
Approximate Duality of Multicommodity Multiroute Flows and Cuts:
Single Source Case

Petr Kolman∗ Christian Scheideler†

Abstract
Given an integer h, a graph G = (V, E) with arbitrary positive edge capacities and k pairs of vertices

(s1, t1), (s2, t2), . . . , (sk, tk), called terminals, an h-route cut is a set F ⊆ E of edges such that after the
removal of the edges in F no pair si − ti is connected by h edge-disjoint paths (i.e., the connectivity of every
si−ti pair is at most h−1 in (V, E\F)). The h-route cut is a natural generalization of the classical cut problem
for multicommodity flows (take h = 1). The main result of this paper is an O(h522h(h+log k)2)-approximation
algorithm for the minimum h-route cut problem in the case that s1 = s2 = · · · = sk, called the single source
case. As a corollary of it we obtain an approximate duality theorem for multiroute multicommodity flows and
cuts with a single source. This partially answers an open question posted in several previous papers dealing
with cuts for multicommodity multiroute problems.

1 Introduction

The theory of networks and cuts and flows in networks is among the oldest areas of combinatorial optimization,
dating back at least to the time of Gustav Kirchoff. Almost every student of computer science or mathematics
has to come across Menger’s theorem or the more general maximum flow – minimum cut theorem (Ford and
Fulkerson [7], Elias, Feinstein and Shannon [6]): The maximum value of a flow from a source vertex to a sink
vertex in a network equals the minimum capacity among all cuts between the source and the sink. Although this
theorem perfectly describes the relation between classical flows and cuts in networks with a single commodity, there
are many other (more general) reasonable settings where the theorem is not applicable. A natural generalization
of the classical flows and cuts are the multicommodity flows and cuts; although an exact duality does not hold for
them, an approximate max-flow min-cut relationship does [8], cf. [12].

Another generalization of the classical flows and cuts are the multiroute flows and cuts [10], cf. [1]. A classical
flow is a non-negative linear combination of unit flows along simple paths (after removing any cycles). An h-route
flow is a non-negative linear combination of elementary h-route flows where an elementary h-route flow is a set
of h edge-disjoint paths between a source and sink, each path carrying a unit of flow. An h-route cut is a set of
edges whose removal decreases the maximum h-route flow to zero.

There are many papers dealing with the problem of multiroute flows (also known, e.g., as multi-path routing)
and multiroute cuts. One reason for this interest are the possible applications of multiroute flows in communication
networks (multiroute flows are more resilient against link failures and adversaries [2, 9, 13]). Also, it has been
considered an important open problem whether the approximate duality of multicommodity flows and cuts does
extend to multiroute multicommodity flows and cuts. There are several partial results in this respect. Bruhn
et al. [4] proved an approximate duality theorem for single-source multicommodity h-route flows on uniform
capacity networks that applies for any h > 1; the approximation factor is linear in h and does not depend on
k. Chekuri and Khanna [5] described an approximation algorithm for the minimum multicommodity 2-route
cut problem whose corollary is an approximate duality theorem for multicommodity 2-route cuts and flows on
networks with arbitrary edge capacities. An analogous result was recently shown by Kolman and Scheideler [11]
for 3-route multicommodity flows and cuts. The approximation factors in the last two results mentioned above
are polylogarithmic in k. Another polylogarithmic approximation for the minimum multicommodity 2-route cut
problem (without any explicit implications for the approximate duality) was given by Barman and Chawla [3];
they also provided several bicriteria approximations.

∗Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic. Partially supported by the grants GA ČR

201/09/0197 and 1M0021620808 (ITI).
†Dept. of Computer Science, University of Paderborn, Germany. Partially supported by the grants DFG SCHE 1592/1-1 and

DFG SFB 901.

On the lower bound side, the known Ω(log k) gap between the classical maximum multicommodity flow and
the minimum cut carries over to the multiroute setting. Apart from this, a lower bound Ω(h) for the same gap is
known [3].

It is worth mentioning that in general there is no relationship between the sizes of a minimum h-route cut
and a minimum (h − 1)-route cut, apart from the obvious fact that the former is not larger then the latter. In
particular, it may happen that the size of a minimum h-route cut is zero while the size of a minimum (h−1)-route
cut is arbitrarily large.

1.1 New results. The main result of this paper is an O(h522h(h + log k)2)-approximation algorithm for the
minimum h-route cut problem with single source for any h ≥ 1. As a corollary of it we obtain an approximate
duality theorem for multiroute multicommodity flows and cuts for that case. This partially answers an open
question posted in several previous papers dealing with cuts for multicommodity multiroute problems [5, 4, 3, 11].
Note that we focused on showing an approximation ratio that is polylogarithmic in k, at the cost of obtaining an
exponential dependency on h. However, we suspect that a much lower dependency on h is possible.

1.2 Comparison with previous related results. At a high level, the structure of our approximation
algorithm is the same as the structure of the approximation algorithm by Garg et al. [8] for classical
multicommodity cuts (cf. [14, 3, 11]): while there exists a commodity whose terminals are still h-connected,
perform an h-route cut separating the terminals of this commodity, charge the h-route cut to a certain part
(volume) of the network (roughly, to the region that was used to define the cut) and proceed with the next
iteration. The h-route cut in each iteration is derived from the fractional solution of the LP relaxation of the
minimum h-route cut problem (see below) via the ball growing technique. The fractional solution of the LP
relaxation is computed only once at the very beginning of the algorithm and the same solution (with some minor
modifications due to local structural changes of the graph G during the algorithm) is used in all iterations.

Though the three above mentioned approximation algorithms [8, 3, 11] and our new algorithm share the same
structure, including the usage of the ball growing technique, on the low level, our new algorithm substantially
differs from all of the three older algorithms.

In the classical setting (i.e., for h = 1), after performing a cut around an appropriate ball with center in ti,
the vertices si and ti belong to different components of connectivity. This way the problem is split by the cut
into two independent subproblems.

For h = 2, after performing a 2-route cut for the commodity i, the vertices si and ti will typically still belong
to the same connected component but there always exists a cut consisting of a single edge e that separates si from
ti. Let S and T be the two components of the graph after removing e. We note that even without removing e,
there is no simple path in G originating and terminating in S and going through T (and vice versa). Thus, similar
to h = 1, the two parts S and T of the graph induce two independent subproblems (with respect to 2-route flows
and cuts) even though S and T belong to the same connected component. It was this independence that made it
possible to design the charging scheme for h = 2 [3].

For h = 3 the situation is different. After performing a 3-route cut for commodity i, we know that there exists
a cut consisting of at most two edges whose removal disconnects si and ti. Similarly to the previous case, let S
and T be the two parts of G obtained by removing the two edges. In contrast to h ≤ 2, now there may exist paths
originating in S and terminating in S that are going through T (and vice versa). Thus, the parts S and T do
not induce independent subproblems any more. To cope with this problem, the approximation algorithm keeps
track of the balls constructed in previous iterations. Fortunately, as S and T are connected by two edges only,
the interactions between S and T are of a very specific form which makes it possible to cope with the minimum
h-route cut problem for h = 3 [11]. The multilevel ball growing technique was introduced here as the main tool.
On the technical level, after dealing recursively with all commodities with both terminals in T (say), it is possible
to replace (the ball) T by a single edge (with endpoints being equal to the starting points of the two edges leading
from S into T) which substantially simplifies the situation for later iterations.

For h > 3, the interactions between S and T (defined as above) are of much more complicated form and so are
the interactions between the balls from previous iterations. One difficulty is that the balls cannot be substituted
by single edges any more (not even by a tree, due to the many restrictive constraints: lengths of paths, sizes
of cuts, etc.). A related difficulty is the following: occasionally, for an appropriate ball (i.e., an edge, after the
substitution), the algorithm for h = 3 needs to decrease the connectivity between two entry nodes of the ball (i.e.,

between the nodes that connect the ball to the rest of the graph). As the maximum number of edge-disjoint paths
in the ball between the two entry nodes of the ball is just one, decreasing the connectivity means performing an
ordinary cut of the ball. After doing so, each of the two resulting components of the ball is connected to the
rest of the graph by a single edge only, and thus, as explained earlier, the components correspond to independent
subproblems and can be removed from the graph. However, for h > 3, after decreasing the connectivity between
two subsets of entry nodes of a given ball, typically the ball will not split into two separated parts (think about
a multiroute cut of the ball), and even if it does, both parts of the ball may contain two or more entry edges.
Thus, we cannot remove them from the graph. However, this significantly complicates the charging mechanism.

The main technical contribution of this paper is an extension of the multilevel ball growing technique to the
case of h > 3 with single source. Among various ideas is a technique to prevent edges within certain subgraphs
(consisting of balls from previous iterations) to be cut or charged even though the original ball growing argument
would demand that. To make the treatment of the balls possible, we maintain them in a laminar set system.

1.3 Preliminaries. Suppose we are given a graphG = (V,E) with edge capacities c : E → R+ and commodities
(s1, t1), . . . , (sk, tk). Let Pi denote the set of all paths in G between si and ti. In the single source version of
the problem, the sources of all commodities are in the same vertex s, that is, si = s for each commodity i. Our
approximation algorithm is based on the linear programming relaxation of the minimum h-route cut problem
that was recently used to deal with the problem for h = 2 [3] and h = 3 [11]. For every edge e there is a variable
x(e) ∈ {0, 1} indicating whether this edge belongs to the h-route cut, and for each commodity and each edge
there is a variable xi(e) ∈ {0, 1} serving as a proof that the edges with x(e) = 1 form really an h-route cut for the
commodity i; the proof consists in showing that x + xi corresponds to a classical cut with at most h − 1 edges
with xi(e) = 1. The minimum h-route cut problem can be stated as an integer linear program (ILP) as follows:

min
∑
e∈E

c(e)x(e) (1.1)

∑
e∈p

(x(e) + xi(e)) ≥ 1 ∀i ∈ [k], p ∈ Pi∑
e∈E

xi(e) ≤ h− 1 ∀i ∈ [k]

x(e) ∈ {0, 1} ∀e ∈ E
xi(e) ∈ {0, 1} ∀i ∈ [k],∀e ∈ E

In order to find a good approximate solution for this ILP, we work with the linear programming (LP) relaxation
of it where the constraints x(e) ∈ {0, 1} and xi(e) ∈ {0, 1} are replaced by x(e) ≥ 0 and by xi(e) ≥ 0, resp., for
every edge e and every commodity i. We denote by Φ the value of the objective function for the optimal solution
of the LP relaxation.

Given a fractional solution x and xi, shortest paths with respect to x or x+ xi naturally induce a metric on
V ; previous papers that exploit the ball growing technique are based on these metrics. In this paper we again
work with metrics that are derived from the LP relaxation but we loosen the connection with the shortest paths.
More precisely, throughout the algorithm and for each i ∈ [k], yi(u) is the length of the shortest path in the input
graph G, with respect to x + xi, between ti and the node u ∈ V . Important properties of the mappings yi are
that for each edge uv ∈ E, |yi(u)− yi(v)| ≤ x(uv) + xi(uv) and that yi(si) ≥ 1 for all i.

We will need the following simple lemma (implicitly used in a simpler form by Garg et al. [8]).

Lemma 1.1. (Ball Growing Lemma [11]) Let [l1, r1], [l2, r2], . . . , [lz, rz] be internally disjoint intervals of real
numbers such that l1 < l2 < · · · < lz and let R =

⋃z
i=1[li, ri]. Assume that the following holds:

• f is a nondecreasing function on R and f(l1) > 0,

• f is differentiable on R, except for finitely many points,

• g is a function on R such that ∀r ∈ R, g(r) ≤ f ′(r), except for finitely many points.

Let γ = f(rz)/f(l1). Then there exists r ∈ R such that g(r) ≤ 1
|R| log γ · f(r). Also, there exists r ∈ R such that

g(r) ≤ 1
|R| · f(rz).

Kolman and Scheideler [11] proved that if I is an upper bound on the integrality gap of the linear
program (1.1), F is the size of the maximum multicommodity h-route flow and C is the size of the minimum
multicommodity h-route cut, then

F

h
≤ C ≤ I · F . (1.2)

By describing, for the single source version of the problem, an O(h522h(h+log k)2)-approximation algorithm based
on the LP (1.1), we also show that the integrality gap of the LP for the single source case is O(h522h(h+ log k)2)
which in turn implies the approximate duality theorem.

Without loss of generality we assume that h ≤ k and k ≥ 2 (otherwise an O(h2)-approximation is trivial
[11]). For a graph H, we use E(H) to denote the edge set and V (H) to denote the node set of H. Similarly, for
a set D of (sub)graphs, we define E(D) =

⋃
H∈D E(H) and V (D) =

⋃
H∈D V (D). For a set F of edges we define

c(F) =
∑
e∈F c(e), and we say that

∑
e∈F x(e)c(e) is their volume. Note that the volume of the entire graph is a

lower bound on the cost of an optimal solution.

2 Rounding Algorithm

In the single source version of the problem, the sources of all commodities are in the same vertex s, that is, si = s
for each commodity i. As we already mentioned in the introduction, the algorithm works in iterations and in
iteration i an h-route cut for commodity i is constructed (if it does not already exist). Similarly to the previous
papers on multi-cut approximations, the h-route cut for commodity i is obtained by the ball growing technique;
roughly, it consists of cutting all but h − 1 edges leaving a ball around ti with a properly chosen radius r. We
recall that the cuts constructed by the multicut algorithm for classical multicommodity flows [8] are of the form

δ(r) = {uv ∈ E | yi(u) ≤ r < yi(v)} .
In iteration i, we view every edge uv ∈ E as a segment of length |yi(u) − yi(v)| consisting of two parts: an

xi-part of length (at most) xi(uv) followed by an x-part of length (at most) x(uv) on the way from ti. (Note that
the ordering of x and xi is different from our previous paper [11] since this particular ordering is more convenient
for our analysis here.) We define

δx(r) = {uv ∈ E | yi(u) + xi(uv) ≤ r < yi(v)} .
Note that for every r ∈ (0, 1), if |δ(r)\δx(r)| ≤ h−1, then δx(r) is an h-route cut between ti and s. Our intention
is, roughly, for each commodity i to find a radius r such that δx(r) is a cheap h-route cut between si and ti. In the
rest of this section we describe in detail a single iteration of our algorithm. We start by introducing a necessary
notation and several ingredients that are important for the algorithm.

2.1 Levels. In our algorithm, edges may be charged several times for different h-route cuts. Therefore we
maintain for every edge e a counter `(e) called the level of the edge, satisfying at the end of every iteration that
`(e) is an upper bound on the number of times the edge e was charged for a cut (i.e., for a removal of some edges).
Initially, `(e) = 0 for every edge e ∈ E. We will organize the cutting and charging in such a way that the level of
every edge is upper bounded by 2h+ log k (see Lemma 2.1 below). The use of levels was the main innovation of
our multilevel ball growing technique [11] but here it is much more tricky to apply.

2.2 Restricted structures. In order to keep the edge levels small when constructing a new h-route cut, we
try to avoid charging the cost of the new cut to edges of high level. For this we organize the edges with positive
level into restricted structures which are subgraphs of G. Every edge with positive level belongs to a restricted
structure from H. Roughly speaking, the restricted structures in iteration i will coincide with balls constructed
by the algorithm around the terminals t1, . . . , ti−1 in previous iterations. We maintain the restricted structures in
a set D satisfying a laminar property: for any two subgraphs H1, H2 ∈ D, H1 ⊂ H2, or H2 ⊂ H1, or H1 ∩H2 = ∅.
Initially, D = ∅. For any H ∈ D we denote by D(H) the restricted structures from D that are subgraphs of H,
that is, D(H) = {H ′ ∈ D | H ′ (H}, and we denote by Ep(H) the set of edges from H that do not belong to
any H ′ ∈ D(H), that is, Ep(H) = E(H) \⋃

H′∈D(H)E(H ′); the edges in Ep(H) are called the proper edges of H.
The set of all edges that connect H ∈ D to the rest of G are called its entry edges and are denoted by inE(H),

and the set of endpoints of the entry edges that are inside of H are called entry nodes and denoted by inV (H).
We define the level of H ∈ D as

`(H) = max{`(e) | e ∈ Ep(H)} .
By saying that we assign a level of ` to a restricted structure H, we mean setting `(e) = ` for every proper edge
e ∈ Ep(H) of H.

A related notion of restricted edge appeared in our paper about 3-route cuts [11]. In that setting it was
possible to keep the restricted structures edge disjoint and to reduce them to individual edges which significantly
simplified their treatment.

To control the interactions between the restricted structures, we associate with every H ∈ D a credit

φ(H) = 22|inE(H)|+`(H) , (2.3)

and we maintain the following invariant.

Invariant 2.1. At the end of iteration i the restricted structures in D satisfy the laminar property and for every
H ∈ D,

2 ≤ |inE(H)| ≤ h− 1 , and (2.4)

`(H) < `(H ′) for all H ′ ∈ D(H) , and (2.5)

∑
H∈D

φ(H) ≤ i · 22h . (2.6)

The properties (2.4) and (2.5) are easy to maintain: If there is H ∈ D with |inE(H)| ≤ 1, we remove H
from D and we also remove it temporarily from G until the last commodity gets disconnected; as no simple path
can enter H and leave it again, by putting H back in G we will not damage the multiroute cut computed by the
algorithm. If `(H) ≥ `(H ′) for some H ′ ∈ D(H), then we remove H ′ from D and raise the level of its edges to
`(H) without affecting φ(H).

We also note that if Ep(H) = ∅ for some H ∈ D, then H can be removed from D as all of its edges are
already covered by other restricted structures and the level of these structures is guaranteed by Invariant 2.1 to
be larger than `(H).

Under the assumption that Invariant 2.1 holds, we observe a simple fact.

Lemma 2.1. For every edge e it holds that `(e) ≤ 2h+ log i at the end of iteration i.

Proof. The bound is implied by the definition (2.3) and constraints (2.4) and (2.6) in Invariant 2.1 which require
that 22·2+`(e) ≤ i · 22h for any edge e. ut

In the rest of this section we explain iteration i of our algorithm step by step.

2.3 Partitioning of D. Earlier in this section we outlined our plan to avoid cutting and charging edges of high
level. This was an (unrealistic) oversimplification. Instead, roughly speaking, we will allow cutting and charging
edges in restricted structures of level ` if we ensure that we cut or charge at least two restricted structures of
level `. By doing so we obtain a tree of restricted structures with logarithmic depth. This is the motivation for
partitioning the set D into two parts as described below; the set D1 is prohibited for cuts and charges while the
set D2 is allowed for cuts and charges. The exact partitioning procedure is not based on the number of restricted
structures of certain level but, instead, on the sum of potentials of restricted structures of this level.

At the beginning of iteration i we partition the set D of restricted structures into two parts, D1 and D2.
For each level ` we check whether

∑
H∈D:`(H)=` φ(H) ≥ 2h222h+`. If so, we put to D1 the minimum number

of restricted structures of level ` whose credit sums up to at least 2h222h+`, starting with the closest to ti
(w.r.t. minv∈V (H) yi(v)). If not, we put to D1 all restricted structures of level `. This is done for every level.
After processing all levels, we put all remaining restricted structures to D2, that is, we set D2 = D \D1. Based
on the restriction on D1 we get:

Lemma 2.2. For each level `,
∑
H∈D1: `(H)=` |inE(H)| ≤ h222h−1.

Proof. From the definition of the credit it follows that
∑
H∈D1:`(H)=` φ(H) ≤ (2h2 + 1)22h+` and thus∑

H∈D1:`(H)=` 22|inE(H)| ≤ (2h2 + 1)22h. It is easy to check that the maximum value of
∑
H∈D1: `(H)=` |inE(H)|

is reached when |inE(H)| = 2 for every H, which results in an upper bound of 2 · (2h2 + 1)22h/22·2 ≤ h222h−1 for∑
H∈D1: `(H)=` |inE(H)|. ut

The bound from this lemma will be crucial later in the proof of Lemma 2.4.

2.4 Preprocessing of D1 and G. Assume that we are in iteration i and H is a restricted structure from D1.
Let RH = [minu∈inV (H) yi(u), maxu∈inV (H) yi(u)) be a subinterval of [0, 1). For any subgraph H ′ of H with the
same vertex set and for r ∈ RH we define mincutH′(r) as follows:

• If the cardinality of the classical single-commodity cut of minimum cardinality (i.e., all edges have cost 1
when evaluating the cost of cuts) in H ′ between S(r) = {v ∈ inV (H) | yi(v) ≤ r} and T (r) = inV (H)\S(r)
is at most h− 1, then mincutH′(r) is the edge set of this cut.

• Otherwise mincutH′(r) is defined as the set of the entry edges of H ′ that are adjacent to T (r).

For notational simplicity, for r 6∈ RH we define mincutH′(r) = ∅. Note that for every r, the cardinality of
mincutH′(r) is at most h− 1.

The following lemma says that for every H ∈ D1, by removing a few edges from E(H) (the set FH) that we
can pay for by the volume

∑
e∈E(H) x(e)c(e) of H, and by excluding a short subinterval from RH (the interval

IH) we ensure that on average the mincuts of H \ FH are “small” (as the sum of xis is small). This will allow us
to avoid cutting edges in restricted subgraphs in D1 by multiroute cuts, even though the standard ball growing
technique would demand that.

Lemma 2.3. For every H ∈ D1 and every integer p there is a subset FH ⊆ E(H) and a subset IH ⊆ RH so that
for H ′ = H \ FH , ∫

r∈RH\IH

|mincutH′(r)| dr ≤
∑

e∈E(H)

xi(e) , (2.7)

∑
e∈FH

c(e) = O(h2p)
∑

e∈E(H)

x(e)c(e) , (2.8)

|IH | ≤ |inV (H)|/p . (2.9)

Moreover, the sets IH and FH can be computed in polynomial time.

Proof. For h′ = |inV (H)|, let u1, . . . , uh′ be the entry nodes of H in increasing order of rj = yi(uj) and let
Ij = [rj , rj+1). We proceed through the intervals Ij one by one, starting with I1, and for each of them we update
the sets IH and FH . Initially, we set IH = ∅ and FH = ∅. We use H ′ as a shortcut for H \ FH and δH

′

x (r) as a
shortcut for δx(r) ∩ E(H ′).

Assume that we are dealing with the interval Ij . Let l = |mincutH′(rj)|, and for any l′ ≤ l let F l′j be the set
of all tuples of l′ edge-disjoint paths in H between the node sets S(rj) and T (rj). For each B ∈ F l′j we define
IB = {r ∈ Ij | δH′x (r)∩B 6= ∅}, that is, IB is the set of radii for which δ(r) hits some edge from B ∩E(H ′) in its
x-part. We distinguish between two cases.

1. If minB∈Fl
j
|IB | ≤ 1/p, we extend IH by IB′ where B′ is a tuple from F lj for which the minimum is achieved.

Clearly,

|IB′ | ≤ 1/p . (2.10)

This fact will be used to guarantee the property (2.9). Also notice that∫
r∈Ij\IB′

δH
′

xi
(r) dr ≥

∫
r∈Ij\IB′

l dr

=
∫
r∈Ij\IB′

|mincutH′(r)| dr (2.11)

so property (2.7) holds for the subinterval Ij \ IH .

2. If minB∈Fl
j
|IB | > 1/p, we let l′ be the minimum index for which minB∈Fl′

j
|IB | > 1/p. Then the vector

x scaled by hp represents a feasible fractional solution of a linear programming relaxation, analogous to
the linear program (1.1), of an l′-route cut between S(rj) and T (rj) in H ′ (see the proof of Theorem 14
in the paper [11] for a detailed description how to obtain the actual fractional solution). By rounding this
fractional solution of a single commodity multiroute cut by the ball growing technique, exploiting the last
statement of the Ball Growing Lemma, we obtain in polynomial time an integral l′-route cut Fj between
S(rj) and T (rj) of size ∑

e∈Fj

c(e) = O(h2p)
∫
r∈Ij

c(δHx (r)) dr . (2.12)

We add the edges from Fj to FH and adjust H ′ accordingly. Since now |mincutH′(rj)| ≤ l′ − 1 and since,
by the assumption of this case, min

B∈Fl′−1
j

|IB | ≤ 1/p, we can continue as in the case 1 to complete our

dealing with the interval Ij .

Combining the inequalities (2.10), (2.11) and (2.12) over all intervals Ij yields the lemma. ut
Lemma 2.3 ignores the fact that we may have restricted structures inside of H. As we have a laminar family

of restricted structures, we have to be a bit more careful in choosing FH so that the charging in the algorithm
only affects structures that are actually cut. Consider any H ∈ D1. Instead of just focusing on the entry nodes
of H, we consider all entry nodes in īnV (H) = inV (H) ∪ ⋃

H′∈D̄1(H) inV (H ′) (where D̄1(H) denotes the set of
maximal D1-structures contained in H, that is, the set of those that are not contained in any other D1-structure
in H). We order the nodes in īnV (H) according to increasing yi-distance from ti, call the resulting distances
r1, . . . , r|īnV (H)|, and then apply the proof of Lemma 2.3 to them. Taking over the notation in that proof and
renaming Fj to F̄j , FH to F̄H , IH to ĪH and Ij to Īj to avoid confusion with the parameters in Lemma 2.3, this
results in the following property.

Corollary 2.1. For every H ∈ D1 and every integer p there is a subset F̄H =
⋃|īnV (H)|−1
j=1 F̄j ⊆ E(H) and a

subset ĪH =
⋃|īnV (H)|−1
j=1 Īj ⊆ RH so that for H ′ = (V (H), E(H) \ (E(D1(H)) ∪ F̄H)),∫

r∈RH\ĪH

|mincutH′(r)| dr ≤
∑

e∈E′(H)

xi(e) , (2.13)

∑
e∈F̄j

c(e) = O(h2p)
∫
r∈Īj

c(δH
′

x (r)) dr , (2.14)

|ĪH | ≤ |īnV (H)|/p . (2.15)

Moreover, all of the involved sets can be computed in polynomial time.

It will be important in the proof of Lemma 2.4 that for a proper choice of the parameter p, the Corollary
implies an upper bound on

∑
H∈D1

ĪH . In particular, by plugging in 2h
∑
H∈D1

|īnV (H)| for p, we obtain∑
H∈D1

|ĪH | ≤ 1/(2h) . (2.16)

In our analysis we will also use the fact that

p = O(h322h(h+ log k)) , (2.17)

by the choice of p and by Lemma 2.1 and Lemma 2.2.
Also note that by the choice of the strips Īj in Corollary 2.1 it holds for each strip Īj that a structure

H ′ ∈ D(H) either has nodes on both sides of the strip or none of the edges in E(H ′) will be cut by F̄j (which
also means it does not have to be charged for that cut).

In the preprocessing phase, we temporarily remove from G and from every H ∈ D1 the subset of edges
F̄H as given by Corollary 2.1, in order to be able to apply the ball growing technique. In particular, we define
F̄i =

⋃
H∈D1

F̄H and I =
⋃
H∈D1

ĪH and Ḡi = Gi \ F̄i where Gi denotes the graph G at the beginning of iteration
i. Later, for most H ∈ D1, we will put the set F̄H back into Ḡi; the details are provided later in this section. The
cost of those edges from F̄i that are removed permanently, is charged to the volume of the edges that contribute
to the integral on the right-hand side of the equation (2.14); we will ensure that the level of these edges increases
by one at least. However, we stress that we do not increase the level of any edge at this point.

2.5 h-route cut. The crucial idea for the 3-route cut algorithm [11] was to consider only radii that do not cut
edges of structures in D1 in their x-parts; as D1 was just an edge set in that case, it was relatively easy to show
that this restriction does not reduce the set of possible radii too much. Here, Corollary 2.1 will help us to mimic
the same approach. We are looking for h-route cuts in Ḡi of the following form:

δh(r) = δx(r) \ E(D1) .

We also define

δ̄h(r) = (δxi
(r) \ E(D1)) ∪

⋃
H∈D1

mincutH(r) .

Note that δh(r) need not be an h-route cut between s and ti, and that δh(r) ∪ δ̄h(r) is a classical cut between s
and ti. Thus, if |δ̄h(r)| ≤ h− 1 then δh(r) is an h-route cut. Let R be the set

R = {r ∈ [0, 1] \ I | δh(r) is an h-route cut} .
We say that R is the set of good radii for Ḡi. Below we prove that the measure of the set R is large which will
make it possible to apply the Ball Growing Lemma (Lemma 1.1), and thus, to find a cheap h-route cut between
ti and s.

Lemma 2.4. (Good radii)

|R| ≥ 1/(2h) . (2.18)

Proof. We first prove that ∫
r∈[0,1]\I

|δ̄h(r)| dr ≤ h− 1 .

Think about the edges that contribute to the value of the integral. They can be divided into two subsets: edges
from E(D1), and edges from E \ E(D1). By inequality (2.13) from Corollary 2.1, the contribution of the first
group is at most

∑
e∈E(D1) xi(e); the contribution of the other group is at most

∑
e∈E\E(D1) xi(e). Since the

vectors x and xi constitute a fractional solution of the linear program (1.1), the sum of these two upper bounds
is at most h− 1.

Once we have the above bound, we easily conclude that the measure of the set X = {r ∈ [0, 1] \ I | |δ̄h(r)| >
h− 1} is at most 1− 1/h; just note that h|X| = ∫

r∈X h dr ≤
∫
r∈[0,1]\I |δ̄h(r)| ≤ h− 1.

We already observed in inequality (2.16) that I =
∑
H∈D1

ĪH ≤ 1/(2h). Since [0, 1] \ (X ∪ I) ⊆ R, the claim
of the lemma follows. ut

We are almost ready to apply the Ball Growing Lemma. We define the volume function

Vol(r) =
Φ
k

+
∫
ρ∈R∩[0,r]

c(δh(ρ)) dρ ,

where Φ =
∑
e∈E c(e)x(e). Notice that for k source-destination pairs the Φ/k-part in the volume just adds

up to Φ, so the critical part of the volume is its other part. Since the functions f(r) := Vol(r) and
g(r) := c(δh(r)) =

∑
e∈δh(r) c(e) satisfy the assumptions of the Ball Growing Lemma on the set of good radii R,

we obtain the following lemma (cf. [11]).

Lemma 2.5. (Cheap h-route cut) There exists r ∈ R such that c(δh(r)) ≤ 2h log(2k) ·Vol(r). Moreover, such
a radius can be computed in polynomial time.

As the h-route cut between s and ti in Ḡi we use the set Fi = δh(r) where r is the radius from the lemma.
Note that according to the definition of δh(r) no edges in δ̄h(r)∪E(D1) contribute towards the volume Vol(r) (the
edges in δ̄h(r) \E(D1) are cut in their xi part, and by our assumption on the ordering of the x- and xi-parts, the
xi-parts precede the x-parts on the way from ti). We say that an edge e is charged for the cut Fi, if e contributes
to Vol(r), and a restricted structure H is charged for Fi, if some edge from E(H) is charged for Fi. We remove Fi
from Ḡi (which may only remove edges in D2-structures that are not contained in any D1-structure) and proceed
with updating D so that Invariant 2.1 is preserved.

2.6 Update of the set D. In the following let B(r) = {u ∈ V | yi(u) ≤ r} and let H(r) be the subgraph
of Ḡi induced by the node set B(r) where r is the radius from Lemma 2.5. We define the entry edges of H(r) as
inE(H(r)) = δ̄h(r). Our intention is to increase the level of every edge in E(H(r)) \ E(D1) by one and to add
H(r) to D. However, when doing this, we may no longer have a laminar family of restricted structures. Apart
from this, to satisfy inequality (2.6) in Invariant 2.1), we also have to make sure that the sum of credits over all
restricted structures does not increase by more than 22h. We handle these issues in three stages: first, we update
the level and the credit of restricted structures for certain cases in which this is directly possible. Then we repair
the laminar property of the restricted structures, and, finally, we update the level and the credit of the remaining
restricted structures that were affected in iteration i. Before tackling the details, we consider two easy cases that
allow much simpler treatment.

If there are no restricted structures that intersect with H(r), we only set the level of every edge in H(r) to 1,
add H(r) to D and undo the cutting of all edges in F̄i. As |inE(H(r))| ≤ h−1 and as the total credit can increase
by 22h in each iteration, we can afford to do that (cf. property (2.6) in Invariant 2.1 and the definition (2.3) of
the credit of H ∈ D). The laminar property of D is obviously preserved.

A slightly more difficult situation is the case that every restricted structure H ∈ D is either completely inside
or completely outside of H(r). In this case, we still have a laminar family of restricted structures. Again, we can
undo the cutting of all edges in F̄i without any harm for the multiroute cut. Thus, there is no need to increase the
level of any edge in a D1-structure and we only care about the charging for the edges from Fi. Any D2-structure
that is outside of H(r) does not contribute to the volume Vol(r) and can therefore maintain its current level. If
there is no D2-structure inside H(r), we are done. Otherwise let H be the D2-structure of maximum level that
is inside H(r). Then we know from the definition of D1 that

∑
H′∈D1:`(H′)=`(H) φ(H ′) ≥ 2h222h+`(H) and these

D1-structures must all be inside of H(r). Hence, when removing from D all restricted structures in H(r) that
have a level of at most `(H), we obtain enough credit to assign a level of `+ 1 to every proper edge of H(r), and
to pay in this way for the cut Fi without violating Invariant 2.1.

2.6.1 Pre-updating the credit and the levels. The general case needs much more careful arguments. The
main objective of this paragraph is to show how to obtain enough credit for the necessary increase of levels, in the
situation that there is a D2-structure H that intersects with H(r). The main difficulty is that the D1-structures
of level `(H) whose credit we would like to use, may not be fully included in H(r).

In the following lines we consider a maximal (with respect to inclusion) restricted structure H ∈ D with
V (H) ∩ V (H(r)) 6= ∅ and V (H) 6⊆ V (H(r)) (i.e., H intersects with H(r) but is not fully contained in it), such
that H is cut by H(r) into two disconnected subgraphs H1 and H2 (i.e., there is no edge connecting H1 and H2

in Ḡi \Fi), where H1 is inside of H(r) and H2 is outside (if there is no such H, the algorithm skips the following
steps). We distinguish the following cases:

1. Both H1 and H2 have at least two entry edges. Then it follows from |inE(H1)|+ |inE(H2)| ≤ |inE(H)| that
|inE(H1)| ≤ |inE(H)| − 2 and |inE(H1)| ≤ |inE(H)| − 2, which implies that

22|inE(H1)|+(`+1) + 22|inE(H2)|+(`+1)

≤ (22(|inE(H)|−2) + 22(|inE(H)|−2))2`+1

≤ 22|inE(H)|−2+(`+1) = φ(H)/2

Thus, we can set the level of every proper edge of H1 and H2 to `+1 and this way to pay for the corresponding
part of the cut Fi ∪ F̄i. In fact, half of the credit of H still remains which we will make use of below.

2. H1 (resp. H2) has exactly one entry edge. Then we can temporarily remove H1 (resp. H2) from D and
from G as it is not relevant any more for future h-route cuts and we can raise the level of the remaining H2

(resp. H1) by 1 with the credit of H. In fact, also here half of the credit of H still remains, which we will
make use of below.

3. H1 does not contain any entry edge. Then we can temporarily remove H1 from D and from G as well as
it is isolated. If H is a D1-structure, we undo all mincuts in H2. If H is a D2-structure, no edge from H2

contributes to Vol(r) because it is outside of H(r). Hence, in both cases we can leave the level of every edge
in H2 at its original level.

4. H2 does not contain any entry edge. Then we undo any cutting from Fi ∪ F̄i inside of H and extend H(r)
by H. If H is a D1-structure, then no edge from H contributes to Vol(r) so we do not have to raise its level.
If H is a D2-structure, we deal with it below.

If D(H) 6= ∅ and cases 1-3 were applied to H, we deal with any H ′ ∈ D(H) that is cut by H(r) into two
disconnected subgraphs in the order of increasing level in the same way as we dealt with H, i.e., we apply the
cases above to it. If a part of a structure got thrown away due to case 2 or 3 of some previously considered
structure, we treat it as having no entry edge in that part. In this way, all of these structures receive a proper
credit update reflecting their current level (except for those D2-structures satisfying case 4). Also, we repaired the
laminar property for these structures. Note that when using the cases above, we never shrink H(r) but possibly
extend it (when case 4 is applied). This will be important when dealing with the D2-structures that are (partly)
charged for the cut Fi, which we are considering next.

Suppose that there is a D2-structure H that is (partly) charged for the cut Fi. Let ` = `(H) and let D(`)
(resp. D1(`)) be the set of all H ′ ∈ D (resp. H ′ ∈ D1) of level ` with V (H ′) ∩B(r) 6= ∅. We know from our rule
of partitioning D that

∑
H∈D1(`) φ(H) ≥ 2h222h+`. Now, every structure H ′ ∈ D1(`) satisfies one of the following

properties:

(a) H ′ is inside of H(r),

(b) H ′ is inside of some maximal structure H ′′ ∈ D̄ that is not cut by H(r) into disconnected subgraphs,

(c) H ′ is inside of some maximal structure H ′′ ∈ D̄ that is cut into disconnected subgraphs by H(r).

In the first two cases, we remove H ′ from D and thereby free up all of its credit, and in case (c) we make use of
the property that at least one entry node of H ′ must be inside of H(r) (as the D2-structure H is charged for Fi,
at least one of its entry node must be closer to ti than r which in turn implies that at least one entry node of H ′

is at distance at most r from ti). Hence, in case (c) we can make use of the fact that either case 1 or 2 above
applied to H ′, so at least half of its credit can be taken away from it. Thus, we can free up a total credit of at
least

(1/2)
∑

H∈D1(`)

φ(H) ≥ h2 · 22h+`

As there are at most h − 1 maximal restricted subgraphs H ′ ∈ D(`) that intersect with H(r) but are not fully
contained in it and yet are not disconnected in Ḡi \Fi, there is enough credit to increase the level of H(r) as well
as of all these structures to ` + 1. This justifies the removal of all H ′ ∈ D1(`) that satisfy property (a) or (b)
above because now they are contained in a restricted structure with a larger level then themselves. Also, note
that we can remove all D1- and D2-structures of level at most ` that are inside of H(r) (such as those to which
we applied case 4 above) for the same reason which resolves the case 4.

At the end of this phase, we have dealt with updating the levels of all D2-structures intersecting with H(r),
and all D1-structures that are inside of H have also been dealt with (by either undoing any cutting in them or
by removing them from D). Thus, it remains to consider the D1-structures that intersect with H(r) but are not
fully contained in it. Also, we still need to repair the laminar property of D (which we have only done so far for
maximal structures that are cut into two disconnected subgraphs by H(r) and their substructures).

2.6.2 Restoration of the laminar property of D. Let D′ = {H ∈ D | V (H) ∩ B(r) 6= ∅ and
V (H) 6⊆ B(r)}. In order to avoid the intersection of H(r) with the restricted structures from D′, we process
the restricted structures in D′ in the order of their (original) level, starting with restricted structures of the
lowest level, and for each such problematic H ∈ D′ we perform either a local change of H or a local change of
H(r). For notational simplicity, for a restricted structure H we define Ē(H) = E(H) ∪ inE(H), and similarly
Ē(H(r)) = E(H(r)) ∪ inE(H(r)). For each restricted structure H from D′ we define three sets (see Figure 1):
AH = inE(H)\Ē(H(r)), BH = inE(H(r))∩Ē(H), CH = inE(H)∩Ē(H(r)). Based on the quantities of AH , BH
and CH , we distinguish between three types of intersections of H with H(r).

|AH | ≤ |BH | |CH | ≤ |BH | < AH
|BH | < |AH | and
|BH | < |CH |

H(r)

H

CH BH
AH H2H1

Figure 1: How to deal with different types of intersection of H(r) and H ∈ D′.

1. |BH | < |AH | and |BH | < |CH |: In this case, H is replaced in D by its two subgraphs: H1 = H ∩ H(r)
with inE(H1) = CH ∪ BH and H2 = H \ H1 with inE(H2) = BH ∪ AH . Also, the edges belonging to
mincutH(r) in F̄H are left removed and all other edges in F̄H are given back to Ḡi, i.e., F̄i is updated to
(F̄i \ F̄H) ∪mincutH(r).

2. |AH | ≤ |BH |: In this case, H(r) is extended by the nodes and edges of H, the edges in BH are removed
from inE(H(r)) and the edges in AH are added there. We also remove from D′ all restricted structures
belonging to D(H). If H ∈ D1, the set F̄H is put back into Ḡi so that H is not charged any more. For any
structure H ′ ∈ D with H ∈ D(H ′) that was previously applied to case 1), we extend V (H ′1) by V (H) and
remove all nodes in V (H) from V (H ′2) to repair the laminar property of D. Note that this does not increase
the number of entry edges of H ′1 or H ′2.

3. |CH | ≤ |BH | < |AH |: In this case, the nodes and edges from H(r) ∩ H are removed from H(r) (i.e.,
H(r) = H(r) \H). We also remove from D′ all restricted structures belonging to D(H). If H ∈ D1, the set
F̄H is put back into Ḡi so that H is not charged any more. For any structure H ′ ∈ D with H ∈ D(H ′) that
was previously applied to case 1, we extend V (H ′2) by V (H) and remove all nodes in V (H) from V (H ′1).
Note that this does not increase the number of entry edges of H ′1 or H ′2.

Clearly, after we have processed D′, we again have a laminar family of restricted structures. Let D′′ denote the
set of restricted structures for which the removal of some edges in the set F̄H was made permanent in case 1,
and let D′′′ denote the set of restricted structures that were excluded from H(r) as described in case 3. Let
F̄i =

⋃
H∈D′′ mincutH(r). With this notation, the set of edges added to the global h-route cut in iteration i

corresponds to Fi ∪ F̄i, and we note that Fi ∪ F̄i is still an h-route cut between ti and s in Gi. We denote by
Gi+1 = Gi \ (Fi ∪ F̄i) the graph entering the next iteration.

2.6.3 Post-updating the credit and the levels. Finally, we show how to handle the level increase of those
D1-structures that are still cut by F̄i. For this we need the following lemma.

Lemma 2.6. For every H ∈ D1 that was replaced by H1 and H2 as described in case 1 in the previous subsection,
it holds for the original level ` of H that

22|inE(H1)|+(`+1) + 22|inE(H2)|+(`+1) ≤ 22|inE(H)|+`

Proof. Note that in case 1 it holds that |inE(H1)| < |inE(H)| and |inE(H2)| < |inE(H)|. Hence,

22|inE(H1)|+(`+1) + 22|inE(H2)|+(`+1)

≤ (22(|inE(H)|−1) + 22(|inE(H)|−1))2`+1

= 22|inE(H)|−1+(`+1)

As the number of entry edges of H1 and H2 does not increase due to repairs of the laminar property for other
restricted structures, the lemma follows. ut

Therefore, we can increase the level of every proper edge of H1 and H2 by one and pay for the credit of H1

and H2 by the credit of H.
Finally, we show how to make sure that all restricted structures in D are connected at the end. Consider

some restricted structure H ∈ D that is cut into two or more connected components due to the removal of edges
in Fi ∪ F̄i. If H1, . . . ,Hd are its connected components with at least 2 entry edges, then H is replaced in D by
H1, . . . ,Hd (connected components with at most 1 entry edge can be removed from consideration). The entry
edges of the connected components are inherited from H and therefore,

∑d
j=1 inE(Hj) ≤ inE(H). Hence,

d∑
j=1

22|inE(Hj)|+`(H) ≤ 22|inE(H)|+`(H) = φ(H)

which implies that we can keep the level of these structures at `(H) with the credit of H. Therefore, we can
preserve the levels of the edges while making sure that all restricted structures in D are connected.

2.7 Summing it up. Every time we add a subset F of edges to the global cut, we identify a set of edges
whose x-volume is “large” (i.e., proportional to

∑
e∈F c(e), up to a factor of O(h522h(h+ log k)) and we increase

by one the level of each of them. This is implied by Lemma 2.5, Lemma 2.3 and description of the algorithm in
the previous paragraphs. At the same time we guarantee in Lemma 2.1 that the level of every edge is at most
2h+ log k.

Theorem 2.1. The approximation ratio of the algorithm for the h-route single-source cut problem is O(h522h(h+
log k)2).

Corollary 2.2. For every instance of the multicommodity single-source h-route flow problem,

F

h
≤ C ≤ O(h522h(h+ log k)2)F (2.19)

where F is the size of the maximum h-route flow for the instance and C is the size of the minimum h-route cut.

3 Conclusion

In this paper we showed an approximate duality theorem for multiroute multicommodity flows and cuts for the
single source case. It remains a challenging open problem whether it is possible to obtain an analogous result in
the general setting with multiple sources. Currently, the best bound we have been able to obtain is of the order
O(logh k) (when ignoring h-factors).

It is worth mentioning at this point that in the special case of uniform capacities (and multiple sources),
an application of the ball growing technique yields an O(h2 log2 k) approximation for the minimum h-route cut
problem and thus, also an approximate duality: in iteration i we grow two balls for commodity i (unless it was
already separated earlier, with respect to h-route cuts), one around ti and the other around si, and we choose the
one with smaller number of commodities inside. Once we have the ball, we perform a classical cut; the point is
that we have to pay at most h-times more for the classical cut than for the h-route cut, under our assumptions.
By performing the classical cut, we separate the problem into two completely independent parts and we proceed
recursively with commodities inside the ball. By our choice of the ball the maximum level of the recursion is log k
at most. Using Lemma 2.5, the overall cost of all cuts performed by this algorithm is at most O(h2 log2 k)-times
larger than the optimum.

References

[1] C. C. Aggarwal and J. B. Orlin. On multiroute maximum flows in networks. Networks, 39:43–52, 2002.
[2] A. Bagchi, A. Chaudhary, M. T. Goodrich, and S. Xu. Constructing disjoint paths for secure communication. In

Proceedings of the 17th International Conference on Distributed Computing, volume 2848 of Lecture Notes in Computer
Science. Springer Verlag, 2003.

[3] S. Barman and S. Chawla. Region growing for multi-route cuts. In Proceedings of the 21th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2010.

[4] H. Bruhn, J. Černý, A. Hall, P. Kolman, and J. Sgall. Single source multiroute flows and cuts on uniform capacity
networks. Theory of Computing, 4(1):1–20, 2008. Preliminary version in Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

[5] C. Chekuri and S. Khanna. Algorithms for 2-route cut problems. In Proceedings of the 35th International Colloquium
on Automata (ICALP), volume 5125 of Lecture Notes in Computer Science, pages 472–484, 2008.

[6] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through a network. Information Theory, IRE
Transactions on, 2(4):117 –119, 1956.

[7] L. R. Ford and D. R. Fulkerson. Maximum flow through a network. Canad. J. Math., 8:399–404, 1956.
[8] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-cut theorems and their applications. SIAM

Journal on Computing, 25(2):235–251, 1996.
[9] K. Kar, M. Kodialam, and T. V. Lakshman. Routing restorable bandwidth guaranteed connections using maximum

2-route flows. IEEE/ACM Transactions on Networking, 11:772–781, 2003.
[10] W. Kishimoto. A method for obtaining the maximum multiroute flows in a network. Networks, 27:279–291, 1996.
[11] P. Kolman and C. Scheideler. Towards duality of multicommodity multiroute cuts and flows: Multilevel ball-growing.

In 28th International Symposium on Theoretical Aspects of Computer Science (STACS), Leibniz International
Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[12] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation
algorithms. Journal of the ACM, 46(6):787–832, Nov. 1999. Preliminary version in Proceedings of the 29th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 1988.

[13] M. Martens. A simple greedy algorithm for the k-disjoint flow problem. In 6th Annual Conference on Theory and
Applications of Models of Computation (TAMC), volume 5532 of Lecture Notes in Computer Science, pages 291–300,
2009.

[14] D. B. Shmoys. Cut problems and their application to divide-and-conquer. In D. S. Hochbaum, editor, Approximation
Algorithms for NP-hard Problems, pages 192–235. PWS Publishing Company, 1997.

