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Abstra
t

In the minimum path 
oloring problem, we are given a graph and a set of pairs of verti
es of

the graph and we are asked to 
onne
t the pairs by 
olored paths in su
h a way that paths of the

same 
olor are edge disjoint. In this paper we deal with a generalization of this problem where

we are asked to 
onne
t ea
h pair by k edge disjoint paths of the same 
olor. The obje
tive is to

minimize the number of 
olors. The reason for multiple paths between the same pair of verti
es is to

ensure fault toleran
e of the 
onne
tions. We propose an O(k

2

F ) = O(k

2

��

�1

logn) approximation

algorithm for this problem where F is the 
ow number of the graph, � is the maximum degree and

� is the expansion. This is an improvement even for the spe
ial 
ase k = 1 where, to our knowledge,

the best previously known bound is weaker by a fa
tor of logn.

The underlying problem is that of �nding several disjoint paths between a given pair of verti
es.

Menger's theorem provides a ne
essary and suÆ
ient 
ondition for the existen
e of k su
h paths.

However, it does not say anything about the length of the paths although in 
ommuni
ation problems

the number of links used is an issue. We show that any two k-
onne
ted verti
es are 
onne
ted by k

edge disjoint paths of average length O(kF ) whi
h improves an earlier result of Galil and Yu [17℄ for

several 
lasses of graphs. In fa
t, this is only a 
orollary of a stronger result for multi
ommodity 
ow

on networks with unit edge 
apa
ities: any multi
ommodity 
ow with k units for ea
h 
ommodity


an be rerouted su
h that the 
ow for ea
h 
ommodity is shipped through k-tuples of edge disjoint

paths of average length O(kF ) without ex
eeding the edge 
apa
ities signi�
antly.

1 Introdu
tion

The goal of this paper is to design eÆ
ient and reliable (fault-tolerant) algorithms for network 
om-

muni
ation problems. We 
onsider opti
al networks in whi
h faults may appear on any link (edge),

�
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possibly on several links. The main idea is to reserve several disjoint 
ommuni
ation 
hannels (paths)

for a single 
onne
tion (request). If a fault appears on some of the links then it is still possible to keep

the 
onne
tion alive along the remaining paths. The ne
essary 
ondition for this strategy to work is

that the paths reserved for the same 
onne
tion (request) are edge disjoint.

To be more spe
i�
, we 
onsider a generalization of the well known MinimumPath Coloring Problem

(MPCP) [31℄, namely the 
oloring k-edge disjoint path systems problem (k-EDPCOL): An undire
ted

graph G = (V;E) and a (multi) set of requests T = f(s

i

; t

i

)js

i

; t

i

2 V g are given. For ea
h request

i, �nd k edge disjoint paths (
alled a k-system, for short) that 
onne
t s

i

and t

i

. Assign a 
olor to

ea
h k-system su
h that no two k-systems that share an edge, have the same 
olor. The obje
tive is

to minimize the number of 
olors used.

The minimum path 
oloring problem (i.e., 1-EDPCOL in our terminology), whi
h is a variant of

the edge disjoint paths problem (EDP), is known to be NP-
omplete [15℄. Therefore, we deal with

approximation algorithms in this paper. Be
ause the best possible approximation for the 1-EDPCOL

on dire
ted graphs, in terms of n = jV j, is roughly 
(

p

n) (by a straightforward redu
tion from the

hardness of the EDP [20℄) we parametrize the performan
e of our algorithms by the 
ow number F

or the expansion � of the graph, instead of the number of edges or verti
es. The de�nitions of the

expansion and of the 
ow number are postponed to the next se
tion, here we just re
all that the 
ow

number is always bounded by O(��

�1

logn), where � is the maximum degree.

The main algorithmi
 result of this paper is an O(k

2

F ) = O(k

2

��

�1

log n) approximation algorithm

for the k-EDPCOL problem. It is worth mentioning that this is an improvement even for the spe
ial


ase k = 1: An important observation by Aumann and Rabani [3℄ for the path 
oloring problem shows

that any algorithm for the EDP with approximation ratio 
 
an be turned into an algorithm for the

MPCP with approximation ratio O(
 log n). Sin
e the best approximation for EDP in terms of F

is O(F ) [26℄, the resulting approximation for 1-EDPCOL is O(F logn) whereas our upper bound on

the approximation ratio is O(F ). In a similar way, a re
ent O(k

3

F ) approximation algorithm for the

k-Edge Disjoint Paths problem (see below) [6℄ whi
h is a generalization of the EDP, 
an be turned into

O(k

3

F log n) approximation algorithm for the k-EDPCOL. Compared to this the results in this paper

are better by a fa
tor of k log n.

Short Disjoint Paths. The underlying problem of the k-EDPCOL is that of �nding k disjoint paths

between a given pair of verti
es. Menger's theorem provides a ne
essary and suÆ
ient 
ondition for

existen
e of k su
h paths. However, it does not say anything about the length of these paths. Even

though the length of the paths in all-opti
al networks is not important with respe
t to the transmission

time, links are rare resour
es [6℄ and the length of the paths is important with respe
t to the number

of realized 
onne
tions and also with respe
t to the se
urity of the 
onne
tions [4℄.

Galil and Yu [17℄ worked on short length versions of Menger's theorem and proved that for any

two k-
onne
ted verti
es in a graph, there are k edge-disjoint paths between them of average length

O(n=

p

k). Henzinger et al. [21℄ gave a simpler proof of the same bound. Karger and Levine [22℄

generalized this result in two dire
tions. First, they proved that for any two verti
es in a unit-
apa
ity

graph with a 
ow � between them, the � units of 
ow 
an be sent along paths of average length

O(n=

p

�). Se
ond, they showed that this holds for 
apa
itated graphs as well.

In this paper we take a slightly di�erent approa
h. Sin
e the O(n=

p

k) bound is very weak for many

graphs (though it is the best possible in general, in terms of k and n) we try to give bounds on the path

length in terms of di�erent parameters like the expansion or the 
ow number F of the graph. The main

result in this respe
t is that any two k-
onne
ted verti
es are 
onne
ted by k edge disjoint paths of

average length O(kF ). This result falls out as a 
orollary of a general result regarding multi
ommodity


ows on networks with unit 
apa
ities. Spe
i�
ally, we show that any multi
ommodity 
ow with k

2



units for ea
h 
ommodity 
an be rerouted su
h that the 
ow for ea
h 
ommodity is shipped through

k-tuples of edge disjoint paths of average length O(kF ) while the edge 
apa
ities are ex
eeded by a


onstant only. A weaker bound of a similar form, that is, an upper bound of O(k

2

F ) on average path

lengths, was impli
itly 
ontained in a re
ent paper on fault-tolerant routing [6℄.

The k-EDPCOL problem is related also to the k edge-disjoint paths problem (k-EDP) [6℄. In k-EDP,

we are given a graph G = (V;E) and a set of requests T , and the task is to �nd a maximum subset of

the pairs in T for whi
h it is possible to sele
t paths su
h that ea
h pair is 
onne
ted by k edge-disjoint

paths and the paths for di�erent pairs are mutually disjoint. For k = 1, this is the well known edge

disjoint path problem. As a by-produ
t of our results we get an improvement, by a fa
tor of k, on

the online approximation of the k-EDP. We show that there is a deterministi
 online algorithm with


ompetitive ratio O(k

2

F ) whereas the best previous bound was O(k

3

F ) [6℄.

Previous work on path 
oloring. To fully set out the 
ontext of our work, we 
on
lude this se
tion

with a brief dis
ussion of relevant known results about path 
oloring.

The MPCP was �rst studied in the 
ontext of routing in opti
al networks [30℄. As already men-

tioned, a simple redu
tion from the disjoint paths problem shows that this is an NP-hard problem on

general graphs. A result of Golumbi
 and Jamison [19℄ implies that this problem is NP-
omplete on

arbitrary tree topologies, although it was later shown that on trees of bounded degree the problem


an be solved eÆ
iently [14℄. Erleba
h and Jansen showed that path 
oloring is also NP-
omplete on


y
les [13℄. Note that there are two aspe
ts of the MPCP: path sele
tion and 
oloring of the 
hosen

paths. As the path sele
tion on trees (and on 
y
les) is a trivial task, the above result show that the


oloring alone is hard enough.

One of the �rst papers on the MPCP was by Aggarwal et al. [1℄. They showed that O(log n)


olors are suÆ
ient to route a permutation in hyper
ubi
 networks, improving a bound of Pankaj [30℄.

Raghavan and Upfal [33℄ gave several approximation algorithms for this problem in
luding a 
onstant

fa
tor approximation for trees, rings and trees of rings. Mihail et al. [28℄ proved that a 
onstant

fa
tor approximation 
an also be a
hieved for dire
ted versions of these topologies. Kleinberg and

Tardos [25℄ gave an O(log n) approximation algorithm for meshes and other 
ertain 
lasses of planar

graphs. Rabani [31℄ showed that a 
onstant fa
tor approximation is also possible for mesh topologies,

improving previously known bounds [24, 3℄. We refer the reader to a survey by Beauquier et al. [10℄

for other results about the path 
oloring problem.

Bartal and Leonardi [9℄ gave O(log n) 
ompetitive online algorithms for all the topologies mentioned

above (i.e., meshes, trees, rings, ...) and showed that it was not possible to do better for meshes in

the online setting. They also presented an 
(

log n

log log n

) lower bound on the 
ompetitive ratio of any

deterministi
 algorithm on trees. Later, also a randomized lower bound of 
(log d), for any online

algorithm for the MPCP on a tree with diameter d = O(log n), was given [27℄. Bartal et al. [8℄ showed

that a polylogarithmi
 
ompetitive ratio is not possible for this problem on general topologies.

Outline of the paper. Sin
e the outlined problems are 
learly related to 
ow problems it is not

surprising that for the analysis of our algorithm we will use some results from this area, e.g., the

Shortening Lemma and the Duality of so-
alled multiroute 
ows and 
uts. The other te
hniques that

are used in
lude probabilisti
 arguments, namely the Cherno� bounds, Lov�asz Lo
al Lemma and its

algorithmi
 version. All these will be reviewed in the next se
tion. Se
tion 3 deals with the short

length Menger's Theorem and Se
tion 4 with the algorithm for the k-EDPCOL. Se
tion 5 
on
ludes

with a few open problems.

An abstra
t of this paper appeared in Pro
eedings of the Fifteenth Annual ACM Symposium on

Parallelism in Algorithms and Ar
hite
tures, 2003 [5℄.
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2 Preliminaries

A network is an undire
ted graph G = (V;E) together with a 
apa
ity fun
tion 
 : E ! R

+

. Most of

the time, we 
onsider networks with unit 
apa
ity on ea
h edge and we 
all them unit networks. Let

n = jV j and m = jEj. We denote the degree of a vertex u in G by deg(u) and by 
(U; V �U) the sum

of 
apa
ities of edges between U and V � U . The (edge) expansion of a network G is de�ned as

� = min

U�V


(U; V � U)

minfjU j; jV � U jg

:

A 
ow (single- or multi-
ommodity) is a nonnegative linear 
ombination of unit 
ows along simple

paths; note that a 
ow may possibly ex
eed the edge 
apa
ities. A feasible 
ow is a 
ow that respe
ts

the 
apa
ity 
onstraints. We will slightly overload the term 
ow and we will use it also to denote the

total amount of the 
ommodity transferred.

In a 
on
urrent multi
ommodity 
ow problem on a network G there are l � 1 
ommodities, ea
h

with two terminal verti
es s

i

; t

i

2 V and a demand d

i

. The obje
tive is to maximize the fra
tion of

the demand that 
an be shipped simultaneously for all 
ommodities, that is, to �nd the maximum f

su
h that is it possible to route f � d

i

units of 
ommodity i between s

i

and t

i

for ea
h i so that the

total amount of all 
ommodities passing through any edge is no greater than its 
apa
ity. Given an

instan
e of the 
on
urrent multi
ommodity 
ow problem and a feasible 
ow F , the 
ow value of F

is the maximum f su
h that for ea
h i, f � d

i

units of 
ommodity i are shipped between s

i

and t

i

.

An instan
e of a balan
ed multi
ommodity 
ow problem satis�es an additional 
ondition that for ea
h

vertex u the sum of demands between u and other verti
es is equal the degree d(u) [26℄.

Given a unit network G, let I

0

denote an instan
e of the 
on
urrent multi
ommodity 
ow problem

in whi
h there is a 
ommodity with demand deg(u) � deg(v)=2jEj for ea
h pair of verti
es (u; v). For a

feasible 
ow S, let D(S) be the length of the longest 
ow path in S and let C(S) be the inverse of the


ow value of S (i.e., the maximum, over all 
ommodities, of the 
ow divided by the demand). Then

the 
ow number F of G is the minimum of maxfD(S); C(S)g over all feasible solutions S of I

0

[26℄. We

always have F = O(��

�1

log n), where � is the maximum degree of G, but sometimes F is smaller by

a fa
tor � or log n [26℄. To give at least a few examples, the 
ow number of 
onstant degree expanders,

hyper
ubes, butter
ies et
. is O(log n), F (2D-mesh) = O(

p

n), F (3D-mesh) = O(

3

p

n), F (K

n

) = O(1).

Lemma 2.1 (Shortening Lemma [26℄) For any network with 
ow number F it holds: for any � 2

(0; 1℄ and any feasible 
ow S with a 
ow value of f , with respe
t to an instan
e of the 
on
urrent

multi
ommodity 
ow problem, there exists a feasible 
ow S

0

with a 
ow value f=(1+ �) that uses paths

of length at most 2 � F (1 + 1=�).

To prove the se
ond part of Lemma 3.1 in the next se
tion, we will use the 
onstru
tion from the

original proof of the Shortening Lemma. Therefore, for the sake of 
ompleteness, we will provide the

proof of the Shortening lemma [26℄.

Proof. Let O denote the set of paths in the 
ow S with the 
ow value f and let O

0

� O 
onsist of all

paths from O that are longer than L, for L = 2 � F=�. We are going to shorten the paths in O

0

at the


ost of slightly de
reasing the satis�ed demand of ea
h 
ommodity. To do so, we need the following

lemma:

Claim 2.2 [26℄ For any network G with 
ow number F and any instan
e of the balan
ed multi
om-

modity 
ow problem for G, there exists a feasible 
ow with 
ow value 1=2F 
onsisting of paths of length

at most 2F .
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For a path p 2 O

0

between s

p

and t

p

, let a

p;1

= s

p

; a

p;2

; : : : ; a

p;L

denote its �rst L verti
es and

b

p;1

; : : : ; b

p;L�1

; b

p;L

= t

p

its last L verti
es and let f

p

be the 
ow along p. Then the set U =

S

p2O

0

S

L

i=1

fa

p;i

; b

p;i

; f

p

g is (a subset of) an instan
e of the balan
ed multi
ommodity 
ow problem.

Thus, by Claim 2.2 there exists a feasible 
ow P with 
ow value at least 1=(2F ), with respe
t to the

instan
e U , 
onsisting of paths of length at most 2F . We are going to 
ombine the initial and �nal

parts of the long paths in O

0

with these \short
uts" in P to obtain the desired short solution.

First, de
rease the 
ows along all paths p 2 O by a fa
tor of 1=(1 + �) so that we have room

to a

ommodate the new short paths that will repla
e the paths in O

0

. These new short paths are


onstru
ted in the following way:

For every path p 2 O

0

, we repla
e p by L 
ows S

p;i

, i = 1; : : : ; L. Ea
h 
ow S

p;i


onsists of two

parts:

1. f

p

=(L(1 + �)) units of 
ow between a

p;1

and a

p;i

along p, and f

p

=(L(1 + �)) units of 
ow between

b

p;i

and b

p;L

along p, and

2. the 
ow between a

p;i

and b

p;i

along the paths from P (
orresponding to the request fa

p;i

; b

p;i

; f

p

g 2

U), now with total 
ow of f

p

=(L(1 + �)).

For ea
h i, the length of ea
h path in the 
ow S

p;i

is at most L + 2 � F , and f

P

=(L(1 + �)) units of


ow are shipped along ea
h 
ow S

p;i

. Summed over all i = 1; : : : ; L, we have f

p

=(1 + �) units of 
ow

between s

p

= a

p;1

and t

p

= b

p;L

, whi
h is as high as the original 
ow through p redu
ed by 1=(1 + �).

Hen
e, we 
an repla
e p by the 
ows S

p;i

without 
hanging the amount of 
ow from s

p

to t

p

.

Now, it holds for every edge e that the 
ow traversing e due to the paths in O is at most 
(e)=(1+�),

and due to the short
uts in P is at most

X

p2P: e2p

f

p

L(1 + �)

�

2F

L(1 + �)

� 
(e) =

� � 
(e)

1 + �

;

sin
e

X

p2P: e2p

f

p

2F

� 
(e) :

Thus, the 
ows in O and P sum up to at most 
(e) for an edge e. Therefore, the modi�
ation yields a

feasible 
ow satisfying the desired properties. ut

Multiroute 
ows and 
uts. For simpli
ity we will slightly overload the term k-system, de�ned

in the introdu
tion, and we will use it to also denote a 
ow along k edge disjoint paths from s to t,

ea
h path 
arrying the same amount of 
ow. A unit k-system is a k-system that 
arries one unit of


ow along ea
h path, in total k units of 
ow. A k-
ow is a (single or multi
ommodity) 
ow that is a

non-negative linear 
ombination of unit k-systems ([7℄, 
f. [23, 2℄). The size of a k-system is the total

number of edges used by the k paths. The size of a k-system is, in a manner of speaking, the length of

the k-system; it has nothing to do with the amount of a 
ow 
arried by it. Figure 1 gives an example

of a 3-
ow.

For a single 
ommodity, an s � t 
ut is a partition of verti
es V into two parts S and

�

S = V n S

su
h that s 2 S and t 2

�

S. It will be 
onvenient to view the 
ut as a set of edges f(u; v) j u 2 S ^ v 2

�

Sg = fe

1

; : : : ; e

l

g. The 
apa
ity of the 
ut is equal to

P

l

i=1


(e

i

). The k-
apa
ity of a 
ut fe

1

; : : : ; e

l

g

is de�ned as the maximum k-
ow in a simpli�ed network made up just of a sour
e and a destination

verti
es dire
tly 
onne
ted by l edges with respe
tive 
apa
ities 
(e

1

); : : : ; 
(e

l

). Note that 1-
apa
ity

of a 
ut 
orresponds to the 
apa
ity of the 
ut. Sometimes we will talk about a k-
ut instead of a 
ut

to stress that we are interested in the k-
apa
ity of the 
ut.

5



shared edge

Every edge 
apa
ity is 1.

3-system a

3-system b

vertex

s

t

Figure 1: a and b are two 3-systems sharing one edge. The size of a is 11 and the size of b is 13. Assuming

a 
ow of 0:3 units through ea
h path of a and a 
ow of 0:4 units through ea
h path of b, the total 3-
ow

between s and t is 0:3� 3 + 0:4� 3 = 2:1 units.

Lemma 2.3 (k-
apa
ity of a 
ut [7℄) Given a 
ut with l edges with 
apa
ities 


1

; : : : ; 


l

su
h that




i

� 


i+1

(i.e., nonin
reasing order), its k-
apa
ity is equal to

min

j=0;:::;k�1

k

k � j

l

X

i=j+1




i

:

The 
elebrated result about the duality of simple 
ows and 
uts holds for k-
ows and k-
uts, too.

Lemma 2.4 (Duality of single 
ommodity k-
ows and k-
uts [7, 23℄) The maximum feasible

k-
ow in G is equal to the 
apa
ity of the minimum k-
ut in G.

Probabilisti
 tools.

Lemma 2.5 (Cherno� Bound) Consider any set of n independent binary random variables X

1

; : : : ;X

n

.

Let X =

P

n

i=1

X

i

and � be 
hosen so that � � E[X℄. Then it holds for all Æ � 0 that

Pr[X � (1 + Æ)�℄ � e

�min[Æ

2

; Æ℄��=3

:

Lemma 2.6 (Lov�asz Lo
al Lemma) Let A

1

; : : : ; A

n

be \bad" events in an arbitrary probability

spa
e. Suppose that ea
h event is mutually independent of all other events but at most d, and that

Pr[A

i

℄ � p for all i. If ep(d+ 1) � 1, then the probability of no bad event o

urring is greater than 0.

Theorem 2.7 (Algorithmi
 LLL [29, 34℄) Let T = ft

1

; : : : ; t

n

g be a set of independent random

trials, and let A = fA

1

; : : : ; A

m

g be a set of events su
h that ea
h A

i

is determined by the out
ome of

the trials in T

i

� T . For any t

j

1

; : : : ; t

j

k

2 T

i

and any w

j

1

; : : : ; w

j

k

in the domains of t

j

1

; : : : ; t

j

k

, let

Pr

�

[A

i

j t

j

1

= w

j

1

; : : : ; t

j

k

= w

j

k

℄ be the probability of A

i


onditional on the event that the out
omes of

t

j

1

; : : : ; t

j

k

are w

j

1

; : : : ; w

j

k

.

If we have the following:

1. for ea
h 1 � i � m, Pr[A

i

℄ � p;

2. for ea
h T

i

, there are less than d other T

j

's su
h that T

i

\ T

j

6= 0;

6



3. for ea
h 1 � i � m, jT

i

j � w;

4. p � d

9

� (1=2e)

3

;

5. p � w � 1;

6. for ea
h 1 � j � n, we 
an 
arry out the random trial in time �

1

;

7. for ea
h 1 � i � m, t

j

1

; : : : t

j

k

2 T

i

and w

j

1

; : : : ; w

j

k

in the domains of t

j

1

; : : : t

j

k

, we 
an 
ompute

every Pr

�

[A

i

j �℄ in time �

2

;

then there is a randomized O(n � d � (�

1

+ �

2

) + n(�

1

� log

O(1)

m+ 2

(log logm)

O(1)

))-time algorithm whi
h

will �nd out
omes for t

1

; : : : ; t

n

su
h that none of the events in A holds.

3 A Bounded Length Version of Menger's Theorem

In this se
tion we give an upper bound on the size of a minimum k-system 
onne
ting any two k-


onne
ted verti
es. Our bound is in terms of the 
ow number F of a graph: we show that any two

k-
onne
ted verti
es are 
onne
ted by k disjoint paths of average length O(kF ), that is, by a k-system

of size O(k

2

F ). To show this we �rst prove a mu
h more general lemma whi
h implies the bound.

The lemma in its general form will serve as a 
ru
ial tool for the approximation algorithm for the

k-EDPCOL in Se
tion 4. The lemma is of a similar 
avor as the Shortening lemma and is, in a sense,

a generalization of it: what the Shortening lemma states about 
ows, Lemma 3.1 states about k-
ows.

Lemma 3.1 Given a unit network with 
ow number F , a set T of pairs of verti
es and a feasible 
ow

F su
h that there are k units of 
ow between ea
h pair from T , there exists a k-
ow

�

F su
h that

� there are k units of 
ow between ea
h pair from T ,

� the 
ow through every edge is at most 4,

� ea
h k-system used in

�

F has size at most 20 � k

2

F .

Moreover, if the k-
ow F is integral (i.e., ea
h pair from T is 
onne
ted by a unit k-system), stronger

bounds hold:

� the 
ow in

�

F through every edge is at most 2, and

� ea
h k-system used in

�

F has size at most 8 � k

2

F .

Proof. For k = 1 the 
laim follows immediately from the Shortening lemma. Thus, we assume that

k � 2 for the rest of the proof. A k-system is 
alled small if its size is at most 20 � k

2

F .

Sin
e F 
an be viewed as a feasible solution to an instan
e of the 
on
urrent multi
ommodity 
ow

problem, the Shortening lemma with parameter � = 1=(2k) gives a feasible 
ow F

0

with 
ow paths of

length at most 4kF + 2F . We s
ale up the 
ow F

0

by a fa
tor of 1 + 1=(2k) to ensure that the total

amount of 
ow between ea
h pair of verti
es from T is equal to k again. The 
ow in F

0

may not be

feasible but the 
ow in ea
h of the edges is at most 1 + 1=(2k).

The goal is to transform the 
ow for ea
h 
ommodity i into a k-
ow along small k-systems, while

keeping the amount k units of the 
ow and not violating the 
apa
ity 
onstraints \mu
h". For a while,

we will 
onsider the 
ow for ea
h 
ommodity i separately. Let F

i

denote the 
ow in F

0


orresponding

to the 
ommodity i.

Claim 3.2 The 
ow F

i


an be de
omposed into a k-
ow of

k+1

2

units and a 
ow of

k�1

2

units.
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Proof. Consider a network G

i

that has the same set of verti
es and edges as G, but the 
apa
ity of an

edge e in G

i

is equal to the 
ow through e in F

i

. We are going to show that the minimum k-
apa
ity

of an s

i

� t

i


ut in G

i

is at least (k + 1)=2. By Lemma 2.4, this implies Claim 3.2,

Let 


1

� 


2

� : : : � 


l

be the 
apa
ities of edges in an s

i

� t

i


ut with minimum k-
apa
ity in G

i

.

From the 
hara
terization of the k-
apa
ity of a 
ut given in Lemma 2.3 we know that its size is equal

to

min

j=0;:::;k�1

k

k � j

l

X

h=j+1




h

:

By the 
onstru
tion of G

i

,

P

l

h=1




h

� k and 


h

� 1+1=(2k) for every h. This implies, for every j < k,

that

k

k � j

l

X

h=j+1




h

�

k

k � j

�

k � j � (1 +

1

2k

)

�

= k �

1

2

�

j

k � j

�

k + 1

2

;

whi
h 
on
ludes the proof. ut

Given the k-
ow from Claim 3.2 with

k+1

2

units of 
ow, let F

0

i

be a subset of small k-systems

parti
ipating in this k-
ow. So far, there is no guarantee that su
h small k-systems exist. We will

prove that F

0

i

is not empty and, moreover, that the k-systems in F

0

i


umulatively 
arry at least

k+2

4

units of 
ow. This will almost 
omplete the proof, sin
e putting together the k-
ows F

0

i

for all i and

s
aling them up by four, we get the desired k-
ow

�

F .

Let us 
onsider the total volume of the network G

i

, that is, the sum

P

e2E

f

i

(e), where f

i

(e) denotes

the amount of 
ow belonging to 
ommodity i through edge e in F

0

. Due to the use of the Shortening

lemma at the beginning of the proof, ea
h path between s

i

and t

i

is at most 4kF + 2F edges long and

the total 
ow being 
arried by these paths is k units. The total volume of 
ow between s

i

and t

i

is at

most 4k

2

F + 2kF � 5k

2

F in F

0

, whi
h is also the total volume of G

i

. Thus, the total 
ow through

k-systems from F

i

of size larger than 20k

2

F is at most k=4. We 
on
lude that at least

k+1

2

�

k

4

=

k+2

4

units of 
ow are 
arried by k-systems from F

0

i

.

At this point we put together the k-systems from all F

0

i

, s
ale them up by

4k

k+2

and denote the result

by

�

F . By 
onstru
tion, the resulting 
ow is at ea
h edge e at most

4k

k+2

� (1+

1

2k

) � 4, the 
ow for ea
h


ommodity is k units and only small k-systems are involved.

Better bounds for integral k-
ow F . To improve the bounds we dip into the proof of the Short-

ening lemma. We say that an edge is a base edge for 
ommodity i if e is one of the �rst L=2 = F=� or

the last L=2 = F=� edges on some of the k paths between s

i

and t

i

in S. The observation is that the


ow in F

i

on any edge that is not base is at most �, every path in F

i

uses at most 2F non-base edges,

and for integral F , there are at most 4k

2

F base edges in G

i

. Thus, the total 
apa
ity of non-base edges

in G

i

is at most 2kF , and therefore, the total 
ow through k-systems from F

i

that use more than 8kF

non-base edges is at most k=4. Utilizing the fa
t that there are at most 4k

2

F base edges, we 
on
lude

that at least (k + 2)=4 units of 
ow from F

i

are 
arried by k-systems of size at most 8k

2

F .

The other observation from the original proof of the Shortening lemma is that for integral F , the


ow on every edge e in F

0

is either at most �, or at least 1 and a unit of this 
ow belongs to one


ommodity. We also note, that for every edge e and every 
ommodity i, the 
ow through e in F

0

i

is at

most 1=2. Thus, for every edge e the sum of 
ows in all F

0

i

through e is at most 1=2 + 1=(2k), and the

�nal 
ow through e in

�

F is at most

4k

k+2

� (

1

2

+

1

2k

) � 2. ut

Applying Lemma 3.1 on a single pair of k-
onne
ted verti
es and using just any one of the �nal

k-systems to 
arry all k units of 
ow gives the following result:
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Corollary 3.3 (Bounded length Menger's Theorem) Given a graph G with 
ow number F and

a pair of k-
onne
ted verti
es u and v, there are k-edge disjoint paths between u and v of average length

8k � F .

Sin
e there are graphs with diameter 
(F ) [26℄, the result of Corollary 3.3 is asymptoti
ally the

best possible for general graphs, up to a fa
tor of k .

An improvement for the k-EDP. Let us re
all the online k-Bounded Greedy Algorithm (k-BGA)

for the k-EDP [5℄:

k-BGA(L):

Given a request r,

� if it is possible to realize r by a k-system q of size at most L su
h that q is edge disjoint

with all previously sele
ted k-systems, then a

ept the request r and sele
t q for it,

� else reje
t r.

Note that the problem of �nding k edge-disjoint paths of total length at most L between the same

pair of verti
es 
an be redu
ed to the 
lassi
al min-
ost (integral) 
ow problem, whi
h 
an be solved by

standard methods in polynomial time [12, Chapter 4℄. The k-BGA 
an therefore also be used o�ine as

an approximation algorithm. It is worth mentioning that if the task were to �nd k edge disjoint paths

ea
h of length at most L=k, the problem would not be tra
table (
f. [11℄).

The previous best 
ompetitive ratio O(k

3

F ) was a
hieved by the k-BGA with parameter L =

20k

3

F [6℄. Lemma 3.1 yields a better result.

Corollary 3.4 Given a graph G with 
ow number F , the 
ompetitive ratio for the k-EDP of the k-BGA

with parameter L = 8k

2

F is O(k

2

F ).

Proof. The point is that Lemma 3.1 
an be used to modify the optimal o�ine solution into a solution

that uses (fra
tional) k-systems of size 8k

2

F only. Then a standard 
harging argument (
.f. [6℄) yields

the desired 
ompetitive ratio. ut

4 An Algorithm for k-EDPCOL

This se
tion des
ribes a randomized approximation algorithm for k-EDPCOL. We begin in Se
tion 4.1

by a linear relaxation for a version of k-EDPCOL that restri
ts the size of k-systems used and we relate

the optimal value of this problem to the optimal value of k-EDPCOL. Se
tion 4.2 outlines the a
tual

algorithm and in Se
tion 4.3 we �ll in the details of the algorithm. Throughout this se
tion, whenever

we talk about an interse
tion, we mean an interse
tion on an edge.

4.1 Relaxation

Let us start with a \relaxation" of the problem. We put relaxation in quotes sin
e the linear program

des
ribed below is a relaxation of the k-EDPCOL regarding the integrality of the k-systems, but is

more restri
tive than k-EDPCOL regarding the size of the k-systems.

Let T � V �V be an instan
e of the k-EDPCOL problem on a graph G(V;E). For ea
h (a

j

; b

j

) 2 T

let P

j

denote the set of all k-systems of size at most 8k

2

F between a

j

and b

j

and let P =

S

P

j

. Consider

the following linear program where we have a variable x(s) for ea
h k-system s from P denoting the

9



1=k fra
tion of 
ow sent along the k-system (that is, there is a 
ow x(s) along ea
h of the k paths of

s) and a variable 
 denoting a half of the maximum 
ow through an edge in the network:

minimize 
 s:t: (1)

X

s2P:e2s

x(s) � 2 � 
 8e 2 E (2)

X

s2P

j

x(s) � 1 8j (3)

x(s) � 0 8s 2 P (4)

Lemma 4.1 The optimal fra
tional solution to the linear program is a lower bound for the optimal

integral solution for k-EDPCOL.

Proof. Consider the optimal integral solution to the 
oloring problem and let C be the number of


olors used. We are going to shorten the k-systems for ea
h 
olor separately. Sin
e the k-systems of

the same 
olor are disjoint, it is possible to apply Lemma 3.1 to shorten them. Now we merge together

the modi�ed 
ows for all C 
olors and we get a feasible fra
tional solution of LP (1)-(4), that is, a

(multi
ommodity) k-
ow 
onsisting of only small k-systems. Sin
e the maximum 
ow through an edge

is 2C by 
onstru
tion, the proof is 
ompleted. ut

Solving the linear program. Sin
e the linear program has exponentially many variables, it is not

possible to solve it dire
tly in polynomial time. It would be possible to formulate it in a di�erent way

with only polynomially many variables (whi
h would require some e�ort sin
e global properties of the


ow, the disjointness of the k paths of ea
h k-system, et
. have to be guaranteed) and then solve it as

a general LP. Another option is to exploit the equivalen
e between the optimisation and the separation

problems and to use the Ellipsoid algorithm (a violated inequality 
an be found in polynomial time

by a minimum 
ost 
ow algorithm). Here we use a more eÆ
ient way. Sin
e we only aim at an

approximation algorithm for the k-EDPCOL, it is suÆ
ient to start with an approximation for our

linear program. A good approximation for the linear program (1)-(4) 
an be obtained in polynomial

time using the approximation algorithms for the 
on
urrent multi
ommodity 
ow problem by Garg

and K�onemann [18℄ or by Fleis
her [16℄. Basi
ally, the only modi�
ation is that a pro
edure for �nding

a shortest path is repla
ed by a pro
edure for �nding a smallest k-system, and only k-systems of size

at most 8k

2

F are 
onsidered. The smallest k-system 
an be eÆ
iently 
omputed using algorithms for

minimum 
ost 
ow problems. We also note that the approximate solutions obtained by these algorithms

use at most m di�erent k-systems for ea
h 
ommodity. For easy later referen
e we state this formally

as a lemma (the 
onstant 3=2 stated here is good enough for our purposes, even though mu
h better

approximations are possible).

Lemma 4.2 It is possible to �nd a 3=2 approximation for the linear program (1)-(4) in polynomial

time. Moreover, at most m di�erent k-systems per 
ommodity are used in the approximation.

We stress on
e again that only short k-systems are used in the LP (1)-(4).

4.2 Algorithm

In a high level des
ription, the stru
ture of our algorithm is as follows:

1. Solve the LP (1)-(4) approximately. By Lemma 4.2 this 
an be done eÆ
iently, and by Lemma 4.1,

the maximum 
ow C through an edge in the approximate solution is (roughly) a lower bound on

the number of 
olors needed in the optimal integral solution of k-EDPCOL.
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2. Round the fra
tional solution to an integral one. In some 
ases (e.g., graphs with 
ow number

log n and more, or instan
es of k-EDPCOL with jT j �

m log n

k

), this 
an be done dire
tly using the

rounding s
heme of Raghavan and Thompson [32℄. In other 
ases an iterative rounding method


an be utilized (
f. [26℄). In both 
ases, the aim of the rounding pro
ess is to guarantee that

every k-system interse
ts with at most O(Ck

2

F ) other k-systems at the end of the rounding.

3. Now, the k-systems 
an be easily 
olored with O(Ck

2

F ) 
olors (e.g., greedy 
oloring) whi
h is

within O(k

2

F ) from optimum.

The only missing part is the rounding pro
edure. We will des
ribe it in the next subse
tion. Here we

just summarize the main result.

Theorem 4.3 Given a graph G with 
ow number F , there exists a randomized O(k

2

F )-approximation

algorithm for the k-EDPCOL problem on G.

4.3 Randomized rounding

Sin
e the optimal solution has to use at least one 
olor, we assume that the approximate fra
tional

solution is at least one.

Lemma 4.4 Given a feasible fra
tional solution to the linear program (1)-(4) from Lemma 4.2, with

obje
tive value C � 1, there exists a randomized polynomial time algorithm that rounds it to an integral

solution su
h that ea
h k-system in it interse
ts with at most O(Ck

2

F ) other k-systems.

Proof. Let us start with the simpler 
ase that 
an be solved dire
tly by the method of Raghavan and

Thompson [32℄. We assume that F � jT j �

m log n

k

whi
h in
ludes both the previously mentioned 
ases

F � log n and jT j �

m log n

k

. Observing that C �

kjT j

m

we have CF � logn.

Consider the following random experiment. Independently for ea
h 
ommodity, 
hoose exa
tly one

of its k-systems, a

ording to the probability distribution 
orresponding to the 
ows (i.e., a k-system

s with 
ow k � x(s) is 
hosen with probability x(s)).

For an edge e, the expe
ted number E[n

e

℄ of 
hosen k-systems passing through e after this exper-

iment, is 2C at most. By linearity of expe
tation, the expe
ted number E[n

s

℄ of 
hosen k-systems

interse
ting with a 
hosen k-system s is bounded by

E[n

s

℄ �

X

e2s

E[n

e

℄ � 16k

2

FC :

For a 
hosen k-system s, this implies, by the Cherno� bound

Pr[n

s

� 32k

2

FC℄ � e

�16k

2

FC=3

:

We distinguish two 
ases. If jT j= log jT j � m, we further bound this probability by n

�8k

2

=3

= o(jT j

�1

)

(using the observation that CF � logn) and 
on
lude that with high probability no 
hosen k-system

interse
ts with more than 32k

2

FC other 
hosen k-systems. Similarly, if jT j= log jT j > m, the probability

Pr[n

s

� 32k

2

FC℄ 
an be upper bounded by jT j

�16k

3

F jT j

3m log jT j

= o(jT j

�1

) and again, we 
on
lude that with

high probability no 
hosen k-system interse
ts with more than 32k

2

FC other 
hosen k-systems. This


ompletes the des
ription of the rounding pro
edure in the simpler 
ase.

In the rest of the se
tion we assume that F � n and jT j � m log n (we 
an a
tually assume more

but this will be suÆ
ient for our purposes) and we are going to des
ribe an iterative rounding pro
ess

that will result in a set of k-systems for T su
h that ea
h of them interse
ts at most O(k

2

FC) others.
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Initially, we have fra
tional k-systems with k-units of 
ow for ea
h 
ommodity. We 
annot round

the fra
tional k-systems into integral ones in one step sin
e the probability that a 
hosen k-system

interse
ts with more than 32k

2

FC other 
hosen k-systems would be too large to guarantee the desired

solution. The idea is to round the k-systems only partially in ea
h step and to guarantee that the

dependen
y between them keeps de
reasing. In other words, in ea
h iteration we want to de
rease the

number of k-systems that are used for ea
h 
ommodity while keeping a total 
ow of k units for ea
h


ommodity, and, in the meantime de
reasing the maximum number of k-systems that interse
t any

other k-system. To help quantify this dependen
y, for a k-system s that survives through iteration i,

let n

i

s

denote the number of other k-systems interse
ting with s at the end of iteration i.

We will des
ribe the rounding pro
ess in two steps. First, we show using the Lov�asz Lo
al Lemma

that there exists a way to round the fra
tional solution to an integral one. Then, we will explain that

the Algorithmi
 LLL 
an be used instead, yielding an eÆ
ient randomized rounding algorithm.

Let v

0

= lnm and v

i+1

= ln

2

v

i

, for i > 0. Before starting the rounding pro
ess, we split every

k-system with 
ow f > k=v

0

into df � v

0

=ke k-systems, ea
h with 
ow k=v

0

. We do this for te
hni
al

reasons. Splitting this way in
reases the 
ow through any edge by 1 + 1=v

0

at most, (sin
e C is

an approximation, we will ignore this as it 
an be hidden in the 
onstant), and the total number of

k-systems in
reases by v

0

, at most. Sin
e the approximate solution from Lemma 4.2 uses at most m k-

systems with non-zero 
ow for ea
h request, in total there are by now at most v

0

m

2

logm � m

2

log

2

m

k-systems.

For simpli
ity, we will assume in the rest of the se
tion that v

i+1

divides v

i

, for all i for whi
h v

i+1

will be de�ned, and that v

0

is integral (without these assumptions, additional 
eilings 
an be used to

avoid these requirements and they will only in
rease the 
onstant hidden in the O notation).

Initial rounding (iteration i = 0): For ea
h request from T , 
onsider the following random experi-

ment: for ea
h 
ommodity, organize its k-systems with 
ow less than k=v

0

into groups in su
h a way

that the total 
ow in ea
h group is exa
tly k=v

0

(for this purpose, possibly split some k-systems). Inde-

pendently for ea
h group, 
hoose exa
tly one of its k-systems, a

ording to the probability distribution


orresponding to the 
ows (i.e., a k-system s with 
ow k � x(s) is 
hosen with probability x(s) � v

0

).

Now, we use a similar argument as before. For an edge e, the expe
ted number E[n

0

e

℄ of 
hosen k-

systems passing through e after the initial iteration, is 2Cv

0

. By linearity of expe
tation, the expe
ted

number E[n

0

s

℄ of 
hosen k-systems interse
ting with a 
hosen k-system s is bounded by

E[n

0

s

℄ �

X

e2s

E[n

0

e

℄ � 16k

2

FCv

0

:

For a 
hosen k-system s, this implies, by the Cherno� bound (to simplify notation, we introdu
e a new

variable D = 16k

2

FC) that

Pr[n

0

s

� 2Dv

0

℄ � e

�Dv

0

=3

= m

�D=3

:

Sin
e e �m

�D=3

� (1 +m

2

log

2

m) < 1, the Lov�asz Lo
al Lemma guarantees that there exists a random


hoi
e su
h that the maximum number of k-systems interse
ting any other k-system is at most 2Dv

0

.

We send k=v

0

units of 
ow along the 
hosen k-systems (that is, there is a 
ow 1=v

0

along ea
h path)

and zero along the other k-systems.

Let a

0

= 2, and for i � 1 let a

i

= (1 + 1=

4

p

v

i�1

)a

i�1

. Observe that all a

i

's are bounded by an

absolute 
onstant (using 1 + x � e

x

, e.g.).

Intermediate rounding (iteration i > 0): The input for iteration i is a set of k-systems su
h that

the maximum number of k-systems interse
ting any other k-system is at most a

i�1

Dv

i�1

, ea
h k-system


arries 
ow k=v

i�1

, and there are v

i�1

k-systems for ea
h request.
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Similarly as in the initial rounding, 
onsider the following random experiment: for ea
h request,

organize all its k-systems into groups, ea
h of total 
ow exa
tly k=v

i

. Independently for ea
h group,


hoose uniformly at random exa
tly one of its k-systems. Our goal is to show that there exists a 
hoi
e

su
h that at the end of iteration i (whi
h is the beginning of iteration i+ 1), the maximum number of

k-systems interse
ting any other k-system is at most a

i

Dv

i

, ea
h k-system 
arries 
ow k=v

i

, and there

are v

i

k-systems for ea
h request. Figure 2 s
hemati
ally outlines the intermediate rounding steps.

Invariant for iteration i

Flow per k-system: k=v

i�1

Number of overlaps: a

i�1

Dv

i�1

Rounding

) Make groups of k-systems, ea
h

of total 
ow k=v

i

) For ea
h group, randomly 
hoose

one k-system to 
arry all k=v

i


ow

v

i+1

 ln v

i

a

i

 (1 + 1=

4

p

v

i�1

) � a

i�1

i i+ 1

Figure 2: S
hemati
: Intermediate rounding

Sin
e at the end of iteration i�1 ea
h k-system interse
ts with at most a

i�1

Dv

i�1

other k-systems,

and sin
e ea
h of the k-systems in iteration i � 1 survives to iteration i with probability v

i

=v

i�1

, we

have

E[n

i

s

℄ � a

i�1

Dv

i

:

Using the Cherno� bound, it is possible to say more:

Pr[n

i

s

� (1 + 1=

4

p

v

i

)a

i�1

Dv

i

℄ � e

�

p

v

i

a

i�1

D=3

= v

�a

i�1

D=3

i�1

:

Now we apply the Lov�asz Lo
al Lemma. For a group g of k-systems, let A

g

denote the event

that the k-system 
hosen from g in iteration i interse
ts with more than (1 + 1=

4

p

v

i

)a

i�1

Dv

i

other

k-systems, at the end of iteration i. The event A

g

depends only on the random out
omes in all groups

that 
ontain a k-system that interse
ts with a k-system from the group g. In ea
h group there are

v

i�1

=v

i

k-systems, ea
h of them interse
ts with at most a

i�1

Dv

i�1

other k-systems. In total, the event

A

g

depends on at most (a

i�1

Dv

i�1

) � v

i�1

=v

i

other events A

g

0

. Sin
e

e � v

�a

i�1

D=3

i�1

� (a

i�1

Dv

2

i�1

=v

i

+ 1) < 1 ;

there exists a 
hoi
e su
h that the maximum number of k-systems interse
ting any other k-system is

at most a

i

Dv

i

. We send k=v

i

units of 
ow along ea
h 
hosen k-system and nothing along all the other

k-systems. Clearly, this guarantees the desired input for the next iteration.

Final rounding: In ea
h iteration, the maximum number of k-systems interse
ting any other k-

system de
reases exponentially. Thus, after several iterations, the maximum number of k-systems

interse
ting other k-system is at most poly(kF ) while there is still a 
ow of k units for ea
h request.

At this point we perform the randomized rounding on
e more: for ea
h request, 
hoose uniformly at

random one of its k-systems. Sin
e the dependen
y between the k-systems is bounded by poly(kF ),

the Lov�asz Lo
al Lemma guarantees existen
e of the desired k-systems.
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To 
omplete the proof, it is suÆ
ient to show that the Algorithmi
 LLL 
an be used instead of

the Lov�asz Lo
al Lemma in ea
h iteration. In our 
ase in iteration i, both the random trials and

the (bad) events will be indexed by the groups of k-systems: t

g

is the random trial of 
hoosing one

k-system from group g and A

g

is the event that the k-system 
hosen in group g interse
ts with more

than (1 + 1=

4

p

v

i

)a

i�1

k

2

FCv

i

other k-systems. Observe, that

� ea
h random trial 
an be 
arried out time �

1

= O(v

i�1

=v

i

)

� Pr

�

[A

i

j�℄ 
an be 
omputed in time �

2

= O(k

2

FCv

2

i�1

) = poly(m)

� for p = v

�a

i�1

D=3

i�1

, w = a

i�1

v

2

i�1

=v

i

and d = w

2

, all other assumptions of the Algorithmi
 LLL

are satis�ed.

Thus, we 
an use the Algorithmi
 LLL in ea
h iteration. ut

5 Con
lusion and Open Problems

One of the main 
ontributions of this paper is the result on \short" k-
ows for multi
ommodity prob-

lems. There is an interesting open question here: Is it possible to generalize Lemma 3.1 to networks

with nonuniform edge 
apa
ities? In our proof of this lemma (namely in the proof of Claim 3.2) the

fa
t that all original 
apa
ities are unit is needed to prove that there exists a 
ut of large k-
apa
ity

for ea
h 
ommodity. Can this assumption be avoided?

A 
orollary of this general result is a new upper bound, O(kF ), on the average path length between

two k-
onne
ted verti
es a graph with 
ow number F . There is, however, still a gap between this

upper bound and the obvious lower bound of 
(F ). We think that the gap might be an artifa
t of the

analysis that 
an be removed. This would lead to an O(kF ) approximation ratio both for the k-EDP

and k-EDPCOL problems.

The presented algorithm for k-EDPCOL problem is an o�ine one. This immediately brings in mind

a question whether k-systems for the requests 
an be pi
ked up and 
olored online? Is it possible to

a
hieve a O(k

2

F ) 
ompetitive ratio or even the O(kF ) ratio?
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