
An Approximation Algorithm

for Bounded Degree Deletion∗

Tomáš Ebenlendr† Petr Kolman‡ Jǐŕı Sgall‡

Abstract

Bounded Degree Deletion is the following generalization of
Vertex Cover. Given an undirected graph G = (V,E) and an integer
d ≥ 0, what is the minimum number of nodes such that after deleting
these nodes from G, the maximum degree in the remaining graph is at
most d?

We give a randomized O(log d)-approximation algorithm for this
problem. We also give a tight bound of Θ(log d) on the integrality gap
of the linear programming relaxation used in our algorithm. The algo-
rithm is based on the algorithmic version of the Lovász Local Lemma.

1 Introduction

In the Bounded Degree Deletion problem we are given an undirected
graph G = (V,E) and an integer d ≥ 0. A feasible output is a set of nodes
Z such that the graph induced by V − Z has the maximal degree at most
d. The objective is to minimize |Z|, the number of removed nodes.

The special case of Bounded Degree Deletion for d = 0 is Vertex
Cover. This implies that Bounded Degree Deletion is APX-hard and
the best possible approximation ratio is a constant.

In this note we focus on the asymptotic dependence of the approximation
ratio on d. We present a randomized O(log d)-approximation algorithm for
Bounded Degree Deletion.

∗Partially supported by Institutional Research Plan No. AV0Z10190503, Inst. for
Theor. Comp. Sci., Prague (project 1M0545 of MŠMT ČR), and grant IAA100190902 of
GA AV ČR.

†Institute of Mathematics, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic.
Email: ebik@math.cas.cz.

‡Dept. of Applied Mathematics, Faculty of Mathematics and Physics, Charles
University, Malostranské nám. 25, CZ-11800 Praha 1, Czech Republic. Email:
kolman,sgall@kam.mff.cuni.cz.

1

Bounded Degree Deletion is a special case of Hitting Set: the
sets to hit are those that correspond to vertex-sets of stars with d+1 leaves.
It is easy to give a (d + 2)-approximation algorithm. Formulate a linear
program which asserts that from each star with d + 1 leaves at least one
node is selected. Then, given a fractional solution, choose all the nodes
whose variable is at least 1/(d+2). Unfortunately, the integrality gap of the
linear program is d + 2, thus, it cannot yield a better approximation. The
exact formulation and discussion are presented in the next section.

To get another approximation, one can cast the problem as an instance
of the so-called covering integer programs [5]. Again, we formulate a linear
program for Bounded Degree Deletion; this time it contains at most
one constraint for each maximal star. In particular, for each vertex there
is at most one constraint and the constraint for a vertex of degree δ > d
asserts that either the vertex is chosen or at least δ − d of its neighbors are
chosen. The general framework of Kolliopoulos and Young yields O(log n)-
approximation algorithm.

To obtain the better O(log d)-approximation algorithm, we use yet an-
other linear programming relaxation. For each star with d + i leaves, the
corresponding constraint asserts that either the center is chosen or at least
i leaves are chosen. Rounding the fractional solution is more difficult here
since the coefficients of the linear program are proportional to the degree
of nodes. As our main tool, we use the algorithmic version of the Lovász
Local Lemma in the formulation of Srinivasan [9]. The details are given in
Section 3.

As our second result, in Section 4, we show that the integrality gap of
our linear program (2) is Θ(log d). Thus this formulation cannot yield a
better approximation factor (asymptotically in d) and our approximation
algorithm is in this sense optimal.

It remains an open problem whether there exists a c-approximation al-
gorithm for Bounded Degree Deletion such that c is a constant inde-
pendent of d.

Previous work and motivation

Bounded Degree Deletion was previously studied mainly in the context
of fixed parameter tractability also under the name Almost d-Bounded
Graph [4, 7]. There the goal is, generally speaking, to design exact algo-
rithms that work, for graphs of size n with the optimal solution of size k,
in time poly(n) · f(k) for some possibly exponential function f , or to prove
related hardness results.

2

Fixed parameter tractability is also studied for the complementary prob-
lem of finding maximal s-plexes [8, 1, 6]. Here s-plex is an induced subgraph
on n′ nodes such that the minimal degree is at least n′ − s. Thus finding
maximal s-plexes is in the same relation to Bounded Degree Deletion
as is Maximal Clique to Vertex Cover.

Both of these problems are motivated by processing data with errors
in the context of biological applications and analysis of social networks.
Generally, the graph edges denote (in)consistencies between different nodes
and the goal is to remove the smallest possible number of data points so that
the remaining ones are consistent (or to find the biggest consistent subset).
Due to the noise in data, it may be unrealistic to expect to see a perfect
clique (or an independent set). Removing fewer data points at the cost of
a limited inconsistency may be a more realistic approximation for the given
application. Bounded Degree Deletion and s-plex maximization are
possible formalizations of this approach. We refer to papers [7, 3, 2, 1, 8]
and references therein for further discussion of these motivations.

We are not aware of any previous study of approximation algorithms for
Bounded Degree Deletion, besides the straightforward application of
algorithms for Hitting Set and covering integer programs, as described
above.

2 Preliminaries and the linear programming for-
mulations

A star is a tree consisting of a node v and a set L of nodes connected to v;
the node v is the center of the star and the nodes in L are the leaves. It will
be convenient to denote a star with a center u and leaves L as an ordered
pair (u, L). We use the term k-star to denote a star with k leaves. Given a
graph G = (V,E), let Sk denote the set of all k-stars that are subgraphs of
G (not necessarily induced).

For each v ∈ V and A ⊆ V we define NA(v) = {u ∈ A | {u, v} ∈ E}, the
set of neighbors of v in A, and δA(v) = |NA(v)|, the degree of v relative to
A.

Bounded Degree Deletion can be treated as a special case of Hit-
ting Setwhere the sets to be hit are all (d + 1)-stars. This leads to the
following linear programming relaxation.

3

min
∑
u∈V

xu

∀(u, L) ∈ Sd+1 : xu +
∑
v∈L

xv ≥ 1 (1)

0 ≤ xu ≤ 1

It is easy to see that integral solutions of (1) exactly correspond to feasible
outputs of Bounded Degree Deletion and the objective is the same as
well. Given a fractional solution xv, v ∈ V , we take Z to be the set of all
v with xv ≥ 1/(d + 2). This gives a (d + 2)-approximation as at least one
node in each (d + 1)-star is chosen into Z and the size of Z is bounded by
|Z| ≤ (d+2)

∑
v∈V xv. However, d+2 is also the integrality gap of the linear

program of (1) as we will show. Consider the complete graph on n nodes.
Then the integral optimum is n − d − 1 while the fractional optimum has
xv = 1/(d + 2) for all v ∈ V and the objective is

∑
v∈V xv = n/(d + 2). For

n large, the gap approaches d + 2.
To overcome this barrier, we add additional inequalities for larger stars.

We use the following stronger relaxation.

min
∑
u∈V

xu

∀i ≥ 1 , ∀(u, L) ∈ Sd+i : i · xu +
∑
v∈L

xv ≥ i (2)

0 ≤ xu ≤ 1

We pause to note that the number of inequalities in the linear program may
be exponential in the size of G, nevertheless, the linear program is solvable
in polynomial time using the ellipsoid method (given a vector x, one can
easily check whether there is a violated inequality).

Clearly, the integral solutions of (2) again correspond to feasible out-
puts of Bounded Degree Deletion. The constraint for (u, L) ∈ Sd+i is
satisfied exactly if either the center is in Z or if at least i leaves are in Z.

For integral solutions, we can take only the constraints for stars (u, NV (u)),
that is, the maximal star for each node. The set of the feasible integral so-
lutions remains unchanged and the number of constraints is only linear.
However, we do not know what is the integrality gap of the corresponding
linear program.

4

3 The approximation algorithm

In this section we present the O(log d)-approximation algorithm. Our ap-
proach is as follows. We take an optimal solution xu, u ∈ V of the linear
program (2). Then we choose each node u into Z independently at random
with probability αxu where α is roughly the desired approximation factor.
To show that all the degrees are at most d after removing Z, with non-zero
probability, we use the Lovász Local Lemma. To finally obtain the algo-
rithm, we use the algorithmic version of the Lovász Local Lemma, in the
framework of Srinivasan [9]. Due to the use of the Lovász Local Lemma,
we cannot argue that the number of chosen nodes is small directly from
Chernoff bounds, as usual. Instead, we argue about the number of chosen
nodes in smaller groups of O(d) nodes, to limit the dependency of the bad
events. To make this work, we further modify the random sampling so that
nodes with small xu (proportional to 1/d) are never chosen.

Before we continue with the formal proof, we state the constructive ver-
sion of the Lovász Local Lemma according to Srinivasan [9, Theorem 2.1].
The notation is slightly changed for our purposes and the particular con-
stant 0.05 is chosen according to [9, Remark 2.1] asserting that any constant
strictly smaller than 4/(27e) is sufficient. (The particular constant is irrele-
vant for our construction.)

Theorem 3.1 ([9]) Suppose that we have independent random variables
Xv, v ∈ W , and a collection of polynomially many “bad” events E1, . . . , Em

with support sets T1, . . . , Tm ⊆ W such that the each event Ei is completely
defined from variables (Xv | v ∈ Ti). Let D be an integer. Assume that the
following conditions hold:

(S1) For every i, there are at most D values of j, j 6= i, such that
Ti ∩ Tj 6= ∅.

(S2) We have pD4 ≤ 0.05, where p = maxi Pr[Ei].
(S3) Each Xv can be sampled in randomized polynomial time and the

truth value of each Ei can be determined from the values of (Xi, i ∈ Ti) in
polynomial time.

Then there exists a randomized polynomial time algorithm that with high
probability finds an assignment of Xi which avoids all events Ei.

Now we define our random variables, bad events and continue towards
establishing the properties (S1)–(S3). Fix a feasible (and presumably opti-
mal) solution x of the linear program (2). We show that it is possible to find

5

an integral feasible solution Xv, v ∈ V , such that
∑

v∈V Xv = O(log d) · LP
where LP =

∑
v∈V xv.

Let α = 300 · ln d. We partition the vertex set as follows: Let

V0 = {v ∈ V | xv ≤ 1/(4d)},
V1 = {v ∈ V | xv ≥ 1/α},
W = V \ (V0 ∪ V1), and let
U = V0 ∪W.

We define Xv for v ∈ V to be independent 0-1 random variables such
that

Pr[Xv = 1] =


0 for v ∈ V0,
αxv for v ∈ W,
1 for v ∈ V1.

(3)

Note that Xv for v ∈ V0 ∪ V1 are set deterministically. Thus the actual
random variables are only Xv, v ∈ W .

Before defining the bad events, we need a few auxiliary observations.
The next lemma, although simple, seems to be the crucial step in our proof.
It shows that by removing nodes in V1, the maximal degree decreases to a
constant, and that the values xv, v ∈ W , add up to a significant fraction in
each constraint.

Lemma 3.2 Let u ∈ U be such that δU (u) > d. Let i = δU (u) − d (i.e.,
(u, NU (u)) ∈ Sd+i). Then

(i)
∑

v∈NU (u) xv ≥ i(1− 1/α).

(ii) |NU (u)| = d + i ≤ d + d/(α− 2) ≤ 2d.

(iii)
∑

v∈NW (u) xv ≥ i(1− 1/α)− 1/2 ≥ i/4.

Proof. Consider the constraint of the linear program (2) corresponding to
the star (u, NU (u)). Using xu ≤ 1/α (since u ∈ U), the constraint implies
i/α +

∑
v∈NU (u) xv ≥ i, which is equivalent to (i).

Using now xv ≤ 1/α for all v in the sum, (i) implies (d+i)/α ≥ i(1−1/α)
which is equivalent to the first inequality of (ii). The second inequality of
(ii) follows by the choice of α.

Using (ii) and xv ≤ 1/(4d) for v ∈ V0, we have
∑

v∈NV0U(u) xv ≤ 1/2.
Combining this with (i) and W = U − V0 implies (iii). ut

6

Lemma 3.3 Suppose that there exists u ∈ U with δU (u) > d. Then there
exists a partitioning of the set W into classes T1, T2, . . . , Tm such that for
each class Tj we have |Tj | ≤ 3d and

1/4 ≤
∑
v∈Tj

xv ≤ 3/4 .

Proof. Using Lemma 3.2 (iii) for u, we know that
∑

v∈W xv ≥ 1/4. Further-
more, xv ≤ 1/α ≤ 1/4 for all v ∈ W . We can now construct the partition
greedily. Add the elements v ∈ W into the current Ti one by one. Once
the sum reaches 1/4, start a new set. If the last set has the sum smaller
than 1/4, add it to the previous one. It follows that we obtain sets Tj with∑

v∈Tj
xv between 1/4 and 3/4. Now, since for each v, xv ≥ 1/(4d), it follows

that |Tj | ≤ (3/4)/(1/4d) = 3d. ut

We are ready to define the bad events. For the rest of the proof, fix a
partitioning T1, T2, . . . , Tm satisfying Lemma 3.3. We define two types of
bad events. The first type of events help us to control the feasibility of X,
the other type helps us to control the size of X (i.e.,

∑
u∈V Xu).

Definition 3.4 For a node u ∈ U with δU (u) = d + i, i ≥ 1, the bad event
Fu occurs if

∑
v∈NW (u) Xv < i. The support set of Fu is NU (u).

For a set Tj from the partitioning of W , the bad event Ej occurs if∑
v∈Tj

Xv > 2α ·
∑

v∈Tj
xv. The support set of Ej is Tj.

To bound the probability of the bad events we use the following standard
form of Chernoff-Hoeffding Bounds.

Lemma 3.5 (Chernoff-Hoeffding Bounds) Consider any set of k inde-
pendent binary random variables Y1, . . . , Yk. Let Y =

∑n
i=1 Yi and µ = E[Y].

Then for any δ > 0 it holds that

Pr[Y ≤ (1− δ)µ] ≤ e−µδ2/2 ,

Pr[Y ≥ (1 + δ)µ] ≤ e−µδ2/3 .

Lemma 3.6 The probability of each bad event Fu and Ej is at most 1/d9.

Proof. Consider the event Fu for u ∈ U with δU (u) = d + i, i ≥ 1. Let
Y =

∑
v∈NW (u) Xu. We want to prove that the probability of the event

Y < i is small. From the definition of Xu and Lemma 3.2 (iii) we have

7

that E[Y] = α ·
∑

v∈NW (u) xu ≥ αi/4. Thus, by the first Chernoff-Hoeffding
bound with δ = 1/2,

Pr[Fu] = Pr[Y < i] ≤ Pr[Y < E[Y]/2] ≤ e−αi/32

Since i ≥ 1 and α = 300 · ln d, the probability is at most 1/d9.
Consider now the event Ej . Let Y =

∑
v∈Tj

Xv. We have E[Y] =
α·

∑
v∈Tj

xv ≥ α/4 and Ej occurs if Y > 2·E[Y]. Using the second Chernoff-
Hoeffding bound with δ = 1, we have

Pr[Ej] = Pr[Y > 2 ·E[Y]] ≤ e−α/12,

which is again at most 1/d9. ut

We are almost ready to apply the Lovász Local Lemma. It remains to
provide an upper bound on the dependency among the bad events.

Lemma 3.7 Each v ∈ W is in the support set of at most 2d+1 bad events.
Each support set of a bad event intersects at most 6d2 support sets of other
bad events.

Proof. Each v ∈ W is in the support of exactly one bad event Ej . If v is
in the support of Fu, which is NU (u), then u ∈ NU (v). By Lemma 3.2 (ii),
|NU (v)| ≤ 2d and the first part of the lemma follows.

Next we observe that each support set of a bad event has size at most
3d: This follows by Lemma 3.2 (ii) for Fu and by Lemma 3.3 for Ej . Each
of the 3d elements of the support set can be contained in at most 2d other
support sets, and the lemma follows. ut

At this point we are ready to prove our main result.

Theorem 3.8 For some C > 0, there exists a randomized (C·ln d)-approximation
algorithm for Bounded Degree Deletion.

Proof. As the first step of the algorithm, we find an optimal solution xu of
the linear program 2 using ellipsoid method. Recall that LP =

∑
v∈V xv is

a lower bound on the optimal solution of Bounded Degree Deletion.
Next we define the distribution of random variables Xv using (3) and

the bad events by Definition 3.4.
We verify the conditions of Theorem 3.1 for D = 6d2. The condition

(S1) on limited dependency of bad events follows from Lemma 3.7. From
Lemma 3.6 it follows that the probability of each bad event is at most 1/d9.

8

Since D4/d9 ≥ O(1/d), the condition (S2) follows for d larger than a certain
constant. The condition (S3) about efficient sampling of Xv’s and efficient
computing of the bad events is obvious from the definitions.

Now we use the algorithm guaranteed by the Theorem 3.1 to obtain
an integral assignment Xv not satisfying any bad event. We output (i.e.,
remove from the graph) the set Z of all v such that Xv = 1.

We claim that Z is a feasible output of Bounded Degree Deletion.
Consider any node u ∈ V − Z. We want to show that δV −Z(u) ≤ d. Since
V1 ⊆ Z, we have V − Z ⊆ U and in particular u ∈ U . If δU (u) ≤ d then
we are done. Otherwise, since Fu does not occur, we know that sufficiently
many neighbors v ∈ W of u have Xv = 1 and are in Z, and δV −Z(u) ≤ d as
well.

Finally, we bound the size of Z. For each Tj , since Ej does not occur, we
have

∑
v∈Tj

Xv ≤ 2α ·
∑

v∈Tj
xv. Summing over all j we obtain

∑
v∈W Xv ≤

2α ·
∑

v∈W xv. By the definition of V1, we have
∑

v∈V1
Xv ≤ α ·

∑
v∈V1

xv.
Using the fact that Xv = 0 for v ∈ V0 we obtain

∑
v∈V Xv ≤ 2α ·

∑
v∈V xv =

2α · LP . The theorem follows.
(For d which is not sufficiently large, that is, below the constant implied

by the proof above, we use the 1/(d+2) approximation algorithm described
in Section 2.) ut

4 The integrality gap

Theorem 4.1 The integrality gap of the linear program (2) is Θ(log d), for
log d ≥ 2.

Proof. The upper bound of O(log d) on the integrality gap is implied by
Theorem 3.8 and its proof.

It remains to prove the lower bound. For every m and every d ≥
(2m−1

m

)
,

we describe a graph G = (V,E) such that the integrality gap of the linear
program (2) is Θ(m). This shows the desired bound, since for a given d, we
may use m = blog2 dc/2.

The core of G is a bipartite graph G′ = (A∪B,E) where A = {1, . . . , 2m}
and B is the set of all subsets of A of size m. There is an edge between a ∈ A
and b ∈ B if a ∈ b. The degrees of vertices are δA(b) = m for each b ∈ B and
δB(a) =

(2m−1
m

)
for each a ∈ A. The remaining vertices C of the graph G

are leaves connected each to a single vertex b ∈ B so that δA∪C(b) = d + 1.
That means that there are d+1−m leaves from C connected to each b ∈ B.
There are no other vertices and edges in G. Since d ≥

(2m−1
m

)
, the only

vertices with degree larger than d are the vertices B.

9

We claim that integrality gap for G is Θ(m). More precisely, we show
that the optimal solution of Bounded Degree Deletion has m+1 vertices
while the linear program (2) has a fractional solution with value 2.

First consider the fractional solution. We put xa = 1/m for all a ∈ A and
xv = 0 for all v ∈ B∪C. The only constraints of (2) are those for (d+1)-stars
at each b ∈ B, and those are satisfied since

∑
a∈NA(b) xa = δA(b)/m = 1.

The objective is |A|/m = 2.
Now consider any integral solution Z for Bounded Degree Deletion

in G. We claim that |Z| ≥ m + 1. Let W = A − Z. If |W | < m then we
are done, as |Z| ≥ |A| − |W | ≥ m + 1. So assume |W | ≥ m. Consider any
b ∈ B such that b ⊆ W . Since Z is a feasible output it must contain b or
one of its neighbors. Since NA(b) = b ⊆ W is disjoint with Z, it follows
that Z contains either b or one of its neighbors in C. Thus, for each b ⊆ W
of size m there is a distinct element of Z ∩ (B ∪ C) which implies that
|Z ∩ (B∪C)| ≥

(|W |
m

)
≥ |W |+1−m. Since |Z ∩A| = 2m−|W |, we conclude

that |Z| ≥ m + 1.
For completeness, we note that any Z ⊆ A with |Z| = m+1 is a feasible

solution. Also, note that the number of vertices of the constructed G is
2Θ(m). ut

References

[1] B. Balasundaram, S. Butenko, I. V. Hicks, and S. Sachdeva. Clique
relaxations in social network analysis: The maximum k-plex problem.
Manuscript, 2006.

[2] N. Baldwin, E. Chesler, S. Kirov, M. Langston, J. Snoddy, R. Williams,
and B. Zhang. Computational, integrative, and comparative methods for
the elucidation of genetic coexpression networks. Journal of Biomedicine
and Biotechnology, 2:172–180, 2005.

[3] E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D.
Mountz, N. E. Baldwin, M. A. Langston, D. W. Threadgill, K. F. Manly,
and R. W. Williams. Complex trait analysis of gene expression uncov-
ers polygenic and pleiotropic networks that modulate nervous system
function. Nature Genetics, 37:233–242, 2005.

[4] M. R. Fellows, J. Guo, H. Moser, and R. Niedermeier. A generalization
of Nemhauser and Trotter’s Local Optimization Theorem. In Proc. 26th
Int. Symp. on Theoretical Aspects of Computer Science (STACS), pages
409–420, 2009.

10

[5] S. G. Kolliopoulos and N. E. Young. Approximation algorithms for cov-
ering/packing integer programs. Journal of Computer and System Sci-
ences, 71:495–505, 2005.

[6] C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier. Isolation
concepts for enumerating dense subgraphs. In Proc. 13th Ann. Int. Com-
puting and Combinatorics Conf. (COCOON)”, pages 140–150, 2007.

[7] N. Nishimura, P. Ragde, and D. M. Thilikos. Fast fixed-parameter
tractable algorithms for nontrivial generalizations of vertex cover. Dis-
crete Appl. Math., 152(1-3):229–245, 2005.

[8] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the
clique concept. Journal of Mathematical Sociology, 6:139–154, 1978.

[9] A. Srinivasan. Improved algorithmic versions of the Lovász Local
Lemma. In Proc. 19th Symp. on Discrete Algorithms (SODA), pages
611–620, 2008.

11

