LINEAR PROGRAMMING

1. Trading

A trader is trying to make as much money as possible by transporting goods. The budget is $10\ 000\ 000\ K\check{c}$ and the maximal weight of the load is $1000\ kg$. Design a linear program to maximize their profit.

Material	Price per kilo	Profit per kilo
Gold	100 000	100
Silver	14 000	200
Spices	4 000	150
Cocoa	700	10

2. More linear programs

Formulate linear programs for the following problems in a directed graph:

- a) Shortest s-t path
- b) Maximal s t flow
- c) Minimal s t cut

Formulate linear programs for the following problems in undirected graphs.

- d) Maximum matching
- e) Minimal vertex cover

Also determine:

- I. What are the relationships between the individual linear programs?
- II. What is the relationship between the optimum of the integer program and its relaxations for the programs a), b) a c)?

Hint: Their constraint matrix has a special form with unique properties.

3. Load balancing

Formulate an integer linear program for scheduling / load balancing on identical machines.

OTHER PROBLEMS

4. Parallel coloring

• A Las Vegas algorithm is a randomized algorithm that always answers correctly, but the running time is random for each run and its expected value is finite.

Find a Las Vegas parallel algorithm that uses n processors to properly color a graph with n vertices and maximum degree Δ , using 2Δ colors in expected time $O(\Delta \log n)$.

5. k-Center problem

- \bullet We define $R(S):=\max_{v\in V}d(v,S)$, where $d(v,S):=\min_{s\in S}d(v,s)$ for any $S\subset V,\ v\in V$.
- In the k-Center problem:
 - **Input**: We are given a metric space (V, d) and $k \in \mathbb{N}$.
 - **Output**: We want to find $S \subset V$ minimizing R(S) such that $|S| \leq k$.

Find a 2-approximation algorithm the k-Center problem.

6. Graph balancing

We are given an unoriented graph with non-negative weights on the edges. Given an orientation, we define the weight of a vertex as the sum of weights of the incoming edges. The goal is to orient all the edges to minimize the weight of the heaviest vertex.

• Formulate an ILP and round the relaxation to get a 2-approximation algorithm.

7. Maximal directed cut

We are given an oriented graph with non-negative weights on the edges. The goal is to find $S \subseteq V$ such that the weight of edges from S to $V \setminus S$ is maximized.

- Formulate a (trivial) $\frac{1}{4}$ -approximation algorithm.
- Formulate an ILP for this problem, relax it and add a vertex v to S with probability $\frac{1}{4} + \frac{x_v}{2}$. Did you get a $\frac{1}{2}$ -approximation?

8. Integrality gap

Let OPT and OPT_{LP} be the optimal values (of an instance) of an integer LP and its relaxation respectively. The **integrality gap** of this linear program (instance) is $\frac{OPT}{OPT_{LP}}$.

- Show that MAX-SAT has integrality gap at least $\frac{4}{3}$.
- Show that vertex cover has integrality gap at least $2(1-\frac{1}{n})$.