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Abstract

In the minimum path coloring problem, we are given a graph and a set of pairs of vertices of
the graph and we are asked to connect the pairs by colored paths in such a way that paths of the
same color are edge disjoint. In this paper we deal with a generalization of this problem where
we are asked to connect each pair by k edge disjoint paths of the same color. The objective is to
minimize the number of colors. The reason for multiple paths between the same pair of vertices is to
ensure fault tolerance of the connections. We propose an O(k*F) = O(k? Aa~! logn) approximation
algorithm for this problem where F' is the flow number of the graph, A is the maximum degree and
« is the expansion. This is an improvement even for the special case k = 1 where, to our knowledge,
the best previously known bound is weaker by a factor of logn.

The underlying problem is that of finding several disjoint paths between a given pair of vertices.
Menger’s theorem provides a necessary and sufficient condition for the existence of k such paths.
However, it does not say anything about the length of the paths although in communication problems
the number of links used is an issue. We show that any two k-connected vertices are connected by k
edge disjoint paths of average length O(kF') which improves an earlier result of Galil and Yu [17] for
several classes of graphs. In fact, this is only a corollary of a stronger result for multicommodity flow
on networks with unit edge capacities: any multicommodity flow with & units for each commodity
can be rerouted such that the flow for each commodity is shipped through k-tuples of edge disjoint
paths of average length O(kF') without exceeding the edge capacities significantly.

1 Introduction

The goal of this paper is to design efficient and reliable (fault-tolerant) algorithms for network com-
munication problems. We consider optical networks in which faults may appear on any link (edge),
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possibly on several links. The main idea is to reserve several disjoint communication channels (paths)
for a single connection (request). If a fault appears on some of the links then it is still possible to keep
the connection alive along the remaining paths. The necessary condition for this strategy to work is
that the paths reserved for the same connection (request) are edge disjoint.

To be more specific, we consider a generalization of the well known Minimum Path Coloring Problem
(MPCP) [31], namely the coloring k-edge disjoint path systems problem (k-EDPCOL): An undirected
graph G = (V, F) and a (multi) set of requests T' = {(s;,t;)|si,t; € V'} are given. For each request
i, find k edge disjoint paths (called a k-system, for short) that connect s; and #;. Assign a color to
each k-system such that no two k-systems that share an edge, have the same color. The objective is
to minimize the number of colors used.

The minimum path coloring problem (i.e., 1-EDPCOL in our terminology), which is a variant of
the edge disjoint paths problem (EDP), is known to be NP-complete [15]. Therefore, we deal with
approximation algorithms in this paper. Because the best possible approximation for the 1-EDPCOL
on directed graphs, in terms of n = |V, is roughly Q(y/n) (by a straightforward reduction from the
hardness of the EDP [20]) we parametrize the performance of our algorithms by the flow number F
or the expansion « of the graph, instead of the number of edges or vertices. The definitions of the
expansion and of the flow number are postponed to the next section, here we just recall that the flow
number is always bounded by O(Aa~!logn), where A is the maximum degree.

The main algorithmic result of this paper is an O(k*F) = O(k*Aa~"! log n) approximation algorithm
for the k-EDPCOL problem. It is worth mentioning that this is an improvement even for the special
case k = 1: An important observation by Aumann and Rabani [3] for the path coloring problem shows
that any algorithm for the EDP with approximation ratio ¢ can be turned into an algorithm for the
MPCP with approximation ratio O(clogn). Since the best approximation for EDP in terms of F
is O(F) [26], the resulting approximation for 1-EDPCOL is O(F logn) whereas our upper bound on
the approximation ratio is O(F). In a similar way, a recent O(k*F) approximation algorithm for the
k-Edge Disjoint Paths problem (see below) [6] which is a generalization of the EDP, can be turned into
O(k3F logn) approximation algorithm for the k&-EDPCOL. Compared to this the results in this paper
are better by a factor of klogn.

Short Disjoint Paths. The underlying problem of the k-EDPCOL is that of finding £ disjoint paths
between a given pair of vertices. Menger’s theorem provides a necessary and sufficient condition for
existence of k such paths. However, it does not say anything about the length of these paths. Even
though the length of the paths in all-optical networks is not important with respect to the transmission
time, links are rare resources [6] and the length of the paths is important with respect to the number
of realized connections and also with respect to the security of the connections [4].

Galil and Yu [17] worked on short length versions of Menger’s theorem and proved that for any
two k-connected vertices in a graph, there are k edge-disjoint paths between them of average length
O(n/VE). Henzinger et al. [21] gave a simpler proof of the same bound. Karger and Levine [22]
generalized this result in two directions. First, they proved that for any two vertices in a unit-capacity
graph with a flow v between them, the v units of flow can be sent along paths of average length
O(n/+/v). Second, they showed that this holds for capacitated graphs as well.

In this paper we take a slightly different approach. Since the O(n/ Vk) bound is very weak for many
graphs (though it is the best possible in general, in terms of k£ and n) we try to give bounds on the path
length in terms of different parameters like the expansion or the flow number F' of the graph. The main
result in this respect is that any two k-connected vertices are connected by k edge disjoint paths of
average length O(kKF). This result falls out as a corollary of a general result regarding multicommodity
flows on networks with unit capacities. Specifically, we show that any multicommodity flow with &



units for each commodity can be rerouted such that the flow for each commodity is shipped through
k-tuples of edge disjoint paths of average length O(kF') while the edge capacities are exceeded by a
constant only. A weaker bound of a similar form, that is, an upper bound of O(k%F) on average path
lengths, was implicitly contained in a recent paper on fault-tolerant routing [6].

The k-EDPCOL problem is related also to the k edge-disjoint paths problem (k-EDP) [6]. In k-EDP,
we are given a graph G = (V, F) and a set of requests T', and the task is to find a maximum subset of
the pairs in T for which it is possible to select paths such that each pair is connected by k edge-disjoint
paths and the paths for different pairs are mutually disjoint. For k = 1, this is the well known edge
disjoint path problem. As a by-product of our results we get an improvement, by a factor of k, on
the online approximation of the k-EDP. We show that there is a deterministic online algorithm with
competitive ratio O(k*F) whereas the best previous bound was O(k*F) [6].

Previous work on path coloring. To fully set out the context of our work, we conclude this section
with a brief discussion of relevant known results about path coloring.

The MPCP was first studied in the context of routing in optical networks [30]. As already men-
tioned, a simple reduction from the disjoint paths problem shows that this is an NP-hard problem on
general graphs. A result of Golumbic and Jamison [19] implies that this problem is NP-complete on
arbitrary tree topologies, although it was later shown that on trees of bounded degree the problem
can be solved efficiently [14]. Erlebach and Jansen showed that path coloring is also NP-complete on
cycles [13]. Note that there are two aspects of the MPCP: path selection and coloring of the chosen
paths. As the path selection on trees (and on cycles) is a trivial task, the above result show that the
coloring alone is hard enough.

One of the first papers on the MPCP was by Aggarwal et al. [1]. They showed that O(logn)
colors are sufficient to route a permutation in hypercubic networks, improving a bound of Pankaj [30].
Raghavan and Upfal [33] gave several approximation algorithms for this problem including a constant
factor approximation for trees, rings and trees of rings. Mihail et al. [28] proved that a constant
factor approximation can also be achieved for directed versions of these topologies. Kleinberg and
Tardos [25] gave an O(logn) approximation algorithm for meshes and other certain classes of planar
graphs. Rabani [31] showed that a constant factor approximation is also possible for mesh topologies,
improving previously known bounds [24, 3]. We refer the reader to a survey by Beauquier et al. [10]
for other results about the path coloring problem.

Bartal and Leonardi [9] gave O(log n) competitive online algorithms for all the topologies mentioned
above (i.e., meshes, trees, rings, ...) and showed that it was not possible to do better for meshes in
the online setting. They also presented an Q(Tg)lgog_n) lower bound on the competitive ratio of any
deterministic algorithm on trees. Later, also a randomized lower bound of Q(logd), for any online
algorithm for the MPCP on a tree with diameter d = O(logn), was given [27]. Bartal et al. [8] showed
that a polylogarithmic competitive ratio is not possible for this problem on general topologies.

Outline of the paper. Since the outlined problems are clearly related to flow problems it is not
surprising that for the analysis of our algorithm we will use some results from this area, e.g., the
Shortening Lemma and the Duality of so-called multiroute flows and cuts. The other techniques that
are used include probabilistic arguments, namely the Chernoff bounds, Lovasz Local Lemma and its
algorithmic version. All these will be reviewed in the next section. Section 3 deals with the short
length Menger’s Theorem and Section 4 with the algorithm for the k-EDPCOL. Section 5 concludes
with a few open problems.

An abstract of this paper appeared in Proceedings of the Fifteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, 2003 [5].



2 Preliminaries

A network is an undirected graph G = (V, E) together with a capacity function ¢ : E — R™. Most of
the time, we consider networks with unit capacity on each edge and we call them unit networks. Let
n = |V|] and m = |E|. We denote the degree of a vertex u in G by deg(u) and by ¢(U,V — U) the sum
of capacities of edges between U and V' — U. The (edge) expansion of a network G is defined as

L dUV-U)
vcv min{|U|, |V - U|}’
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A flow (single- or multi-commodity) is a nonnegative linear combination of unit flows along simple
paths; note that a flow may possibly exceed the edge capacities. A feasible flow is a flow that respects
the capacity constraints. We will slightly overload the term flow and we will use it also to denote the
total amount of the commodity transferred.

In a concurrent multicommodity flow problem on a network G there are [ > 1 commodities, each
with two terminal vertices s;,t; € V and a demand d;. The objective is to maximize the fraction of
the demand that can be shipped simultaneously for all commodities, that is, to find the maximum f
such that is it possible to route f - d; units of commodity 7 between s; and ¢; for each 7 so that the
total amount of all commodities passing through any edge is no greater than its capacity. Given an
instance of the concurrent multicommodity flow problem and a feasible flow F, the flow value of F
is the maximum f such that for each ¢, f - d; units of commodity 7 are shipped between s; and t;.
An instance of a balanced multicommodity flow problem satisfies an additional condition that for each
vertex u the sum of demands between u and other vertices is equal the degree d(u) [26].

Given a unit network G, let Iy denote an instance of the concurrent multicommodity flow problem
in which there is a commodity with demand deg(u) - deg(v)/2|E| for each pair of vertices (u,v). For a
feasible flow S, let D(S) be the length of the longest flow path in S and let C(S) be the inverse of the
flow value of S (i.e., the maximum, over all commodities, of the flow divided by the demand). Then
the flow number F of G is the minimum of max{D(S), C(S)} over all feasible solutions S of I [26]. We
always have F' = O(Aa~!logn), where A is the maximum degree of G, but sometimes F is smaller by
a factor A or logn [26]. To give at least a few examples, the flow number of constant degree expanders,
hypercubes, butterflies etc. is O(logn), F(2D-mesh) = O(y/n), F(3D-mesh) = O(/n), F(K,) = O(1).

Lemma 2.1 (Shortening Lemma [26]) For any network with flow number F it holds: for any € €
(0,1] and any feasible flow S with a flow value of f, with respect to an instance of the concurrent
multicommodity flow problem, there exists a feasible flow 8" with a flow value f/(1+ €) that uses paths
of length at most 2 - F(1 + 1/e).

To prove the second part of Lemma 3.1 in the next section, we will use the construction from the
original proof of the Shortening Lemma. Therefore, for the sake of completeness, we will provide the
proof of the Shortening lemma [26].

Proof. Let O denote the set of paths in the flow S with the flow value f and let @' C O consist of all
paths from O that are longer than L, for L = 2 - F/e. We are going to shorten the paths in O at the
cost of slightly decreasing the satisfied demand of each commodity. To do so, we need the following
lemma:

Claim 2.2 [26] For any network G with flow number F and any instance of the balanced multicom-
modity flow problem for G, there exists a feasible flow with flow value 1/2F consisting of paths of length
at most 2F.



For a path p € O between s, and t,, let ap1 = Sp,ap2,...,ap 1 denote its first L vertices and
bpi,.-.,bp—1,bp 1, = t, its last L vertices and let f, be the flow along p. Then the set U =
Upeor UX {ap.i,bpi» fp} is (a subset of) an instance of the balanced multicommodity flow problem.
Thus, by Claim 2.2 there exists a feasible flow P with flow value at least 1/(2F"), with respect to the
instance U, consisting of paths of length at most 2F. We are going to combine the initial and final
parts of the long paths in @’ with these “shortcuts” in P to obtain the desired short solution.

First, decrease the flows along all paths p € O by a factor of 1/(1 + €) so that we have room
to accommodate the new short paths that will replace the paths in O'. These new short paths are
constructed in the following way:

For every path p € O', we replace p by L flows Sy ;, i = 1,...,L. Each flow Sy; consists of two
parts:

L. fp/(L(1 4+ €)) units of flow between a,; and a,; along p, and f,/(L(1 + €)) units of flow between
by,; and by ;, along p, and

2. the flow between a,, ; and b, ; along the paths from P (corresponding to the request {ay;, by, fp} €
U), now with total flow of f,/(L(1 +¢)).

For each i, the length of each path in the flow S),; is at most L +2 - F, and fp/(L(1 + €)) units of
flow are shipped along each flow S, ;. Summed over all i = 1,..., L, we have f,/(1 + €) units of flow
between s, = a, 1 and ¢, = b, 1, which is as high as the original flow through p reduced by 1/(1 + ¢).
Hence, we can replace p by the flows S, ; without changing the amount of flow from s, to %,.

Now, it holds for every edge e that the flow traversing e due to the paths in O is at most ¢(e)/(1+¢€),
and due to the shortcuts in P is at most
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Thus, the flows in @ and P sum up to at most ¢(e) for an edge e. Therefore, the modification yields a
feasible flow satisfying the desired properties. O

Multiroute flows and cuts. For simplicity we will slightly overload the term k-system, defined
in the introduction, and we will use it to also denote a flow along k edge disjoint paths from s to ¢,
each path carrying the same amount of flow. A wunit k-system is a k-system that carries one unit of
flow along each path, in total k units of flow. A k-flow is a (single or multicommodity) flow that is a
non-negative linear combination of unit k-systems ([7], cf. [23, 2]). The size of a k-system is the total
number of edges used by the k paths. The size of a k-system is, in a manner of speaking, the length of
the k-system; it has nothing to do with the amount of a flow carried by it. Figure 1 gives an example
of a 3-flow.

For a single commodity, an s — ¢ cut is a partition of vertices V into two parts S and S = V' \ S
such that s € S and ¢t € S. Tt will be convenient to view the cut as a set of edges {(u,v) |u € SAv €
S} = {e1,...,e;}. The capacity of the cut is equal to 2221 c(e;). The k-capacity of a cut {e1,..., e}
is defined as the maximum k-flow in a simplified network made up just of a source and a destination
vertices directly connected by [ edges with respective capacities c(eq1),...,c(e;). Note that 1-capacity
of a cut corresponds to the capacity of the cut. Sometimes we will talk about a k-cut instead of a cut
to stress that we are interested in the k-capacity of the cut.



Every edge capacity is 1.

5 ;o 3-system a
—  3-system b
=== shared edge
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Figure 1: a and b are two 3-systems sharing one edge. The size of a is 11 and the size of b is 13. Assuming
a flow of 0.3 units through each path of a and a flow of 0.4 units through each path of b, the total 3-flow
between s and ¢ is 0.3 x 3 4+ 0.4 x 3 = 2.1 units.

Lemma 2.3 (k-capacity of a cut [7]) Given a cut with | edges with capacities ci,...,c; such that
¢i > ciy1 (i.e., nonincreasing order), its k-capacity is equal to

C; .
= 1k_jz;rlz

The celebrated result about the duality of simple flows and cuts holds for k-flows and k-cuts, too.

Lemma 2.4 (Duality of single commodity k-flows and k-cuts [7, 23]) The mazimum feasible
k-flow in G is equal to the capacity of the minimum k-cut in G.

Probabilistic tools.

Lemma 2.5 (Chernoff Bound) Consider any set of n independent binary random variables X1, ..., X,,.
Let X =11 X; and p be chosen so that u > E[X]. Then it holds for all 6 > 0 that

Pr[X > (1 4 6)u] < e minld* dln/3

Lemma 2.6 (Lovdsz Local Lemma) Let Ay,..., A, be “bad” events in an arbitrary probability
space. Suppose that each event is mutually independent of all other events but at most d, and that
Pr[A;] < p for alli. If ep(d + 1) < 1, then the probability of no bad event occurring is greater than 0.

Theorem 2.7 (Algorithmic LLL [29, 34]) Let T = {t1,...,t,} be a set of independent random
trials, and let A= {Ai,...,An} be a set of events such that each A; is determined by the outcome of

the trials in T; C T. For any t;,...,t; € T; and any wj ,...,w;, in the domains of t; ..., t; , let
Pr*[A; | tj, = wj,,....t;, = wj,] be the probability of A; conditional on the event that the outcomes of
Livyerny by, Q1€ Wiy, Wy, .

If we have the following:

1. for each 1 <i <m, Pr[4;] <p;
2. for each Tj, there are less than d other T)’s such that T; N'T; # 0;



3. foreach1<z<m |T;| < w;

4op-d® < (1/20)%;

5. p-w < 1;

6. for each 1 < j <mn, we can carry out the random trial in time T;

7. for each 1 <i <m, tj,,...t; €T; and wj,,...,wj in the domains of tj ,...1t; , we can compute

every Pr*[A; | x| in time 1o;

then, there is a randomized O(n - d - (1) + 72) + n (7 - log®™M) m, 4 20eglog m)o(l)))—time algorithm which
will find outcomes for tq,...,t, such that none of the events in A holds.

3 A Bounded Length Version of Menger’s Theorem

In this section we give an upper bound on the size of a minimum k-system connecting any two k-
connected vertices. Our bound is in terms of the flow number F' of a graph: we show that any two
k-connected vertices are connected by k disjoint paths of average length O(kF'), that is, by a k-system
of size O(k*F). To show this we first prove a much more general lemma which implies the bound.
The lemma in its general form will serve as a crucial tool for the approximation algorithm for the
k-EDPCOL in Section 4. The lemma is of a similar flavor as the Shortening lemma and is, in a sense,
a generalization of it: what the Shortening lemma states about flows, Lemma 3.1 states about k-flows.

Lemma 3.1 Given a unit network with flow number F, a set T of pairs of vertices and a feasible flow
F such that there are k units of flow between each pair from T, there exists a k-flow F such that

e there are k units of flow between each pair from T,
e the flow through every edge is at most 4,
e cach k-system used in F has size at most 20 - k*F.

Moreover, if the k-flow F is integral (i.e., each pair from T is connected by a unit k-system), stronger
bounds hold:

o the flow in F through every edge is at most 2, and

e cach k-system used in F has size at most 8 - k*F.

Proof. For k = 1 the claim follows immediately from the Shortening lemma. Thus, we assume that
k > 2 for the rest of the proof. A k-system is called small if its size is at most 20 - k> F

Since F can be viewed as a feasible solution to an instance of the concurrent multicommodity flow
problem, the Shortening lemma with parameter e = 1/(2k) gives a feasible flow F’ with flow paths of
length at most 4kF + 2F. We scale up the flow F’ by a factor of 1 + 1/(2k) to ensure that the total
amount of flow between each pair of vertices from T is equal to k again. The flow in F' may not be
feasible but the flow in each of the edges is at most 1 + 1/(2k).

The goal is to transform the flow for each commodity ¢ into a k-flow along small k-systems, while
keeping the amount k units of the flow and not violating the capacity constraints “much”. For a while,
we will consider the flow for each commodity 7 separately. Let F; denote the flow in F’ corresponding
to the commodity 4.

Claim 3.2 The flow F; can be decomposed into a k-flow of % units and a flow of % units.



Proof. Consider a network GG; that has the same set of vertices and edges as G, but the capacity of an
edge e in G; is equal to the flow through e in F;. We are going to show that the minimum k-capacity
of an s; — ¢; cut in G; is at least (k4 1)/2. By Lemma 2.4, this implies Claim 3.2,

Let ¢; > ¢o > ... > ¢; be the capacities of edges in an s; — ¢; cut with minimum k-capacity in Gj.
From the characterization of the k-capacity of a cut given in Lemma, 2.3 we know that its size is equal
to

min Z cp -

j=0,....,k— —
J ERS) ]h]+1

By the construction of G;, 22:1 cnp > k and ¢, < 14 1/(2k) for every h. This implies, for every j < k,

that
1 1 j kE+1
J 4= j+1 - ] —J
which concludes the proof. O

Given the k-flow from Claim 3.2 with % units of flow, let F; be a subset of small k-systems
participating in this k-flow. So far, there is no guarantee that such small k-systems exist. We will
prove that F/ is not empty and, moreover, that the k-systems in F]cumulatively carry at least %
units of flow. This will almost complete the proof, since putting together the k-flows F/ for all i and
scaling them up by four, we get the desired k-flow F.

Let us consider the total volume of the network G;, that is, the sum >, fi(e), where f;(e) denotes
the amount of flow belonging to commodity 4 through edge e in F’'. Due to the use of the Shortening
lemma at the beginning of the proof, each path between s; and ¢; is at most 4kF + 2F edges long and
the total flow being carried by these paths is & units. The total volume of flow between s; and #; is at
most 4k?F + 2kF < 5k*F in F', which is also the total volume of G;. Thus, the total flow through
k-systems from F; of size larger than 20k2F is at most k/4. We conclude that at least % - % = %
units of flow are carried by k-systems from F.

At this point we put together the k-systems from all F;, scale them up by 2 Tio +2 and denote the result
by F. By construction, the resulting flow is at each edge e at most k‘fo (1+ 2k) < 4, the flow for each
commodity is & units and only small k-systems are involved.

Better bounds for integral k-flow F. To improve the bounds we dip into the proof of the Short-
ening lemma. We say that an edge is a base edge for commodity 7 if e is one of the first L/2 = F'/e or
the last L/2 = F/e edges on some of the k paths between s; and ¢; in S. The observation is that the
flow in F; on any edge that is not base is at most €, every path in F; uses at most 2F non-base edges,
and for integral F, there are at most 4k?F base edges in GG;. Thus, the total capacity of non-base edges
in G; is at most 2kF', and therefore, the total flow through k-systems from F; that use more than 8kF
non-base edges is at most k/4. Utilizing the fact that there are at most 4k%F base edges, we conclude
that at least (k + 2)/4 units of flow from F; are carried by k-systems of size at most 8k?F.

The other observation from the original proof of the Shortening lemma is that for integral F, the
flow on every edge e in F' is either at most €, or at least 1 and a unit of this flow belongs to one
commodity. We also note, that for every edge e and every commodity 7, the flow through e in F; is at
most 1/2. Thus, for every edge e the sum of ﬂows in all F] through e is at most 1/2 + 1/(2k), and the

final flow through e in F is at most k4f2 3+ % ) < 2. 0

Applying Lemma 3.1 on a single pair of k-connected vertices and using just any one of the final
k-systems to carry all k& units of flow gives the following result:



Corollary 3.3 (Bounded length Menger’s Theorem) Given a graph G with flow number F and
a pair of k-connected vertices u and v, there are k-edge disjoint paths between u and v of average length

8k - F.

Since there are graphs with diameter Q(F) [26], the result of Corollary 3.3 is asymptotically the
best possible for general graphs, up to a factor of & .

An improvement for the k-EDP. Let us recall the online k-Bounded Greedy Algorithm (k-BGA)
for the k-EDP [5]:

k-BGA(L):

Given a request r,

e if it is possible to realize r by a k-system ¢ of size at most L such that ¢ is edge disjoint
with all previously selected k-systems, then accept the request r and select ¢ for it,

e else reject r.

Note that the problem of finding & edge-disjoint paths of total length at most L between the same
pair of vertices can be reduced to the classical min-cost (integral) flow problem, which can be solved by
standard methods in polynomial time [12, Chapter 4]. The k-BGA can therefore also be used offline as
an approximation algorithm. It is worth mentioning that if the task were to find £ edge disjoint paths
each of length at most L/k, the problem would not be tractable (cf. [11]).

The previous best competitive ratio O(k*F) was achieved by the k-BGA with parameter L =
20k*F [6]. Lemma 3.1 yields a better result.

Corollary 3.4 Given a graph G with flow number F, the competitive ratio for the k-EDP of the k-BGA
with parameter L = 8k*F is O(k*F).

Proof. The point is that Lemma 3.1 can be used to modify the optimal offline solution into a solution
that uses (fractional) k-systems of size 8k%F only. Then a standard charging argument (c.f. [6]) yields
the desired competitive ratio. O

4 An Algorithm for k.-EDPCOL

This section describes a randomized approximation algorithm for k-EDPCOL. We begin in Section 4.1
by a linear relaxation for a version of k-EDPCOL that restricts the size of k-systems used and we relate
the optimal value of this problem to the optimal value of k-EDPCOL. Section 4.2 outlines the actual
algorithm and in Section 4.3 we fill in the details of the algorithm. Throughout this section, whenever
we talk about an intersection, we mean an intersection on an edge.

4.1 Relaxation

Let us start with a “relaxation” of the problem. We put relaxation in quotes since the linear program
described below is a relaxation of the k-EDPCOL regarding the integrality of the k-systems, but is
more restrictive than k-EDPCOL regarding the size of the k-systems.

Let T C V x V be an instance of the &-EDPCOL problem on a graph G(V, E). For each (a;,b;) € T
let P; denote the set of all k-systems of size at most 842 F between a; and b; and let P = |JP;. Consider
the following linear program where we have a variable z(s) for each k-system s from P denoting the



1/k fraction of flow sent along the k-system (that is, there is a flow z(s) along each of the k paths of
s) and a variable ¢ denoting a half of the maximum flow through an edge in the network:

minimize ¢ s.t. (1)
Z z(s) < 2-¢c Ye€eE (2)
s€P:ecs
> wl(s) = 1V (3)
sEP;
z(s) > 0 VseP (4)

Lemma 4.1 The optimal fractional solution to the linear program is a lower bound for the optimal
integral solution for k-EDPCOL.

Proof. Consider the optimal integral solution to the coloring problem and let C' be the number of
colors used. We are going to shorten the k-systems for each color separately. Since the k-systems of
the same color are disjoint, it is possible to apply Lemma 3.1 to shorten them. Now we merge together
the modified flows for all C' colors and we get a feasible fractional solution of LP (1)-(4), that is, a
(multicommodity) k-flow consisting of only small k-systems. Since the maximum flow through an edge
is 2C' by construction, the proof is completed. O

Solving the linear program. Since the linear program has exponentially many variables, it is not
possible to solve it directly in polynomial time. It would be possible to formulate it in a different way
with only polynomially many variables (which would require some effort since global properties of the
flow, the disjointness of the k paths of each k-system, etc. have to be guaranteed) and then solve it as
a general LP. Another option is to exploit the equivalence between the optimisation and the separation
problems and to use the Ellipsoid algorithm (a violated inequality can be found in polynomial time
by a minimum cost flow algorithm). Here we use a more efficient way. Since we only aim at an
approximation algorithm for the k-EDPCOL, it is sufficient to start with an approximation for our
linear program. A good approximation for the linear program (1)-(4) can be obtained in polynomial
time using the approximation algorithms for the concurrent multicommodity flow problem by Garg
and Konemann [18] or by Fleischer [16]. Basically, the only modification is that a procedure for finding
a shortest path is replaced by a procedure for finding a smallest k-system, and only k-systems of size
at most 8k?F are considered. The smallest k-system can be efficiently computed using algorithms for
minimum cost flow problems. We also note that the approximate solutions obtained by these algorithms
use at most m different k-systems for each commodity. For easy later reference we state this formally
as a lemma (the constant 3/2 stated here is good enough for our purposes, even though much better
approximations are possible).

Lemma 4.2 [t is possible to find a 3/2 approzimation for the linear program (1)-(4) in polynomial
time. Moreover, at most m different k-systems per commodity are used in the approrimation.

We stress once again that only short k-systems are used in the LP (1)-(4).

4.2 Algorithm
In a high level description, the structure of our algorithm is as follows:

1. Solve the LP (1)-(4) approximately. By Lemma 4.2 this can be done efficiently, and by Lemma 4.1,
the maximum flow C through an edge in the approximate solution is (roughly) a lower bound on
the number of colors needed in the optimal integral solution of £-EDPCOL.
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2. Round the fractional solution to an integral one. In some cases (e.g., graphs with flow number
log n and more, or instances of k&-EDPCOL with |T'| > m—lzgﬂ), this can be done directly using the
rounding scheme of Raghavan and Thompson [32]. In other cases an iterative rounding method
can be utilized (cf. [26]). In both cases, the aim of the rounding process is to guarantee that
every k-system intersects with at most O(Ck?F) other k-systems at the end of the rounding.

3. Now, the k-systems can be easily colored with O(Ck?F) colors (e.g., greedy coloring) which is
within O(k?F) from optimum.

The only missing part is the rounding procedure. We will describe it in the next subsection. Here we
just summarize the main result.

Theorem 4.3 Given a graph G with flow number F, there exists a randomized O(k*F)-approzimation
algorithm for the k-EDPCOL problem on G.

4.3 Randomized rounding

Since the optimal solution has to use at least one color, we assume that the approximate fractional
solution is at least one.

Lemma 4.4 Given a feasible fractional solution to the linear program (1)-(4) from Lemma 4.2, with
objective value C > 1, there exists a randomized polynomial time algorithm that rounds it to an integral
solution such that each k-system in it intersects with at most O(Ck?F) other k-systems.

Proof. Let us start with the simpler case that can be solved directly by the method of Raghavan and
Thompson [32]. We assume that F - |T'| > m—lzgﬂ which includes both the previously mentioned cases
F >logn and |T| > m—lzgﬂ Observing that C' > % we have CF > logn.

Consider the following random experiment. Independently for each commodity, choose exactly one
of its k-systems, according to the probability distribution corresponding to the flows (i.e., a k-system
s with flow k - z(s) is chosen with probability z(s)).

For an edge e, the expected number E[n.] of chosen k-systems passing through e after this exper-
iment, is 2C at most. By linearity of expectation, the expected number E[ng] of chosen k-systems
intersecting with a chosen k-system s is bounded by

Eln,] <Y E[ne] < 16k°FC .

ecs

For a chosen k-system s, this implies, by the Chernoff bound
Prln, > 32k2FC] < e~ 'K FC/3

We distinguish two cases. If |T|/log |T| < m, we further bound this probability by n—8*/3 = o(|T| 1)
(using the observation that C'F > logn) and conclude that with high probability no chosen k-system
intersects with more than 32k? FC other chosen k-systems. Similarly, if |T'|/log |T'| > m, the probability

—16k3 F|T|

Pr[ngs > 32k%2FC] can be upper bounded by |T|ngl7"\ = o(|T| ') and again, we conclude that with
high probability no chosen k-system intersects with more than 32k>FC other chosen k-systems. This
completes the description of the rounding procedure in the simpler case.

In the rest of the section we assume that 7 < n and |T| < mlogn (we can actually assume more
but this will be sufficient for our purposes) and we are going to describe an iterative rounding process
that will result in a set of k-systems for T such that each of them intersects at most O(k*FC) others.

11



Initially, we have fractional k-systems with k-units of flow for each commodity. We cannot round
the fractional k-systems into integral ones in one step since the probability that a chosen k-system
intersects with more than 32k?FC other chosen k-systems would be too large to guarantee the desired
solution. The idea is to round the k-systems only partially in each step and to guarantee that the
dependency between them keeps decreasing. In other words, in each iteration we want to decrease the
number of k-systems that are used for each commodity while keeping a total flow of k£ units for each
commodity, and, in the meantime decreasing the maximum number of k-systems that intersect any
other k-system. To help quantify this dependency, for a k-system s that survives through iteration 7,
let n’ denote the number of other k-systems intersecting with s at the end of iteration 4.

We will describe the rounding process in two steps. First, we show using the Lovéasz Local Lemma
that there exists a way to round the fractional solution to an integral one. Then, we will explain that
the Algorithmic LLL can be used instead, yielding an efficient randomized rounding algorithm.

Let vg = Inm and v;41 = In?wv;, for i > 0. Before starting the rounding process, we split every
k-system with flow f > k/vg into [f - vy/k]| k-systems, each with flow k/vy. We do this for technical
reasons. Splitting this way increases the flow through any edge by 1 + 1/vy at most, (since C' is
an approximation, we will ignore this as it can be hidden in the constant), and the total number of
k-systems increases by vy, at most. Since the approximate solution from Lemma 4.2 uses at most m k-
systems with non-zero flow for each request, in total there are by now at most vgm? logm < m?log?m
k-systems.

For simplicity, we will assume in the rest of the section that v;11 divides v;, for all ¢ for which v;4¢
will be defined, and that vy is integral (without these assumptions, additional ceilings can be used to
avoid these requirements and they will only increase the constant hidden in the O notation).

Initial rounding (iteration ¢ = 0): For each request from 7', consider the following random experi-
ment: for each commodity, organize its k-systems with flow less than k/vg into groups in such a way
that the total flow in each group is exactly k/vg (for this purpose, possibly split some k-systems). Inde-
pendently for each group, choose exactly one of its k-systems, according to the probability distribution
corresponding to the flows (i.e., a k-system s with flow & - z(s) is chosen with probability z(s) - vg).

Now, we use a similar argument as before. For an edge e, the expected number E[nY] of chosen k-
systems passing through e after the initial iteration, is 2C'vg. By linearity of expectation, the expected
number E[n?] of chosen k-systems intersecting with a chosen k-system s is bounded by

E[n)] <> E[n)] < 16k*FCuy .

ecs

For a chosen k-system s, this implies, by the Chernoff bound (to simplify notation, we introduce a new
variable D = 16k? FC) that
Pr[ng > 2Dvg] < e~ Dvo/3 — yy=D/3

Since e - m /3. (1 +m21log?m) < 1, the Lovasz Local Lemma guarantees that there exists a random
choice such that the maximum number of k-systems intersecting any other k-system is at most 2Dwvy.
We send k/vp units of flow along the chosen k-systems (that is, there is a flow 1/vy along each path)
and zero along the other k-systems.

Let ap = 2, and for 4 > 1 let a; = (1 +1/{/v;_1)a;—1. Observe that all a;’s are bounded by an
absolute constant (using 1 + z < €%, e.g.).

Intermediate rounding (iteration i > 0): The input for iteration 7 is a set of k-systems such that

the maximum number of k-systems intersecting any other k-system is at most a;_1 Dv;_1, each k-system
carries flow k/v;_1, and there are v; 1 k-systems for each request.

12



Similarly as in the initial rounding, consider the following random experiment: for each request,
organize all its k-systems into groups, each of total flow exactly k/v;. Independently for each group,
choose uniformly at random exactly one of its k-systems. Our goal is to show that there exists a choice
such that at the end of iteration 4 (which is the beginning of iteration i + 1), the maximum number of
k-systems intersecting any other k-system is at most a; Dv;, each k-system carries flow k/v;, and there
are v; k-systems for each request. Figure 2 schematically outlines the intermediate rounding steps.

Invariant for iteration ¢ ] Rounding
Flow per k-system: k/v;_; = Make groups of k-systems, each
Number of overlaps: a; 1Dwv; 1 J of total flow k/v;

= For each group, randomly choose

one k-system to carry all k/v; flow

Vip1 < In v;

i i+1 a; <~ (1+1/¢0;-1) - a; ]

Figure 2: Schematic: Intermediate rounding

Since at the end of iteration ¢ — 1 each k-system intersects with at most a;_1 Dv;_1 other k-systems,
and since each of the k-systems in iteration ¢ — 1 survives to iteration 7 with probability v;/v; 1, we
have

E[né] < ai_lei .

Using the Chernoff bound, it is possible to say more:
Print > (1 + 1/ /67)a;_1 Dvj] < e V¥ %-1D/3 — 4 maimiD/3

Now we apply the Lovdsz Local Lemma. For a group g of k-systems, let A, denote the event
that the k-system chosen from g in iteration 4 intersects with more than (1 4+ 1//v;)a;—1 Dv; other
k-systems, at the end of iteration 7. The event A, depends only on the random outcomes in all groups
that contain a k-system that intersects with a k-system from the group g. In each group there are
v;—1/v; k-systems, each of them intersects with at most a;_1 Dv; 1 other k-systems. In total, the event
A, depends on at most (a;—1 Dvi—1) - v;—1/v; other events Ay . Since

e- v;af’lD/g (a1 DvlyJvi+1) <1,
there exists a choice such that the maximum number of k-systems intersecting any other k-system is
at most a; Dv;. We send k/v; units of flow along each chosen k-system and nothing along all the other
k-systems. Clearly, this guarantees the desired input for the next iteration.

Final rounding: In each iteration, the maximum number of k-systems intersecting any other k-
system decreases exponentially. Thus, after several iterations, the maximum number of k-systems
intersecting other k-system is at most poly(kF') while there is still a flow of & units for each request.
At this point we perform the randomized rounding once more: for each request, choose uniformly at
random one of its k-systems. Since the dependency between the k-systems is bounded by poly(kF),
the Lovasz Local Lemma guarantees existence of the desired k-systems.

13



To complete the proof, it is sufficient to show that the Algorithmic LLL can be used instead of
the Lovasz Local Lemma in each iteration. In our case in iteration ¢, both the random trials and
the (bad) events will be indexed by the groups of k-systems: ¢, is the random trial of choosing one
k-system from group g and A, is the event that the k-system chosen in group g intersects with more
than (1 + 1/{/v;)a;—1k*FCv; other k-systems. Observe, that

e each random trial can be carried out time 71 = O(v;_1/v;)
e Pr*[A;]*] can be computed in time 7 = O(k*FCv? ;) = poly(m)
—a;—1D/3

o for p = v, , w = a;—1v7_{/v; and d = w?, all other assumptions of the Algorithmic LLL
are satisfied.

Thus, we can use the Algorithmic LLL in each iteration. O

5 Conclusion and Open Problems

One of the main contributions of this paper is the result on “short” k-flows for multicommodity prob-
lems. There is an interesting open question here: Is it possible to generalize Lemma 3.1 to networks
with nonuniform edge capacities? In our proof of this lemma (namely in the proof of Claim 3.2) the
fact that all original capacities are unit is needed to prove that there exists a cut of large k-capacity
for each commodity. Can this assumption be avoided?

A corollary of this general result is a new upper bound, O(kF’), on the average path length between
two k-connected vertices a graph with flow number F'. There is, however, still a gap between this
upper bound and the obvious lower bound of Q(F'). We think that the gap might be an artifact of the
analysis that can be removed. This would lead to an O(kF) approximation ratio both for the k-EDP
and k-EDPCOL problems.

The presented algorithm for ~-EDPCOL problem is an offline one. This immediately brings in mind
a question whether k-systems for the requests can be picked up and colored online? Is it possible to
achieve a O(k%F) competitive ratio or even the O(kF) ratio?
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