LEFTOVER EXCERCISES

1. Useful bounds

- a) Prove $n! \leq 2^{n \log_2 n}$.
- b) Prove $(1-p)^n \le e^{-pn}$ for $p \in [0,1]$.

2. Complexity classes

Definitions of the probability complexity classes are on the other side.

- a) Show that the following definition is equivalent to the definition of ZPP:
 - Always runs in polynomial time.
 - If the correct answer is **TRUE**, the algorithm accepts with probability at least $\frac{1}{2}$, otherwise it says "don't know".
 - If the correct answer is **FALSE**, the algorithm rejects with probability at least $\frac{1}{2}$, otherwise it says "don't know".
- b) Prove the following inclusions:
 - $-P \subseteq ZPP$
 - $RP \subseteq NP$
 - ZPP = RP \cap co-RP
 - $RP \cup co-RP \subseteq BPP$

LINEAR PROGRAMMING

3. Trading

A trader is trying to make as much money as possible by transporting goods. The budget is $10~000~000~\text{K}\check{\text{c}}$ and the maximal weight of the load is 1000~kg. Design a linear program to maximize their profit.

Material	Price per kilo	Profit per kilo
Gold	100 000	100
Silver	14 000	200
Spices	4 000	150
Cocoa	700	10

4. More linear programs

Formulate linear programs for the following problems in a directed graph:

- ullet Shortest s t path
- Maximal s t flow
- \bullet Minimal s t cut

Formulate linear programs for the following problems in undirected graphs.

- d) Maximum matching
- e) Minimal vertex cover

Also determine:

- I. What are the relationships between the individual linear programs?
- II. What is the relationship between the optimum of the integer program and its relaxations for the programs a), b) a c)?

Hint: Their constraint matrix has a special form with unique properties.

5. Load balancing

Formulate an integer linear program for scheduling / load balancing on identical machines.

OTHER PROBLEMS

6. Parallel coloring

• A Las Vegas algorithm is a randomized algorithm that always answers correctly, but the running time is random for each run and its expected value is finite.

Find a Las Vegas parallel algorithm that uses n processors to properly color a graph with n vertices and maximum degree Δ , using 2Δ colors in expected time $O(\Delta \log n)$.

7. k-Center problem

- We define $R(S) := \max_{v \in V} d(v, S)$, where $d(v, S) := \min_{s \in S} d(v, s)$ for any $S \subset V, \ v \in V$.
- In the k -Center problem:
 - **Input**: We are given a metric space (V, d) and $k \in \mathbb{N}$.
 - **Output**: We want to find $S \subset V$ minimizing R(S) such that $|S| \leq k$.

Find a 2-approximation algorithm the k-Center problem.

Definitions

- A problem is in **BPP** if \exists algorithm satisfying:
 - Always runs in polynomial time.
 - If the correct answer is \mathbf{TRUE} , algorithms accepts with probability at least $\frac{2}{3}$.
 - If the correct answer is **FALSE**, algorithms accepts with probability at most $\frac{1}{3}$.
- A problem is in \mathbf{RP} if \exists algorithm satisfying:
 - Always runs in polynomial time.
 - If the correct answer is **TRUE**, algorithms accepts with probability at least $\frac{1}{2}$.
 - If the correct answer is **FALSE** , algorithms always rejects.
- A problem is in **ZPP** if \exists algorithm satisfying:
 - Only the expectation of the running time is polynomial.
 - Always answers correctly.