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Abstract. The Spanning Tree Congestion problem is an easy-to-state
NP-hard problem: given a graph G, construct a spanning tree T of G
minimizing its maximum edge congestion where the congestion of an
edge e ∈ T is the number of edges uv in G such that the unique path
between u and v in T passes through e; the optimum value for a given
graph G is denoted STC(G).
It is known that every spanning tree is an n/2-approximation. A long-
standing problem is to design a better approximation algorithm. Our
contribution towards this goal is an O(∆ · log3/2 n)-approximation al-
gorithm for the minimum congestion spanning tree problem where ∆ is
the maximum degree in G. For graphs with maximum degree bounded
by polylog of the number of vertices, this is an exponential improvement
over the previous best approximation. For graphs with maximum degree
bounded by o(n/ log3/2 n), we get o(n)-approximation; this is the largest
class of graphs that we know of, for which sublinear approximation is
known for this problem.
Our main tool for the algorithm is a new lower bound on the spanning
tree congestion which is of independent interest. We prove that for every
graph G, STC(G) ≥ Ω(hb(G)/∆) where hb(G) denotes the maximum
bisection width over all subgraphs of G.
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1 Introduction

The spanning tree congestion problem has been studied from various
aspects for more than twenty years, yet our ability to approximate it
is still extremely limited. In particular, no o(n)-approximation algo-
rithm for general graphs has been designed, as far as we know. The
most general class of graphs for which o(n)-approximation algorithm
exists are graphs with maximum degree bounded by polylog of the
number of vertices [5].

On the other side, the strongest known hardness result is that
no c-approximation with c smaller than 6/5 is possible unless P =
NP [7]. Not many problems have the gap between the best upper
and lower bounds of order Ω(n).

For a more detailed overview of other related results, we refer to
the survey paper by Otachi [9] and to the recent paper by Kolman [5].

1.1 Our Results

Our contribution in this note is twofold. We describe an O(∆ ·
log3/2 n)-approximation algorithm for the minimum congestion span-
ning tree problem where ∆ is the maximum degree in G and n the
number of vertices. For graphs with maximum degree bounded by
∆ = o(n/ log3/2 n), we get o(n)-approximation; this significantly ex-
tends the class of graphs for which sublinear approximation is known,
and provides a partial answer to the open problem P2 from the recent
paper [5]. Moreover, for graphs with stronger bound on the maxi-
mum degree, the approximation ratio is even stronger than o(n).
For example, for graphs with maximum degree bounded by poly-
log of the number of vertices, the approximation is polylogarith-
mic; the previous best apporoximation for this class of graphs was
Õ(n1−1/(

√
logn+1)) only1 [5].

For planar graphs (and more generally any proper minor closed
family of graphs) we get a slightly better bound of O(∆ · log n) on
the approximation ratio.

Our key tool in the algorithm design is a new lower bound on
STC(G) which is our second contribution. In a recent paper, Kol-
man [5] proved that STC(G) ≥ b(G)

∆·logn where b(G) is the bisection

1 In the Big-O-Tilde notation Õ, we ignore polylogarithmic factors.



of G. We strengthen the bound and prove that STC(G) ≥ Ω(hb(G)
∆

)
where hb(G) is the hereditary bisection of G which is the maximum
of b(H) over all subgraphs H of G. This is a corollary of another
new lower bound saying that STC(G) ≥ β(H)·n′

3·∆ ; here β(H) is the
expansion of H, n′ is the number of vertices in H and the bound
holds for every subgraph H of G.

1.2 Sketch of the Algorithm

The algorithm uses the standard Divide and conquer framework and
is conceptually very simple: partition the graph by a 2

3
-balanced cut

into two or more components of connectivity, solve the problem re-
cursively for each of the components, and arbitrarily combine the
spanning trees of the components into a spanning tree of the entire
graph. The structure of the algorithm is the same as the structure
of the recent o(n)-approximation algorithm [5] for graphs with max-
imum degree bounded by polylog(n) - there is a minor difference in
the tool used in the partitioning step and in the stopping condition
for the recursion.

It is far from obvious that the Divide and conquer approach works
for the spanning tree congestion problem. The difficulty is that there
is no apparent relation between STC(G) and STC(H) for a subgraph
H of G. Kolman [5] proved that STC(G) ≥ STC(H)

e(H,G\H)
where e(H,G \

H) denotes the number of edges between the subgraph H and the
rest of the graph G; this bound is one of the two main ingredients of
his algorithm [5]. Note that the bound is very weak when e(H,G\H)
is large. Also note that the bound is tight in the following sense: there
exist graphs for which STC(G) and STC(H)

e(H,G\H)
are equal, up to a small

multiplicative constant. For example, let G be a graph obtained from
a 3-regular expander H on n vertices by adding a new vertex r and
connecting it by an edge to every vertex of H. Then STC(H) =
Ω(n) [8] while STC(G) = O(1) (think about the spanning tree of G
consisting only of all the edges adjacent to the new vertex r).

The main reason for the significant improvement of the bound
on the approximation ratio of the algorithm is the new lower bound
STC(G) ≥ Ω(hb(G)

∆
) that connects STC(G) and properties of sub-

graphs of G in a much tighter way. This connection yields a simpler



algorithm with better approximation, wider applicability and sim-
pler analysis.

1.3 Preliminaries

For an undirected graph G = (V,E) and a subset of vertices S ⊂ V ,
we denote by E(S, V \ S) the set of edges between S and V \ S in
G, and by e(S, V \S) = |E(S, V \S)| the number of these edges. An
edge {u, v} ∈ E is also denoted by uv for notational simplicity. For
a subset of vertices S ⊆ V , G[S] is the subgraph induced by S. By
V (G), we mean the vertex set of the graph G and by E(G) its edge
set. Given a graph G = (V,E) and an edge e ∈ E, G \ e is the graph
(V,E \ {e}).

Let G = (V,E) be a connected graph and T = (V,ET ) be a
spanning tree of G. For an edge uv ∈ ET , we denote by Su, Sv ⊂
V the vertex sets of the two connectivity components of T \ uv.
The congestion c(uv) of the edge uv with respect to G and T , is the
number of edges in G between Su and Sv. The congestion c(G, T ) of
the spanning tree T of G is defined asmaxe∈ET

c(e), and the spanning
tree congestion STC(G) of G is defined as the minimum value of
c(G, T ) over all spanning trees T of G.

A bisection of a graph with n vertices is a partition of its vertices
into two sets, S and V \S, each of size at most dn/2e. The width of a
bisection (S, V \S) is e(S, V \S). The minimum width of a bisection
of a graph G is denoted b(G). The hereditary bisection width hb(G) is
the maximum of b(H) over all subgraphs H of G. In approximation
algorithms, the requirement that each of the two parts in a partition
of V is of size at most dn/2e is sometimes relaxed to 2n/3, or to some
other fraction, and then we talk about balanced cuts. In particular,
a c-balanced cut is a partition of the graph into two parts, each of
size at most c · n.

The edge expansion of G is

β(G) = min
A⊆V

e(A, V \ A)
min{|A|, |V \ A|}

.

There are several approximation and pseudo-approximation algo-
rithms for bisection and balanced cuts [1,2]. In our algorithm, we will
employ the algorithm by Arora, Rao and Vazirani [1], and for planar



graphs (or more generally, for graphs excluding any fixed graph as a
minor), a slightly stronger bound by Klein, Protkin and Rao [4].

Theorem 1 ([1,4]). A 2/3-balanced cut of cost within a ratio of
O(
√
log n) of the optimum bisection can be computed in polynomial

time. For graphs excluding any fixed graph as a minor, even O(1)
ratio is possible.

We conclude this section with two more theorems that we will
refer to later.

Theorem 2 (Jordan [3]). Given a tree on n vertices, there exists a
vertex whose removal partitions the tree into components, each with
at most n/2 vertices.

Lemma 1 (Kolman, Matoušek [6]). Every graph G on n vertices
contains a subgraph on at least 2n/3 vertices with edge expansion at
least b(G)/n.

2 New Lower Bound

The main result of this section is captured in the following lemma
and its corollary.

Lemma 2. For every graph G = (V,E) on n vertices with maximum
degree ∆ and every subgraph H of G on n′ vertices, we have

STC(G) ≥ β(H) · n′

3 ·∆
. (1)

Before proving the lemma, we state a slight generalization of The-
orem 2; for the sake of completeness, we also provide a proof of it
though it is a straightforward extension of the standard proof of
Theorem 2.

Claim. Given a tree T on n vertices with n′ ≤ n vertices marked,
there exists a vertex (marked or unmarked) whose removal partitions
the tree into components, each with at most n′/2 marked vertices.

Proof. Start with an arbitrary vertex v0 ∈ T and set i = 0. We
proceed as follows. If the removal of vi partitions the tree into com-
ponents such that each contains at most n′/2 marked vertices, we



are done. Otherwise, one of the components, say a component C, has
strictly more then n′/2 marked vertices. Let vi+1 be the neighbor of
vi that belongs to the component C. Note that for every i > 0, vi
is different from all the vertices v0, v1, . . . , vi−1. As the number of
vertices in the tree is bounded, eventually this process has to stop
and we get to a vertex with the desired properties.

Proof of Lemma 2. Let T be the spanning tree of G with the
minimum congestion, and let n′ denote the number of vertices in
H, n′ = |V (H)|. By Claim 2, there exists a vertex z ∈ T whose
removal partitions the tree T into components, each with at most
n′/2 verices from H. We organize the components of T \ z into two
parts in such a way that the total number of vertices from H in
each of the two parts is at least n′/3; let C ⊆ V (H) be the vertices
from H in one of the two parts. Then, by the definition of expansion,
e(C, V (H)\C) ≥ β(H) ·n′/3. As for each edge uv ∈ E(C, V (H)\C),
the path connecting u and v in T uses at least one edge adjacent to
z, we conclude that

STC(G) ≥ e(C, V (H) \ C)
∆

≥ β(H) · n′

3 ·∆
.

Combining Lemma 2 with Lemma 1, we obtain the next lower
bound.

Corollary 1. For every graph G = (V,E) with maximum degree ∆,

STC(G) ≥ 2 · hb(G)
9 ·∆

. (2)

3 Approximation Algorithm

Given a connected graph G = (V,E), we construct the spanning tree
ofG by the recursive procedure CongSpanTree called on the graph
G. By the ARV-algorithm, we refer to the algorithm of Theorem 1.

Let τ denote the tree representing the recursive decomposition of
G (implicitly) constructed by the procedure CongSpanTree: The
root r of τ corresponds to the graph G, and the children of a non-leaf
node t ∈ τ associated with a set Vt correspond to the connectivity
components of G[Vt] \ F where F is the set of cut edges of the 2

3
-

balanced cut of G[Vt] from step 4; recall that |F | ≤ O(
√
log n) ·



Algorithm 1 CongSpanTree(H)
1: if |V (H)| = 1 then
2: return H
3: construct, by the ARV-algorithm, a 2

3
-balanced cut (S, V (H) \ S) of H

4: F ← E(S, V (H) \ S)
5: for each connected component C of H \ F do
6: TC ← CongSpanTree(C)

7: arbitrarily connect all the spanning trees TC by edges from F to form a spanning
tree T ofH

8: return T

b(G[Vt]). We denote by Gt = G[Vt] the subgraph of G induced by
the vertex set Vt, by Tt the spanning tree constructed for Gt by the
procedure CongSpanTree. The height h(t) of a tree node t ∈ τ
is the number of edges on the longest path from t to a leaf in its
subtree (i.e., to a leaf that is a descendant of t).

Lemma 3. Let t ∈ τ be a node of the decomposition tree and t1, . . . , tk
its children. Then

c(Gt, Tt) ≤ max
i
c(Gti , Tti) +O(

√
log n) · b(Gt) . (3)

Proof. Let F be the set of edges cut by the 2
3
-balanced cut of Gt

(steps 3 and 4). We will show that for every edge e ∈ E(Tt), its
congestion c(e) with respect to Gt and Tt is at most maxi c(Gti , Tti)+
|F |; as |F | ≤ O(

√
log n) · b(G[Vt]), this will prove the Lemma. Recall

that E(Tt) ⊆
⋃k
i=1E(Tti)∪F , as the spanning tree Tt is constructed

(step 7) from the spanning trees Tt1 , . . . , Ttk and the set F .
Consider first an edge e ∈ E(Tt) that belongs to a tree Tti , for

some i. The only edges from E(G) that may contribute to the con-
gestion c(e) of e with respect to Gt and Tt are the edges in E(Gti)∪F ;
the contribution of the edges in E(Gti) is at most c(Gti , Tti), the con-
tribution of the edges in F is at most |F |. Thus, the congestion c(e)
of the edge e with respect to Gt and Tt is at most c(Gti , Tti) + |F |.

Consider now an edge e ∈ F ∩ E(Tt). As the only edges from
E(G) that may contribute to the congestion c(e) of e with respect
to Gt and Tt are the edges in F , its congestion is at most |F |.

Thus, for every edge e ∈ E(Tt), its congestion with respect to Gt

and Tt is at most maxi c(Gti , Tti) + |F |, and the proof of the lemma
is completed.



Corollary 2. Let T = CongSpanTree(G). Then

c(G, T ) ≤ O(log3/2 n) · hb(G) . (4)

Proof. For technical reasons, we extend the notion of the spanning
tree congestion also to the trivial graph H = ({v}, ∅) consisting
of a single vertex and no edge (and having a single spanning tree
TH = H) by defining c(H,TH) = 0.

By induction on the height of vertices in the decomposition tree
τ , we prove the following auxiliary claim: for every t ∈ τ ,

c(Gt, Tt) ≤ h(t) · O(
√
log n) · hb(G) . (5)

Consider first a node t ∈ τ of height zero, that is, a node t that is a
leaf. Then both sides of (5) are zero and the inequality holds.

Consider now a node t ∈ τ such that for all his children the
inequality (5) holds. Let t′ be the child of the node t for which
c(Gt′ , Tt′) is the largest among the children of t. Then, as b(Gt) ≤
hb(G) by the definition of hb, by Lemma 3 we get

c(Gt, Tt) ≤ c(Gt′ , Tt′) +O(
√
log n) · hb(G) .

By the inductive assumption applied on the node t′,

c(Gt′ , Tt′) ≤ h(t′) · O(
√
log n) · hb(G) .

Because h(t) ≥ h(t′)+1, the proof of the auxiliary claim is completed.
Observing that the height of the root of the decomposition tree τ

is at most O(log n), as all cuts used by the algorithm are balanced,
the proof is completed.

Theorem 3. Given a graph G with maximum degree ∆, the algo-
rithm CongSpanTree constructs an O(∆ · log3/2 n)-approximation
of the minimum congestion spanning tree.

Proof. By Corollary 1, for every graph G, Ω(hb(G)/∆) is a lower
bound on STC(G). By Corollary 2, the algorithm CongSpanTree(G)
constructs a spanning tree T of congestion at most O(log3/2 n) ·
hb(G). Combining these two results yields the theorem: c(G, T ) ≤
O(log3/2 n) · hb(G) ≤ O(log3/2 n ·∆) · STC(G).

Note that for graphs excluding any fixed graph as a minor, replacing
the ARV-algorithm by the algorithm of Klein, Plotkin and Rao in
the algorithm CongSpanTree, we get O(∆ · log n)-approximation.



4 Open Problems

A self-suggesting question is whether it is possible to eliminate the
dependency of the approximation ratio of the algorithm on the largest
degree ∆ in the graph and obtain an o(n)-approximation algorithm
for STC for all graphs.
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