by

repeatedly applying left (right) shifts.

For any 1< ¢ < k the ¢-shadow of a familyd c <>k() is defined by
X
813(A)={F6 (E):EIAEA: FCA}.

Define the colexicographic (colex) order for the elemeht8 < @I) as follows:

A < B & max(A~ B)U (B~ A)) € B, where the operation “max” is taken in the
natural order omN.

We denote by (k, m) the initialm members o E in the colex order.

The well-known Kruskal-Katona (KK) theorem was discovered in 1963 by KruSkal [
in 1966 by Katona4], and in 1967 by Lindstrih and Zettersarh [6].

Theorem KK (Kruskal-Katona).Let A C <§> |A] = m, then

10¢ (A)| = [9e(L (K, m))[.

Let us mention the following important property of the shifting operation (8pe [

k

There is an elegant proof of theorem KK due to FragkiyhereLemma 1.1induction
(on m andk), and the cascade representatiomoére used. (For a short proof see also
Daykin [1].)

In this paper we introduce a new shifting operation which makes it possible to prove
results like theorem KK using only shifting and nothing in addition. In particular we prove

Lemmall. Let5 C ([n]), then 9,(S;j (B)) € Sj(9¢(B)),i.e |9:(Sj(B))| < |0:(B)I.

that any finite family.A C can be brought td (k, |.A4|) (applying the new shifting)

N
k
with nonincreasing size of its shadow.

2. Themain tool: new shifting

ForB C <§> andu € N define the families

BUZ{BEBZUEB}, BU:B\Bu.
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We introduce now an operation which we call right—left shiftif®l_¢shifting). Given
a family A c <[E]> and integers < j <i < u the RL-shift §j,(A) consists of two
parts:

P1. First we apply the right shifij to Ay.
P2. Nextwe apply iteratively left shif§,,r = 1,..., u—1, to the familyS; (Ay)UAg.

More formally one can write

Sj |u(-A) £ S-1ul. .. SZu(Slu(Sj (Au) U Ag)) ...

The idea behind this operation is to get from familly a family with fewer sets
containingu. Whereas in part P1 “place is made at the left” for replacements @i
part P2 the left shifting ofi is actually done.

Clearly ifu ¢ (Jac 4 A thenA, = @ andSju(A) = A. In this case th&RL-shift Sy
leavesA unchanged. It is important that we includ&i-shifts withi = j. Here every
1 <i < u Sjju makes no changes on a considerkth part P1. However, in part P24
is transformed intdg,—1y(. . . Su(Sw(A)) .. .), left shifted with respect ta. With such
operations we can obtain a left shifted family.

Given A C [2] andu € (Jac 4 Alet RLy(A) be the set of all families which can be

obtained fromA by iteratively applyingRL-shifts §ju. Then we say thatl is RL-stable
if for every A" € RLy(A) we havel A} | = | Ay| (equivalentlyA; = Ag).
We also say thatl is RL-stable if. A is RLy-stable for allu € (Jac 4 A

Lemma 2.1. Supposea family A C <[2]> with | A| = misRL-stable, then A = L(k, m).

Proof. Note first thatA is left shifted, since in particular we have for allkdr < u <n
andany 1<i < u Su(A) = SiuA = A

LetA={a1,...,a} € A a1 < --- < a. Given elemeng; € Awitht < a; observe
that theRL 5 -stability implies that4 contains the seftay — t, ..., ar — 1, @41, ..., 8}.
Hence by left shiftednesg contains all set8 = {b1,..., bk} < A with by < a,

bi4+1 = a41,..., bk = ak. Fora; = t this is obvious since there is no suéh Since
A is RL, -stable for allag, t = 1, ..., k we infer thatA contains every seB ([E]>

which precede#\ in the colex order. [

[n]
k
L(k, |A]), by repeatedly applying RL-shifts.

Lemma2.2. Any family A C can be brought to an RL-stable family, i.e. to

Proof. Let A C be a finite family with|. 4] = m and letr (A) denote the maximal

N
k
element oft 5. 4 A. Also let A be already left shifted. We apply now &b-shift Sjr,
with ro £ r (A). Clearly for the resulting familyd’ = Sjr, (A) with r1 £ r (A") we have
ro—1<ry <rg. We consider two cases.
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() Al < IArl. In this case we apply left shifts td’ reducing it to a left shifted
family.

(i) | A7l = |Arol (correspondinglyo = ri1 and Ay, = A}l). By definition of theRL-
shift A’ is left shifted with respect to the element MoreoverA;-l is left shifted
since Ay, is left shifted.

Thus in both cases w.l.o.g. we may assume #ids left shifted with respect to;, and
A;l is left shifted. However note thad’ is not necessarily a left shifted family. Next we
apply anRL-shift Sjr, (A’) for some 1< j <i < ry transformingA4’ to a new family.4”
which is left shifted with respect to the biggest elemené r (A7) < ry andA;-’2 is left
shifted, etc.

The described procedure cannot be continued indefinitely. After finitely fiRarghifts
we will come to a family.4* with a biggest element such that cannot be decreased
anymore byRL-shifts. Since eacRL-shift Sj; does not increasg4;| (which is lower
bounded) we finally end up with aRL,-stable family5. Note that this with the left
r—1]

k)
Further we repeat the described procedure, applying Riowhifts Sj 1 and assuming
that B is left shifted. Note that sinc&ju(Br) = Brforalll < j <i < u <n
we may proceed only foB; applying RL-shifts §jjy for u = max(Ugcp B ~ {r}.
Continuing this procedure we finally obtain di-stable family 7, or equivalently
F=Lk |A). O

shiftedness oBr implies (as we observed in the prooflcfmma 2.) that5; =

3. Shadows and RL -shifting

In addition toLemma 1.1for shadows we have the following property of shifting.

Lemma3.l. Let A C E be left shifted with respect to element u, (i.e. Su(A) = A for
all<i<u)thenforanyl<j <i < uonehas

[0¢(Sj (Auw) U Ag)| < [9¢(A)]. (3.1)
Proof. We have
3¢ (A) = 3¢ (Ay) U d¢(Ag). (3.2)

We can assume that,, Ay # @, since if Ay, = @ (3.1) is trivial and if A = @ we
applyLemma 1.1

Let us denoté8 = 3,(Ay). Then we can writds = B, U Bg(By N Ba = @).

ForasetA € Ay let 1 < s < u be an element such that¢ A. SinceA is left shifted
with respect tas we haveA’ £ (A~ {u}) U {(s}) € Ag.

ThereforeA ~ {u} = A’ \ {s} which implies that for any-subset {-shadow)E c A
with u ¢ E one hasE € 9,({A ~ {s}}) = 3¢({A~ {u}}) C 9 (Ag).

This implies that3; c 9;(Ag) and hence with3.2) and the definition o3

3¢ (A) = By U g (Ag). (3.3)
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Consider now a right shif§j(A4y) for some 1< j < i < u, and denoteD =

0¢(Sj (Au)).
We have

3e(Sj (Auw) U Ag) = 3¢(Sj (Au) U 3¢ (Ag) = DU 3¢(Ag) = (DyUDg) U 3¢ (Ag).
(3.4)

Suppose novB € A, so thatj € B andi ¢ B. ThenclearlyB’ £ (B~ {u}) U{i}) € Ag
andB’ ~ {j} = Sj(B) ~ {u}. This implies that for any-subsetF C S;(B) withu ¢ F
we have

F e d({B ~ {j}) = 0:({Sj (B) \ {u}}) C 3¢ (Ag).
ThusDy C 9,(Ag) and with 3.4
3e(Sj (Au) U Ag) = Dy U ¢ (Ag). (3.5)

Further by 8.3 [3,(A)| = |Bul + [9¢(Ag)l, and by 8.9 [9,(Sj (Au) U Ag)| = |Dul +
10¢ (Ag)!.
But |Dy| < |By| by Lemma 1.1which completes the proof.C]

ClearlyLemmas 1..1and3.1imply

[n]

Lemma 3.2. Suppose A C K

> is left shifted with respect to element u, then for any
1<j<i<uonehas

10¢(Sjju (AN = [0e(A)].

4. A proof of an improved Kruskal—-K atona theorem

E with |A] = m can be brought by RL-shifts (with

monotonically decreasing size of the £-shadow in each step) to the initial segment of size
m in the colex order.

Theorem 4.1. Any family A C

Proof. To prove the theorem we just note that at each step of the procedure described in
the proof ofLemma 2.2we apply anRL-shift 5, to a family which is left shifted with
respect to the element This withLemma 3.2yives the result. O

5. A new result

Fors,d,k e N,1 <d < s,d < k define the following subclass t{fil)

B(k,s,d):{Bc (E):mm[l,s]lzd}.

Denote byL mB(K, s, d) the firstm elements of3(k, s, d) in the colex order.



556 R. Ahlswede et al. / European Journal of Combinatorics 24 (2003) 551-556

Theorem 5.1. Let A C Bk, s, d) with |A] = m, thenfor £ < k
[0¢(A)| = [9¢(LmB(K, s, d))].

Proof. We may assume again thdtis left shifted. We want to show now that by applying
certain types oRL-shifts A can be brought to the initial segment®fk, s, d) in the colex
order.

Note first that if AN [1, s]| > d for all A € A we can apphRL-shifts proceeding as
in the proof ofLemma 2.2 Thus suppose there exists Are A with |AN[1,s]| =d. We
apply now onlyRL-shifts of type

RL1: Sju(A) foranyl<j <i <sandi, j <u<r( =r(A)),
RL2: Sju(A) foranys+1 < j <i < u <r. Note that the obtained families are still in
Bk, s, d).

Using the same arguments as in the prodf@&ihma 2.2wve infer that4 can be brought
to anRL-stable family with nonincreasing size of the shadow. Note that the stability here
is defined with respect tBL-shifts of typeRL1 or RL2. But now we can easily see that
A is nothing else but the firsh members of5(k, s, d) in the colex order. This is clear
because th&L-stability with respect tdRL1 andRL2 implies that if A € A, B < A and
B e Bk,s dythenBe A. O

One can prove a more general statement using the same approach.

LetN=[Lsi]U[ss1+L]U---Uls—1+1s]U{s+1....},di<dpr <. <
d <kd<s@i=1...,1).

Define

B:{Be<§>:|Bm[1,s]|zdi,i =1,...,t}.

Let alsoL B be the firstm elements of3 in the colex order.
Theorem 5.2. Let A ¢ Band|A| = m, then
[0¢(A)| = [3¢(LmB)I.
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