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Abstract

The crossing number cr(G) of a graph G is the minimum possible number of edge crossings in a
drawing of G in the plane, while the pair-crossing number pcr(G) is the smallest number of pairs of edges
that cross in a drawing of G in the plane. While cr(G) > per(G) holds trivially, it is not known whether
a strict inequality can ever occur (this question was raised by Mohar and by Pach and Téth). We aim
at bounding cr(G) in terms of pcr(G). Using the methods of Leighton and Rao, Bhatt and Leighton,
and Even, Guha and Schieber, we prove that cr(G) = O(log3 n(per(G) + ssqd(G))), where n = |V(G)|
and ssqd(G) = ZUEV(G) deg. (v)2. One of the main steps is an analogy of the well-known lower bound
cr(@) = Q(b(G)?) — O(ssqd(G)), where b(G) is the bisection width of G, that is, the smallest number of
edges that have to be removed so that no component of the resulting graph has more than én vertices.
We show that per(G) = Q(b(G)?/ log® n) — O(ssqd(Q)).

We also prove by similar methods that a graph G with crossing number k = cr(G) > C'y/ssqd(G) mlog® n
has a nonplanar subgraph on at most O(%ﬁ) vertices, where m is the number of edges, A is the
maximum degree in GG, and C is a suitable sufficiently large constant.

1 Introduction

By a drawing of a (multi)graph G, we mean a drawing in the plane such that every edge is represented by
an arc. The arcs are allowed to cross, but they may not pass through vertices (except for their endpoints)
and no point is an internal point of three or more arcs. A crossing is a common internal point of two arcs.

The crossing number cr(G) is the minimum possible number of crossings in a drawing of G. The pair-
crossing number pcer(G) is the minimum possible number of (unordered) pairs of edges that cross in a drawing
of G. In 1995 in the Open Problem session of the AMS Conference on Topological Graph Theory, Bojan
Mohar posted the problem of whether cr(G) = pcr(G) for all G, which had previously been overlooked
in papers on the crossing number of graphs. To the best of our knowledge, this never appeared in print.
Pach and Téth [13] formulated explicitly the definition of per(G), and they asked the same question. An
alternative definition of a crossing number, different from both definitions of c¢r(G) and per(G), was given
by Tutte [21] more than 30 years ago, and he also asked whether it coincides with the classical definition.

Surprisingly, the question whether cr(G) = pcr(G) appears quite challenging. A natural approach to
proving equality is, given a drawing witnessing pcr(G), to modify it locally so that multiple crossings of
pairs of edges are eliminated. An example of Kratochvil and Matousek [6] shows that in general, given a
drawing, it need not be possible to eliminate multiple crossings of pairs without introducing new crossing
pairs. Namely, there is a graph G on n vertices and a drawing Do of G such that if D is any drawing of
G for which every pair of crossing edges also crosses in Dy, then some two edges cross at least 2%(") times
in D. In this example, the drawing Dy is not one minimizing the pair-crossing number, so it might be still
possible to modify an optimal drawing locally, but at least this does not appear straightforward.

In view of these difficulties, it is natural to seek upper bounds on cr(G) as a function of per(G) (and
possibly of other parameters of ). Pach and Té6th [13] proved a quadratic bound: cr(G) < 2per(G)?. They
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actually prove a stronger result, involving the odd crossing number (the minimum number of pairs of edges
in a drawing that cross an odd number of times), and their proof is rather involved. Valtr [22] recently
improved this bound to cr(G) = O(k?/logk) for every graph with pcr(G) = k, with a simple proof. The
crossing number and pair-crossing number for random graphs was studied by Pach, Spencer, and Téth [19].

In the first part of this paper, we combine known techniques for bounding the crossing number of graphs,
due to Leighton and Rao [9] and Bhatt and Leighton [3] (with a recent improvement by Even et al. [4]), with
some additional observations, and we prove an upper bound on cr(G) in terms of pcr(G), which is interesting
for graphs with per(G) large compared to }-, <y () degg (v)?. The last quantity will appear many times in
our considerations, and so we introduce the notation ssqd(G) for it. The letter n will denote the number of
vertices of GG throughout this paper.

Theorem 1 For every graph G we have
cr(G) <0 (log3 n (per(G) + ssqd(G))) .

In particular, if G has mazximum degree bounded by a constant and pair-crossing number at least n, then
cr(G) = O(per(G) log? (per(@)).

The main step in the proof is a nontrivial lower bound on the pair-crossing number. Several methods are
known for bounding below the crossing number of a given graph; see Shahrokhi et al. [17] for a survey. The
well-known lower bound in terms of the number of edges,

@) > 0 (%) 1)

n
for all G with n vertices and m > 4n edges, proved by Ajtai, Chvatal, Newborn, and Szemerédi [1] and

independently by Leighton [8], is also valid for the pair-crossing number, as is easily checked.
Another important lower bound is

ex(@) > Q(b(G)?) ~ O(ssad (@), (2)

where b(G) denotes the bisection width of G, that is, the smallest number of edges between V; and V;, where
(V1,V2) is a partition of V/(G) with |Vi[,|V2] > 1 |V(G)|. This bound was proved by Leighton [7] for graphs
of bounded degree and by Pach, Shahrokhi, and Szegedy [11], and independently by Sykora and Vrto [20],
for general graphs. The usual proof fails miserably if one tries to replace the crossing number by the pair-
crossing number: In the first step of the proof, one considers a drawing with the minimum crossing number
and replaces every crossing by a new vertex of degree 4, obtaining a planar graph and applying a separator
theorem. For the pair-crossing number, we have almost no control over the total number of crossings (and
thus the size of the resulting planar graph). However, the following weaker substitute of the lower bound
(2) can be proved for the pair-crossing number using a low-congestion path embeddings [8, 9]:

Theorem 2 For every graph G, we have

b(G)®
log”n

per(@) > 0 (15 ) - O(ssad @)

This almost solves (up to the log? n factor) Problem 11 of Pach and Téth [12].

A related problem is to find an optimal drawing of G in the plane, with respect to cr(G) or per(G). The
best known algorithm is by Even et al. [4] and for bounded degree graphs, it approximates cr(G) + n (not
just cr(G)!) within a multiplicative factor of O(log®n). The procedure is to recursively draw G on a circle
arc, that is, to put vertices on the arc and to draw all edges as straight line segments. Their bound is an
improvement of an earlier result by Bhatt and Leighton [3]. A corollary of the analysis is that for any graph
G, there exists a drawing of G on the circle arc with at most O(log n(cr(G) 4+ n)) crossings. Although we are
not concerned about drawing algorithms, the outlined procedure will be used in our proofs. Shahrokhi et
al. [16] showed that the algorithm can be extended for any graph, yielding an O(log®n) of cr(G) + ssqd(G).



Recent significant improvement in approximation of bisection width, by Arora et al. [2], makes it possible to
push the upper bound of the above described drawing algorithm down to O(log2 n).

In Section 5 we investigate “locality” of the crossing number. That is, if cr(G) is large, must G necessarily
have small nonplanar subgraphs? By a detour via edge expansion, in analogy to the preceding section, we
prove the following upper bound on the size of a nonplanar subgraph:

Theorem 3 Let G be a graph with crossing number cr(G) > C/ssqd(G) mlog® n, where m is the number
of edges in G and C is a sufficiently large absolute constant. Then G has a nonplanar subgraph on at most

0 Amnlog® n
cr(@)

vertices, where A is the mazimum degree in G.
In particular, if the mazimum degree A is bounded by a constant, the assumption becomes cr(G) >
C'nlog® n, and the bound for the size of the nonplanar subgraph becomes O((nlogn)?/cr(G)).

For graphs with maximum degree bounded by a constant and with k& = Q(n?), this result is nearly optimal,
up to a factor of logn. Namely, a constant-degree expander of girth g = Q(logn) (i.e., with minimal length
of a cycle Q(logn)) has crossing number Q(n?), and all subgraphs on fewer than g vertices are planar (even
trees).

The results and techniques of this paper were recently used by Pach and Téth [14] to prove that the
bound of Theorem 1 holds even for the odd-crossing number, a version of the crossing number that counts
only pairs of edges intersecting odd number of times.

2 Preliminaries

An (edge) cut e(V1,V3) of a graph G is the set of edges connecting V; and V3, for ViUV, =V and V1 NV, = 0.
The pair (V4,V3) is called a partition of G, and the size of the partition is the number of edges in the cut
e(‘/la V2)

The bisection width b(G) was introduced in the previous section, as the size of a minimal partition (7, V53)
with V3], [Va] > £ [V(G)|. (Note that we do not insist on partitioning the vertices into two parts of equal
size; we consider an approzimate bisection.) The hereditary bisection width hb(G) is the maximum of b(H)
over all subgraphs H of G. The edge expansion of G is

~ e(A4,V \ 4)
G = min AL VA AL

An embedding of a graph H in a graph G maps vertices of H to vertices of G and edges of H to paths in
G. More formally, an embedding is a pair (f, ), where f: V(H) — V(G) is an injective mapping, and ¢ is
a mapping that assigns to each edge e = {u,v} € E(H) a path ¢(e) in G connecting the vertices f(u) and
f(). The congestion of the embedding is the maximum number of paths in the embedding passing through
an edge of G, and the dilation is the maximum length of a path p(e), e € E(H).

The following theorem is one of our main tools; it will be used in the proof of both Theorem 1 (relating the
crossing number and the pair-crossing number; the bound on the dilation is not needed here) and Theorem 3.

Theorem 4 Let G be a graph on n vertices with edge expansion 8 and mazimum degree A. Then there ezists
an embedding of the complete graph K, in G with congestion O(B~'nlogn) and dilation O(AB~ " logn).

As a tool for proving this theorem, we will use concurrent multicommodity flows, namely a uniform
multicommodity flow: there is a commodity with demand one for each (unordered) pair of vertices. A
feasible solution of such a multicommodity flow problem is a system of flows in GG, one flow for every pair of
vertices, with the total flow through each edge at most one. The flow of the feasible solution is the maximum
f such that at least f units are transfered for each commodity. The objective is to find a feasible solution
with a maximal flow, called the maz-flow of the problem.



The min-cut of the uniform multicommodity flow problem is

L e(A VA
PE AV A VA

Observe that ¢ depends only on the graph G and that it is closely related to the expansion g of the graph:

1 2

<< —-p. (3)
n n

Proof of Theorem 4. Leighton and Rao [9, Theorem 18] proved that on any graph G there exists a solution
of the uniform multicommodity flow problem with flow of size Q(¢/logn), for which every flow path has
length at most O(AB~!logn), where A is the maximum degree of G. (Later, Kolman and Scheideler proved
an analogous result for a general multicommodity flow.)

We consider this solution, and we individually rescale each flow so that one unit flows between every
pair of vertices. The largest scaling factor is O(¢ ! logn), and so the total flow through each edge after the
rescaling is O(p ! logn) = O(B 'nlogn) (using the relation (3) between ¢ and j).

The flow between every pair of vertices is at least one, all flow paths have the desired length, and also
the maximal flow through an edge is as desired. It remains to turn each of the unit-capacity flows into a
path (that is, to make the flows integral). Observing that S~ 'nlogn > logn, this can be accomplished by
the randomized rounding of Raghavan and Thompson [15, Theorem 3.1], which increases the maximal flow
through an edge only by another constant factor. a

In the proof of Theorem 4 we first produced unit-capacity flows, and then we turned them into paths
by randomized rounding. Let us remark that this rounding step is not essential for the forthcoming proofs.
The integrality of the flows only simplifies some later arguments but it is not crucial for them.

Remark. For some classes of graphs, the bounds in Theorem 4 can be improved. A useful parameter,
which to some extent measures the possibility of such an improvement, is the flow number F = F(G) [5].
Let Iy denote the instance of the concurrent multicommodity flow problem in which there is a commodity
with demand deg(u) - deg(v)/2|E(G)| for each pair of vertices (u,v). For a feasible solution S, let D(S) be
the length of the longest flow path in S and let C(S) be the inverse of the flow (i.e., the maximum over all
commodities of flow divided by demand) of S. Then F(G) is the minimum of max{D(S),C(S)} over all
feasible solutions S of I. The congestion bound in Theorem 4 can be replaced by O(nF') and the dilation
bound by O(F) (cf. [5]). We always have F = O(AB~'logn), where A is the maximum degree of G, but
sometimes F' can be smaller by a factor A or logn. For example, for the hypercube on n = 2™ vertices we
have F = O(logn), and for the 2-dimensional /nx+/n mesh we have F' = O(\/n).

3 Pair-crossing number and bisection width: Proof of Theorem 2

We begin with a simple lemma showing that a graph with large bisection width contains a large subgraph
with large expansion.

Lemma 5 Every graph on n vertices with bisection width b contains a subgraph on at least %n vertices with
edge expansion at least b/n.

Proof. 1If 3(G) > %, we are done, and otherwise, there is a subset A;, 1 < [4;| < &, that can be cut
off by removing at most |A;|2 edges. Moreover, |[A;| < 2, for otherwise, we would get a contradiction to
b(G) = b. We look at the subgraph induced by V'\ A;; if it has edge expansion at least %, we can finish,
and otherwise, we can cut off a subset As, etc.

At each step, we cut off at most half of the current number of vertices, and so if we do not finish earlier,
we must reach a situation when the current graph, induced by V'\ (4; UA2U---UA), has between ¢ and %n
vertices. The set A;U- - -UA}, can be separated from this subgraph by removing at most (| Ay |+ - -+|Ax[)2 < b
edges. This contradiction shows that we obtain the desired subgraph in some of the earlier steps. a



To prove Theorem 2, it suffices, by the lemma just proved, to show that

mﬂ”zﬂcﬂ%i>—0®®@» (4)

log”n
Proof of Theorem 2. By Theorem 4, there exists a set of paths P such that
e for each pair {u,v} € (}) there is a path p,, € P connecting u and v, and
e for each edge e € E, there are at most O(3 nlogn) paths of P going through it.

Let us fix a drawing of G witnessing pcr(G). Using the paths from P, we draw the complete graph Ky on
the vertex set V: The edge {u,v} of Ky is drawn along the path p,,.

Crossings in this drawing of Ky come from crossings in the drawing of G and from crossings near vertices
of G. The number of crossing pairs in the drawing of Ky induced by a crossing pair (e, es) of edges of G is
at most O(32n? log® n), and the number of crossing pairs caused by crossings of the paths from P near a
vertex w is at most O(deg®(w)B~2n?log® n). Thus,

n2log’n
32

Since per(Ky) = Q(n?), for example by (1), the proof of (4), and thus also of the theorem, is completed. O

mdm»so( mawrmmMQQ.

As was noted after the proof of Theorem 4, the rounding of the (non-integral) multicommodity flow to
an integral one (i.e., a system of paths) can easily be avoided. Given arbitrary unit flows as in Theorem 4,
we can again draw Ky using the optimal drawing of G. In this case, the edge {u,v} of Ky is drawn along
a path that is chosen at random from all paths that constitute the flow between u and v in the solution,
with the random choice made according to the sizes of flows along these paths. Then we can estimate the
expected pair-crossing number of the resulting drawing of Ky and compare it with the pair crossing number
of Kv.

Remark. As noted at the end of previous section, the bound of Theorem 4, and thus also the bound of

Theorem 2, can be improved for some classes of graphs. In particular, for De Bruijn, cube connected cycles
2

and butterfly graphs we get pcer(G) = Q(:=2—), which implies in turn that pcr(G) = Q(cr(G)) for them.

logZn

4 Drawing by recursive bisection: Proof of Theorem 1

We start with a proof of a slightly weaker version of Theorem 1:
cr(G) < O (log* n(per(G) + ssqd(@))) - (5)

We follow the procedure of Bhatt and Leighton [3] for drawing G, in a slightly simplified form similar to
the version in Shahrokhi et al. [18]. The procedure is recursive. It places the vertices of a given graph on a
circle arc, and the edges are drawn as straight segments.

For a given graph G, the procedure finds a bisection (Vi,V>) of G witnessing b(G), divides the given arc
into two subarcs, and recursively places the vertices of G; on one of the arcs and the vertices of G2 on the
other arc (here G; is the subgraph induced by V;).

Let £(G) denote the maximum number of edges going “over” a vertex in the resulting drawing of G (an
edge {u,v} is said to go over a vertex w if v and v lie on the arc on opposite sides of w). We have the
recurrence

U(G) < b(G) + max(£(Gh), £(G2)),
and induction then shows that £(G) < C1hb(G)logn, where C) is a suitable constant.
Now we can prove cr(G) < Clog" n(per(G) + ssqd(@)), for a suitable constant C, by induction on n.
Using the drawing produced by the algorithm, we obtain

cr(G) < (b(QG)> +b(G) - (L(G1) + U(G)) + cx(G1) + cx(G).



By estimating ¢(G;) and ¢(G2) as above and using the induction hypothesis for G; and G2, we have
cr(G) < C1hb(G)?logn +
C(log(2n))" (per(G1) + per(Ga) + ssad(G1) + ssad(Ga)

< C1hb(G)?logn + C(logn — log 2) log? n(pcr(G) + ssqd(G)).

The induction step is finished by using hb(G)? < Cylog® n(per(G) + ssqd(G)) from Theorem 2. This
completes the proof of the weaker bound (5). i

The stronger bound in Theorem 1 is again based on the recursive drawing of the graph on the circle arc,
with two additional ideas. The first idea is to better split the graph into two parts: Rather then partitioning
the graph into two parts of approximately the same size, it is more appropriate to partition the graph into
two parts with approximately equal pair-crossing number (see Lemma 6 below). The other improvement is
a better method for counting the crossings in the recursive drawing of G, based on a recent algorithm for
crossing number approximation by Even et al. [4]. Even et al. actually improved the analysis of the recursive
procedure of Bhatt and Leighton for drawing G.

Lemma 6 For every graph G on n vertices there exists a partition (Vi,V2) of V(G) with size e(V1,Va) =
0] (log ny/per(G) + ssqd(G)) such that for i = 1,2,

per(G;) + ssqd(Gi) < (pcr(G) + ssqd(G)),

[SUN )

where G; is the subgraph of G induced by V;.

Proof. The idea is to transform the given graph G into a new graph G’ in such a way that the number
of vertices in G’ captures both ssqd(G) and per(G). Then we get the desired partition of G by applying
Theorem 2 to the new graph G'.

We consider a drawing of G optimal with respect to the pair crossing number, and for an edge e, let p(e)
denote the number of pair crossings of this edge. We set a weight w(e) to p(e)/2, for every edge. For every
vertex u € V', we increase the weight of every adjacent edge but one by deg(v), and the weight of the last
adjacent edge is increased only by deg(v) — 1. We get the new graph G’ by replacing every edge e = {u, v}
by a path of length w(e) — 1 (in other words, we add roughly deg(u) + deg(v) + p(e)/2 new vertices on
an edge e = {u,v}). It is easy to see that ssqd(G') < 5ssqd(G) + 4pcr(G), |V(G')| = per(G) + ssqd(G),
logn’ = O(logn), and moreover, we can add the new vertices in such a way that pcr(G') = per(G). Also, a
bisection of G’ of size m naturally induces a partition of G of size m.

For a subgraph G} of G', let V; denote the set of original vertices in G (that is, those coming from G),
and let G; be the subgraph of G induced by V;. The important observation is that the number of vertices in
G is an upper bound on pcr(G;) + ssqd(G;). By Theorem 2 there is a bisection of size

s = 0 (logn'/per(G") + s5d () )

that separates G’ into G} and G, and thus we have a partition (Vi,V2) of G of size O(s) such that
per(Gi) + ssqd(Gs) < 2 (per(G) + ssqd(G)), for i = 1,2. O

Proof of Theorem 1. Let T denote a binary tree representing a recursive decomposition of G according
to Lemma, 6: The root of T' corresponds to the set V', and two children of a vertex ¢ € T associated with a
set V; correspond to the two sets Vi, , Vi, C V; constituting the partition of V; given by Lemma 6.

An edge e = {u,v} of G is split in a tree vertex ¢ if u,v € V; and |{u,v} N V4, | =1 for the two children
t1,to of t. Let G; denote the subgraph of G induced by V;, and let n; = |V4|, for a tree vertex .

Consider the drawing on the circle arc that is based on the recursive partitioning by Lemma 6. To bound
the number of edge crossings in this drawing, we charge a crossing of e and €’ to the first edge among e and
e’ that was split first by the partitioning procedure. It is easy to observe that for any two crossing edges



Figure 1: A bad graph for vertex-balanced partitions.

e, e/, the tree vertex in which the edge e was split is an ancestor of the tree vertex in which e’ was split, or
the other way round (by definition, a vertex is an ancestor to itself). In other words, for any tree vertex ¢
with children %1, ¢5, the edges in Gy, do not cross with edges in Gy, .

Observation 7 (Even et al. [4]) Let P(u,v) denote the set of vertices in T on the path from the leaf
corresponding to u to the leaf corresponding to v. The number of crossings that are charged to the edge
e = {u,v} is bounded by 3, p(, ) le(Vir, Vio)|.

By a combination of Observation 7 and Lemma 6, an edge e = {u,v} is charged for at most

) |e<vt1,vt2>|=0( ) lognt\/pcr(at>+ssqd(Gt>)

tEP(u,v) tEP(u,v)

crossings. Since the partitioning procedure guarantees an exponential decrease of pcr(Gy) + ssqd(Gt), an
edge e is charged for at most

0 (log ny/per(Gy) + ssqd(Gy) ) (6)

crossings, where ¢ is the vertex in which e was split. Recalling that the size of the partition of G; is

@] (log ng\/per(Gy) + ssqd(Gy) ) ,
the number of crossings for which a tree vertex t is charged is at most
O (log” n(per(Gy) + ssqd(Gy))) -

Since the tree vertices in the same layer form a partition of V' and the number of layers is O(logn), all tree
vertices are charged for at most O(log3 n(per(@) + ssqd(G))) crossings. Theorem 1 is proved. ad

It is worth mentioning that balancing the partitions by Lemma 6, that is, with respect to the pair-
crossing number as opposed to the number of vertices, is crucial in the above proof. We aim at upper
bounding the number of crossings in our arc-drawing of G in terms of pcr(G). To do so, we rely on the
relation between per(G) and b(G) by Theorem 2, namely on the relation b(G) = O(log ny/per(G) + ssqd(G)).
If we simply used a bisection that is balanced with respect to the number of vertices but not with respect to
ssqd(G;) + per(G;), the exponential decrease of cut sizes would not be guaranteed and the bound (6) would
increase by a logn factor.

The following example demonstrates this difficulty. It shows that balancing the partitions with respect to
the number of vertices while upper bounding the size of the cuts by the bound O(log ny/per(G) + ssqd(G))
can really yield a long sequence of cuts with nondecreasing size: Let k be such that n/2¥ = \/nlogn (we
have k = ©(logn)). Let A; be a set of n/2¢ vertices, for i = 1,2,...,k, and let By, Ba, ..., B, be sets of
\/n vertices each. Let GG; be a bipartite graph on the sets A;, B; with n edges chosen in such a way that




disjoint crossing arching tangled

Figure 2: Types of pairs of paths.

per(G;) < n?/logn. Let E; denote the edge set of G; (see Fig. 1). Let E' be the set of edges of a complete
graph on the set Bj. Consider the graph

k k
G = (U(Ai uB), | JE)u E) .

i=1

It is easy to check that G has ©(n) vertices and that pcr(G) = ©(n?). We observe that E; defines a bisection
of G, and moreover, that even pcr(G\ A1) = O(n?). Similarly, Es, Es, - - -, E}, define bisections in next levels
of the recursive partitioning such that one of the remaining parts of the graph still has pair crossing number
O(n?) and each of the partitions has size n.

5 Small nonplanar subgraphs in graphs with large crossing num-
ber

First we relate the existence of small nonplanar subgraphs to edge expansion.

Theorem 8 Let G be a graph with edge expansion 3 and mazimum degree A such that ssqd(G)-372 Jog?n <
c-n?, for a sufficiently small absolute constant ¢ > 0. Then there exists a nonplanar subgraph in G of size
O(AB logn).

In particular, a nonplanar subgraph of size O(B~*logn) exists in bounded degree graphs with 3 > ¢ -
logn/\/n, for a sufficiently large absolute constant ¢’ > 0.

Proof. Let P be the system of paths from the embedding of K,, in G guaranteed by Theorem 4. That is,
there is a path of length at most I = O(AB~! logn) between each pair of vertices in GG, and the maximal
number of paths passing through an edge is C' = O(B~'nlogn).

Let us choose an ordered sixtuple U = (u1, u2, u3, v1, v, v3) of distinct vertices from V(G) at random, all
ordered sixtuples having the same probability. Let F = {py; ., € P :4,j = 1,2,3}. Let H be the subgraph
induced by the union of these paths. Clearly, H has O(L) vertices. We want to show that with a positive
probability H is a nonplanar subgraph in G. An obstacle that we have to overcome is that the paths in F
may cross at vertices and/or share edges, and thus that we need not always get a subdivision of K3 3.

We introduce the following types of pairs of paths from P (see Fig. 2): A pair (p,q) is called

e disjoint if p and ¢ are vertex disjoint, with the possible exception of a common terminal vertex;
e crossing if p and ¢ have four different terminal vertices and they have at least one common vertex;

e arching if p and ¢ have a common terminal vertex, and the other terminal vertex of one of the paths
is an internal vertex of the other path; and



e tangled if p and ¢ have a common terminal vertex, the other terminal vertex of p does not lie on ¢ and
vice versa, and p and ¢ cross in at least one other vertex.

We claim: With a positive probability, there are no crossing pairs and no arching pairs in F.

To prove the claim, we show that the expected number of crossing and arching pairs in F is strictly
smaller than one. The number of paths of P passing through a vertex v is at most C deg(v), and hence the
total number of crossing pairs (p,q) with p,q € P is at most ZUGV(G)(C deg(v))? = C?ssqd(G). Since a
fixed pair of paths with four distinct terminal vertices appears in F with probability O(n=%), the expected
number of crossing pairs in F is O(C?ssqd(G)n=*) = O(ssqd(G) - 3~2n~2log® n). This can be made smaller
than any prescribed constant, say smaller than 1/4, by choosing the constant ¢ in the assumption of the
theorem sufficiently small.

Next, we consider the arching pairs. To choose an arching pair, we can first select the vertex v that is
terminal for one of the paths, say ¢, and internal for the other one, p. Then p can be chosen in at most
C deg(v) ways, and there are only two possibilities of choosing ¢ (one of the terminal vertices of ¢ is v and
the other one is one of the terminal vertices of p). Hence there are O(C' - }_, cy/(q) deg(v)) arching pairs,
and each of them has probability O(n ) of appearing in F. The expected number of arching pairs in F is
thus O(8~'n"?logn 3_,cy(q) deg(v)). Since f < §(G), while ssqd(G) > 6(G) -3 ey () deg(v)), where §(G)
denotes the minimum degree of G, the above estimate for the expected number of arching pairs is dominated
by the earlier bound for the expected number of crossing pairs. We conclude that the expected number of
crossing and arching pairs is smaller than one.

We can thus choose a sixtuple U whose paths form only disjoint and tangled pairs. If there is no tangled
pair in F, then H is a subdivision of K3 3. It remains to check that even if tangled pairs appear in F, H
still is nonplanar.

Indeed, suppose that H is planar and F contains tangled pairs. Consider a planar drawing of H. It
defines a drawing of K3 3: the vertices of K33 are placed to the vertices of U, and each edge of K33 is
drawn along the corresponding path in the drawing of H. This drawing is not necessarily planar, but no
two vertex-disjoint edges cross in it. But it is well known that every drawing of K3 3 in the plane has two
vertex-disjoint edges that cross (see, e.g., [10]). Hence H is nonplanar and Theorem 8 is proved. |

Remark. Similarly as in Theorem 4, the terms 37 'logn and AB~'logn can be replaced by the flow
number F' of G. Then, for bounded degree graphs, the condition F' < ¢y/n guarantees a nonplanar minor of
size O(F) in G. In a way, this is the best possible in general: a two-dimensional /n x \/n mesh is a planar
graph with flow number Q(y/n).

Lemma 9 For every graph G,
cr(G) <2-hb(G) -m -logn ,

where m is the number of edges in G.

Proof. Consider the recursive drawing procedure of G on an arc: in each level use the minimal bisection
to divide the current part H into Hy and H, and recursively draw H; on one side of the arc and H» on the
other. The depth of the recursion is at most 2logn, and thus each edge crosses at most 4 - hb(G) -log n other
edges, which sums into 2 - hb(G) - m - logn over all edges. |

Proof of Theorem 3. Let us consider a graph G with n vertices, m edges, and cr(G) = k. By Lemma 9,
there is a subgraph Gy with b(G;) = Q(#gn). Lemma 5 then yields a subgraph G, on ny > 2|V (Gy)|
vertices with edge expansion

Applying Theorem 8 to G2, we obtain a nonplanar subgraph of size

(A(G2)mn2 logmn - logm) <Amn log® n)
0 =0|———).
k k
It remains to check that the assumption of Theorem 8 holds for G, namely that ssqd(Gs2)3(Gs) 2 log® ny <

cn3. Using the above lower bound for 3(Gs), it is sufficient to check that ssqd(Ga)m?(log* n)/k? < ¢, and
this follows from the assumption k > C'y/ssqd(G) mlog®n in Theorem 3. O




6 Open problems

An obvious open problem is to decide whether cr(G) = per(G) for all G. We currently do not see any
good reason why this equality should always hold, and so we believe that it makes sense to continue the
investigation of upper bounds on cr(G) in terms of pcr(G).

A nice problem concerns the pair-crossing number of a constant-degree expander G. While cr(G) = Q(n?)
(since b(G) = Q(n)), the method of Theorem 2 cannot yield such lower bound for pcr(G), since the flows
simply cannot be made sufficiently large. Still, it is very natural to conjecture that per(G) = Q(n?).

In Section 5 we proved a lower bound on the edge expansion (of a subgraph) in terms of the crossing
number, using the recursive drawing procedure. Although the resulting bound is almost tight in some cases
(for bounded-degree graphs with quadratic crossing number, say), perhaps it can be improved for smaller
crossing numbers. For example, is it true that for all k, every graph with maximum degree bounded by a
constant contains a subgraph with edge expansion Q(n/+/(k + n)polylogn )?

Finally, the crossing number is much less understood for graphs with large degrees than for those with
degrees bounded by a constant. The term ssqd(G) appears very often in various bounds and, if some degrees
are large, it usually makes the bounds uninteresting. One of the main tools for bounding the crossing number,
the recursive procedure of drawing on an arc by recursive bisection, no longer works in the presence of high
degrees: For example, while K5, is planar, any straight-edge drawing with vertices on an arc has Q(n?)
crossings. Further, the bisection width of K , is Q(n), of the same order as for K3 ,; the former graph is
planar, while the latter has crossing number Q(n?). So the bisection width is no longer suitable for estimating
the crossing number. It seems that substantial new ideas are needed for, say, a good approximation algorithm
for the crossing number of general graphs.
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