

European Journal of Combinatorics

European Journal of Combinatorics 24 (2003) 551-556

www.elsevier.com/locate/ejc

More about shifting techniques

R. Ahlswede, H. Aydinian, L.H. Khachatrian

Department of Mathematics, Bielefeld University, Bielefeld, Germany

Received 13 December 2001; received in revised form 20 February 2003; accepted 24 February 2003

Abstract

We discovered a new and simple shifting technique. It makes it possible to prove results on shadows like the Kruskal-Katona theorem without any additional arguments.

As another application we obtain the following new result. For $s,d,k\in\mathbb{N},1\leq d\leq s,d\leq k$ define the subclass of $\binom{\mathbb{N}}{k}$ (the k-subsets of \mathbb{N}) $\mathcal{B}(k,s,d)=\left\{B\in\binom{\mathbb{N}}{k}:|B\cap[1,s]|\geq d\right\}$. Let $\mathcal{A}\subset\mathcal{B}(k,s,d)$ and $|\mathcal{A}|=m$. Then the cardinality of the ℓ -shadow of \mathcal{A} is minimal if \mathcal{A} consists of the first m elements of $\mathcal{B}(k,s,d)$ in colexicographic order. A more general form of this result is given as well. Other applications are to be expected. © 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Shifting; Shadow; Kruskal-Katona theorem

1. Introduction

 \mathbb{N} denotes the set of positive integers and the set $\{1, \ldots, n\}$ is abbreviated as [n]. Given $k \in \mathbb{N}$ and $X \subset \mathbb{N}$ we denote

$$2^X = \{F : F \subset X\}, \qquad {X \choose k} = \{F \subset X : |F| = k\}.$$

Recall the well-known exchange or shifting operation S_{ij} which was introduced by Erdős et al. [2]. For a family $\mathcal{B} \subset 2^{[n]}$ and $B \in \mathcal{B}$ set

$$S_{ij}(B) = \begin{cases} \{i\} \cup (B \setminus \{j\}), & \text{if } i \notin B, j \in B, \{i\} \cup (B \setminus \{j\}) \notin \mathcal{B}, \\ B, & \text{otherwise} \end{cases}$$

$$S_{ij}(\mathcal{B}) = \{S_{ij}(B) : B \in \mathcal{B}\}.$$

Although the shifting operation was introduced in [2] to prove intersection theorems, it turned out to be a powerful tool to obtain many other important results in extremal set theory. An excellent survey on it is given by Frankl [3].

Later on we will distinguish between left shifting, if i < j, and right shifting, if i > j. We say that \mathcal{B} is left shifted (right shifted) if $S_{ij}(\mathcal{B}) = \mathcal{B}$ for all $1 \le i < j \le n$ (for all $1 \le j < i$).

We also say that \mathcal{B} is left shifted with respect to an element $u \in [n]$ if $S_{iu}(\mathcal{B}) = \mathcal{B}$ for all $1 \le i < u$.

The following simple properties of the shifting operation are well known (see e.g. [3]).

Proposition. (i) $|S_{ij}(\mathcal{B})| = |\mathcal{B}|$

(ii) Any family $\mathcal{B} \subset \binom{[n]}{k}$ can be brought to a left shifted (right shifted) family by repeatedly applying left (right) shifts.

For any $1 \le \ell \le k$ the ℓ -shadow of a family $\mathcal{A} \subset \binom{X}{k}$ is defined by

$$\partial_{\ell}(\mathcal{A}) = \left\{ F \in \begin{pmatrix} X \\ \ell \end{pmatrix} : \exists A \in \mathcal{A} : F \subset A \right\}.$$

Define the colexicographic (colex) order for the elements $A, B \in \binom{\mathbb{N}}{k}$ as follows:

 $A \prec B \Leftrightarrow \max((A \setminus B) \cup (B \setminus A)) \in B$, where the operation "max" is taken in the natural order on \mathbb{N} .

We denote by L(k, m) the initial m members of $\binom{\mathbb{N}}{k}$ in the colex order.

The well-known Kruskal–Katona (KK) theorem was discovered in 1963 by Kruskal [5], in 1966 by Katona [4], and in 1967 by Lindström and Zetterström [6].

Theorem KK (Kruskal–Katona). Let
$$A \subset \binom{\mathbb{N}}{k}$$
, $|A| = m$, then

$$|\partial_{\ell}(\mathcal{A})| \ge |\partial_{\ell}(L(k,m))|.$$

Let us mention the following important property of the shifting operation (see [3]).

Lemma 1.1. Let
$$\mathcal{B} \subset \binom{[n]}{k}$$
, then $\partial_{\ell}(S_{ij}(\mathcal{B})) \subseteq S_{ij}(\partial_{\ell}(\mathcal{B}))$, i.e. $|\partial_{\ell}(S_{ij}(\mathcal{B}))| \leq |\partial_{\ell}(\mathcal{B})|$.

There is an elegant proof of theorem KK due to Frankl [3] where Lemma 1.1, induction (on m and k), and the cascade representation of m are used. (For a short proof see also Daykin [1].)

In this paper we introduce a new shifting operation which makes it possible to prove results like theorem KK using only shifting and nothing in addition. In particular we prove that any finite family $\mathcal{A} \subset \binom{\mathbb{N}}{k}$ can be brought to $L(k, |\mathcal{A}|)$ (applying the new shifting) with nonincreasing size of its shadow.

2. The main tool: new shifting

For
$$\mathcal{B} \subset \binom{\mathbb{N}}{k}$$
 and $u \in \mathbb{N}$ define the families

$$\mathcal{B}_u = \{B \in \mathcal{B} : u \in B\}, \qquad \mathcal{B}_{\bar{u}} = \mathcal{B} \setminus \mathcal{B}_u.$$

We introduce now an operation which we call right-left shifting (RL-shifting). Given a family $\mathcal{A} \subset \binom{[n]}{k}$ and integers $1 \leq j \leq i < u$ the RL-shift $S_{ij|u}(\mathcal{A})$ consists of two parts:

- P1. First we apply the right shift S_{ij} to A_u .
- P2. Next we apply iteratively left shifts S_{ru} , r = 1, ..., u-1, to the family $S_{ii}(A_u) \cup A_{\bar{u}}$.

More formally one can write

$$S_{ij|u}(\mathcal{A}) \triangleq S_{u-1u}(\dots S_{2u}(S_{1u}(S_{ij}(\mathcal{A}_u) \cup \mathcal{A}_{\bar{u}}))\dots).$$

The idea behind this operation is to get from family \mathcal{A} a family with fewer sets containing u. Whereas in part P1 "place is made at the left" for replacements of u, in part P2 the left shifting of u is actually done.

Clearly if $u \notin \bigcup_{A \in \mathcal{A}} A$, then $\mathcal{A}_u = \emptyset$ and $S_{ij|u}(\mathcal{A}) = \mathcal{A}$. In this case the RL-shift $S_{ij|u}$ leaves \mathcal{A} unchanged. It is important that we included RL-shifts with i = j. Here every $1 \le i < u$ $S_{ii|u}$ makes no changes on a considered \mathcal{A} in part P1. However, in part P2 \mathcal{A} is transformed into $S_{u-1u}(\ldots S_{2u}(S_{1u}(\mathcal{A}))\ldots)$, left shifted with respect to u. With such operations we can obtain a left shifted family.

Given $\mathcal{A} \subset {[n] \choose k}$ and $u \in \bigcup_{A \in \mathcal{A}} A$ let $RL_u(\mathcal{A})$ be the set of all families which can be obtained from \mathcal{A} by iteratively applying RL-shifts $S_{ij|u}$. Then we say that \mathcal{A} is RL_u -stable if for every $\mathcal{A}' \in RL_u(\mathcal{A})$ we have $|\mathcal{A}'_u| = |\mathcal{A}_u|$ (equivalently $\mathcal{A}'_{\bar{u}} = \mathcal{A}_{\bar{u}}$).

We also say that A is RL-stable if A is RL_u -stable for all $u \in \bigcup_{A \in A} A$.

Lemma 2.1. Suppose a family $A \subset {[n] \choose k}$ with |A| = m is RL-stable, then A = L(k, m).

Proof. Note first that \mathcal{A} is left shifted, since in particular we have for all $1 \le r < u \le n$ and any $1 \le i < u$ $S_{ru}(\mathcal{A}) = S_{ii|u}(\mathcal{A}) = \mathcal{A}$.

Let $A = \{a_1, \ldots, a_k\} \in \mathcal{A}, a_1 < \cdots < a_k$. Given element $a_t \in A$ with $t < a_t$ observe that the RL_{a_t} -stability implies that \mathcal{A} contains the set $\{a_t - t, \ldots, a_t - 1, a_{t+1}, \ldots, a_k\}$. Hence by left shiftedness \mathcal{A} contains all sets $B = \{b_1, \ldots, b_k\} \prec A$ with $b_t < a_t$, $b_{t+1} = a_{t+1}, \ldots, b_k = a_k$. For $a_t = t$ this is obvious since there is no such B. Since \mathcal{A} is RL_{a_t} -stable for all $a_t, t = 1, \ldots, k$ we infer that \mathcal{A} contains every set $B \in \binom{[n]}{k}$ which precedes A in the colex order. \square

Lemma 2.2. Any family $A \subset {[n] \choose k}$ can be brought to an RL-stable family, i.e. to L(k, |A|), by repeatedly applying RL-shifts.

Proof. Let $A \subset \binom{\mathbb{N}}{k}$ be a finite family with |A| = m and let r(A) denote the maximal element of $\bigcup_{A \in \mathcal{A}} A$. Also let A be already left shifted. We apply now an RL-shift $S_{ij}|_{r_0}$ with $r_0 \triangleq r(A)$. Clearly for the resulting family $A' = S_{ij}|_{r_0}(A)$ with $r_1 \triangleq r(A')$ we have $r_0 - 1 \leq r_1 \leq r_0$. We consider two cases.

- (i) $|\mathcal{A}'_{r_0}| < |\mathcal{A}_{r_0}|$. In this case we apply left shifts to \mathcal{A}' reducing it to a left shifted family.
- (ii) $|\mathcal{A}'_{r_0}| = |\mathcal{A}_{r_0}|$ (correspondingly $r_0 = r_1$ and $\mathcal{A}_{\bar{r}_0} = \mathcal{A}'_{\bar{r}_1}$). By definition of the *RL*-shift \mathcal{A}' is left shifted with respect to the element r_1 . Moreover $\mathcal{A}'_{\bar{r}_1}$ is left shifted since $\mathcal{A}_{\bar{r}_0}$ is left shifted.

Thus in both cases w.l.o.g. we may assume that \mathcal{A}' is left shifted with respect to r_1 , and $\mathcal{A}'_{\bar{r}_1}$ is left shifted. However note that \mathcal{A}' is not necessarily a left shifted family. Next we apply an RL-shift $S_{ij|r_1}(\mathcal{A}')$ for some $1 \leq j < i < r_1$ transforming \mathcal{A}' to a new family \mathcal{A}'' which is left shifted with respect to the biggest element $r_2 \triangleq r(\mathcal{A}'') \leq r_1$ and $\mathcal{A}''_{\bar{r}_2}$ is left shifted, etc.

The described procedure cannot be continued indefinitely. After finitely many RL-shifts we will come to a family \mathcal{A}^* with a biggest element r such that r cannot be decreased anymore by RL-shifts. Since each RL-shift $S_{ij|r}$ does not increase $|\mathcal{A}_r^*|$ (which is lower bounded) we finally end up with an RL_r -stable family \mathcal{B} . Note that this with the left shiftedness of $\mathcal{B}_{\bar{r}}$ implies (as we observed in the proof of Lemma 2.1) that $\mathcal{B}_{\bar{r}} = {r-1 \choose k}$. Further we repeat the described procedure, applying now RL-shifts $S_{ij|r-1}$ and assuming that \mathcal{B} is left shifted. Note that since $S_{ij|u}(\mathcal{B}_{\bar{r}}) = \mathcal{B}_{\bar{r}}$ for all $1 \leq j \leq i < u \leq n$ we may proceed only for \mathcal{B}_r applying RL-shifts $S_{ij|u}$ for $u = \max(\bigcup_{B \in \mathcal{B}_r} B \setminus \{r\})$. Continuing this procedure we finally obtain an RL-stable family \mathcal{F} , or equivalently $\mathcal{F} = L(k, |\mathcal{A}|)$. \square

3. Shadows and RL-shifting

In addition to Lemma 1.1 for shadows we have the following property of shifting.

Lemma 3.1. Let $A \subset {\mathbb{N} \choose k}$ be left shifted with respect to element u, (i.e. $S_{iu}(A) = A$ for all $1 \le i < u$) then for any $1 \le j < i < u$ one has

$$|\partial_{\ell}(S_{ij}(\mathcal{A}_{u}) \cup \mathcal{A}_{\bar{u}})| \le |\partial_{\ell}(\mathcal{A})|. \tag{3.1}$$

Proof. We have

$$\partial_{\ell}(\mathcal{A}) = \partial_{\ell}(\mathcal{A}_{u}) \cup \partial_{\ell}(\mathcal{A}_{\bar{u}}). \tag{3.2}$$

We can assume that A_u , $A_{\bar{u}} \neq \emptyset$, since if $A_u = \emptyset$ (3.1) is trivial and if $A_{\bar{u}} = \emptyset$ we apply Lemma 1.1.

Let us denote $\mathcal{B} = \partial_{\ell}(\mathcal{A}_u)$. Then we can write $\mathcal{B} = \mathcal{B}_u \dot{\cup} \mathcal{B}_{\bar{u}}(\mathcal{B}_u \cap \mathcal{B}_{\bar{u}} = \varnothing)$.

For a set $A \in \mathcal{A}_u$ let $1 \leq s < u$ be an element such that $s \notin A$. Since \mathcal{A} is left shifted with respect to u we have $A' \triangleq ((A \setminus \{u\}) \cup \{s\}) \in \mathcal{A}_{\bar{u}}$.

Therefore $A \setminus \{u\} = A' \setminus \{s\}$ which implies that for any ℓ -subset (ℓ -shadow) $E \subset A$ with $u \notin E$ one has $E \in \partial_{\ell}(\{A' \setminus \{s\}\}) = \partial_{\ell}(\{A \setminus \{u\}\}) \subset \partial_{\ell}(A_{\bar{\mu}})$.

This implies that $\mathcal{B}_{\bar{u}} \subset \partial_{\ell}(\mathcal{A}_{\bar{u}})$ and hence with (3.2) and the definition of \mathcal{B}

$$\partial_{\ell}(\mathcal{A}) = \mathcal{B}_{u} \dot{\cup} \partial_{\ell}(\mathcal{A}_{\bar{u}}). \tag{3.3}$$

Consider now a right shift $S_{ij}(A_u)$ for some $1 \leq j < i < u$, and denote $\mathcal{D} = \partial_{\ell}(S_{ij}(A_u))$.

We have

$$\partial_{\ell}(S_{ij}(\mathcal{A}_{u}) \cup \mathcal{A}_{\bar{u}}) = \partial_{\ell}(S_{ij}(\mathcal{A}_{u})) \cup \partial_{\ell}(\mathcal{A}_{\bar{u}}) = \mathcal{D} \cup \partial_{\ell}(\mathcal{A}_{\bar{u}}) = (\mathcal{D}_{u} \dot{\cup} \mathcal{D}_{\bar{u}}) \cup \partial_{\ell}(\mathcal{A}_{\bar{u}}).$$
(3.4)

Suppose now $B \in \mathcal{A}_u$ so that $j \in B$ and $i \notin B$. Then clearly $B' \triangleq ((B \setminus \{u\}) \cup \{i\}) \in \mathcal{A}_{\bar{u}}$ and $B' \setminus \{j\} = S_{ij}(B) \setminus \{u\}$. This implies that for any ℓ -subset $F \subset S_{ij}(B)$ with $u \notin F$ we have

$$F \in \partial_{\ell}(\{B' \setminus \{j\}\}) = \partial_{\ell}(\{S_{ij}(B) \setminus \{u\}\}) \subset \partial_{\ell}(\mathcal{A}_{\bar{u}}).$$

Thus $\mathcal{D}_{\bar{u}} \subset \partial_{\ell}(\mathcal{A}_{\bar{u}})$ and with (3.4)

$$\partial_{\ell}(S_{ij}(\mathcal{A}_{u}) \cup \mathcal{A}_{\bar{u}}) = \mathcal{D}_{u} \dot{\cup} \partial_{\ell}(\mathcal{A}_{\bar{u}}). \tag{3.5}$$

Further by (3.3) $|\partial_{\ell}(\mathcal{A})| = |\mathcal{B}_u| + |\partial_{\ell}(\mathcal{A}_{\bar{u}})|$, and by (3.5) $|\partial_{\ell}(S_{ij}(\mathcal{A}_u) \cup \mathcal{A}_{\bar{u}})| = |\mathcal{D}_u| + |\partial_{\ell}(\mathcal{A}_{\bar{u}})|$.

But $|\mathcal{D}_u| \leq |\mathcal{B}_u|$ by Lemma 1.1, which completes the proof. \square

Clearly Lemmas 1.1 and 3.1 imply

Lemma 3.2. Suppose $A \subset {[n] \choose k}$ is left shifted with respect to element u, then for any $1 \leq j < i < u$ one has

$$|\partial_{\ell}(S_{ii|u}(\mathcal{A}))| \leq |\partial_{\ell}(\mathcal{A})|.$$

4. A proof of an improved Kruskal-Katona theorem

Theorem 4.1. Any family $A \subset \binom{\mathbb{N}}{k}$ with |A| = m can be brought by RL-shifts (with monotonically decreasing size of the ℓ -shadow in each step) to the initial segment of size m in the colex order.

Proof. To prove the theorem we just note that at each step of the procedure described in the proof of Lemma 2.2 we apply an RL-shift $S_{ij|u}$ to a family which is left shifted with respect to the element u. This with Lemma 3.2 gives the result. \Box

5. A new result

For $s, d, k \in \mathbb{N}$, $1 \le d \le s, d \le k$ define the following subclass of $\binom{\mathbb{N}}{k}$:

$$\mathcal{B}(k,s,d) = \left\{ B \subset \binom{\mathbb{N}}{k} : |B \cap [1,s]| \ge d \right\}.$$

Denote by $L_m \mathcal{B}(k, s, d)$ the first m elements of $\mathcal{B}(k, s, d)$ in the colex order.

Theorem 5.1. Let $A \subset \mathcal{B}(k, s, d)$ with |A| = m, then for $\ell \leq k$

$$|\partial_{\ell}(\mathcal{A})| \geq |\partial_{\ell}(L_m \mathcal{B}(k, s, d))|.$$

Proof. We may assume again that \mathcal{A} is left shifted. We want to show now that by applying certain types of RL-shifts \mathcal{A} can be brought to the initial segment of $\mathcal{B}(k, s, d)$ in the colex order.

Note first that if $|A \cap [1, s]| > d$ for all $A \in \mathcal{A}$ we can apply RL-shifts proceeding as in the proof of Lemma 2.2. Thus suppose there exists an $A \in \mathcal{A}$ with $|A \cap [1, s]| = d$. We apply now only RL-shifts of type

RL1: $S_{ij|u}(A)$ for any $1 \le j \le i \le s$ and $i, j < u \le r(r = r(A))$,

RL2: $S_{ij|u}(A)$ for any $s+1 \le j \le i < u \le r$. Note that the obtained families are still in $\mathcal{B}(k, s, d)$.

Using the same arguments as in the proof of Lemma 2.2 we infer that \mathcal{A} can be brought to an RL-stable family with nonincreasing size of the shadow. Note that the stability here is defined with respect to RL-shifts of type RL1 or RL2. But now we can easily see that \mathcal{A} is nothing else but the first m members of $\mathcal{B}(k,s,d)$ in the colex order. This is clear because the RL-stability with respect to RL1 and RL2 implies that if $A \in \mathcal{A}$, $B \prec A$ and $B \in \mathcal{B}(k,s,d)$ then $B \in \mathcal{A}$. \square

One can prove a more general statement using the same approach.

Let
$$\mathbb{N} = [1, s_1] \cup [s_1 + 1, s_2] \cup \cdots \cup [s_{t-1} + 1, s_t] \cup \{s_t + 1, \ldots, \}, d_1 \le d_2 \le \cdots \le d_t \le k, d_i \le s_i \ (i = 1, \ldots, t).$$

Define

$$\mathcal{B} = \left\{ B \in \binom{\mathbb{N}}{k} : |B \cap [1, s_i]| \ge d_i, i = 1, \dots, t \right\}.$$

Let also $L_m\mathcal{B}$ be the first m elements of \mathcal{B} in the colex order.

Theorem 5.2. Let $A \subset B$ and |A| = m, then

$$|\partial_{\ell}(\mathcal{A})| \geq |\partial_{\ell}(L_m \mathcal{B})|.$$

References

- [1] D.E. Daykin, A simple proof of the Kruskal-Katona Theorem, J. Combin. Theory Ser. A 17 (1974) 252-253.
- [2] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12 (1961) 313–320.
- [3] P. Frankl, The shifting technique in extremal set theory, in: Surveys in Combinatorics, Lond. Math. Soc. Lect. Note Ser., vol. 123, 1987, pp. 81–110.
- [4] G. Katona, A theorem of finite sets, in: Proceedings of Tihany Conference, 1966, Budapest, 1968, pp. 187–207.
- [5] J. Kruskal, The number of simplices in a complex, in: Mathematical Optimization Techniques, University of California Press, Berkeley–Los Angeles, 1963, pp. 251–278.
- [6] B.A. Lindström, M.O. Zetterström, A combinatorial problem in the K-adic number systems, Proc. Amer. Math. Soc. 18 (1967) 166–170.