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Abstra
t

The 
rossing number 
r(G) of a graph G is the minimum possible number of edge 
rossings in a

drawing of G in the plane, while the pair-
rossing number p
r(G) is the smallest number of pairs of edges

that 
ross in a drawing of G in the plane. While 
r(G) � p
r(G) holds trivially, it is not known whether

a stri
t inequality 
an ever o

ur (this question was raised by Mohar and by Pa
h and T�oth). We aim

at bounding 
r(G) in terms of p
r(G). Using the methods of Leighton and Rao, Bhatt and Leighton,

and Even, Guha and S
hieber, we prove that 
r(G) = O

�

log

3

n(p
r(G) + ssqd(G))

�

, where n = jV (G)j

and ssqd(G) =

P

v2V (G)

deg

G

(v)

2

. One of the main steps is an analogy of the well-known lower bound


r(G) = 
(b(G)

2

)�O(ssqd(G)), where b(G) is the bise
tion width of G, that is, the smallest number of

edges that have to be removed so that no 
omponent of the resulting graph has more than

2

3

n verti
es.

We show that p
r(G) = 
(b(G)

2

= log

2

n)�O(ssqd(G)).

We also prove by similar methods that a graphG with 
rossing number k = 
r(G) > C

p

ssqd(G)m log

2

n

has a nonplanar subgraph on at most O

�

�nm log

2

n

k

�

verti
es, where m is the number of edges, � is the

maximum degree in G, and C is a suitable suÆ
iently large 
onstant.

1 Introdu
tion

By a drawing of a (multi)graph G, we mean a drawing in the plane su
h that every edge is represented by

an ar
. The ar
s are allowed to 
ross, but they may not pass through verti
es (ex
ept for their endpoints)

and no point is an internal point of three or more ar
s. A 
rossing is a 
ommon internal point of two ar
s.

The 
rossing number 
r(G) is the minimum possible number of 
rossings in a drawing of G. The pair-


rossing number p
r(G) is the minimum possible number of (unordered) pairs of edges that 
ross in a drawing

of G. In 1995 in the Open Problem session of the AMS Conferen
e on Topologi
al Graph Theory, Bojan

Mohar posted the problem of whether 
r(G) = p
r(G) for all G, whi
h had previously been overlooked

in papers on the 
rossing number of graphs. To the best of our knowledge, this never appeared in print.

Pa
h and T�oth [13℄ formulated expli
itly the de�nition of p
r(G), and they asked the same question. An

alternative de�nition of a 
rossing number, di�erent from both de�nitions of 
r(G) and p
r(G), was given

by Tutte [21℄ more than 30 years ago, and he also asked whether it 
oin
ides with the 
lassi
al de�nition.

Surprisingly, the question whether 
r(G) = p
r(G) appears quite 
hallenging. A natural approa
h to

proving equality is, given a drawing witnessing p
r(G), to modify it lo
ally so that multiple 
rossings of

pairs of edges are eliminated. An example of Krato
hv��l and Matou�sek [6℄ shows that in general, given a

drawing, it need not be possible to eliminate multiple 
rossings of pairs without introdu
ing new 
rossing

pairs. Namely, there is a graph G on n verti
es and a drawing D

0

of G su
h that if D is any drawing of

G for whi
h every pair of 
rossing edges also 
rosses in D

0

, then some two edges 
ross at least 2


(n)

times

in D. In this example, the drawing D

0

is not one minimizing the pair-
rossing number, so it might be still

possible to modify an optimal drawing lo
ally, but at least this does not appear straightforward.

In view of these diÆ
ulties, it is natural to seek upper bounds on 
r(G) as a fun
tion of p
r(G) (and

possibly of other parameters of G). Pa
h and T�oth [13℄ proved a quadrati
 bound: 
r(G) � 2 p
r(G)

2

. They

�
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a
tually prove a stronger result, involving the odd 
rossing number (the minimum number of pairs of edges

in a drawing that 
ross an odd number of times), and their proof is rather involved. Valtr [22℄ re
ently

improved this bound to 
r(G) = O(k

2

= log k) for every graph with p
r(G) = k, with a simple proof. The


rossing number and pair-
rossing number for random graphs was studied by Pa
h, Spen
er, and T�oth [19℄.

In the �rst part of this paper, we 
ombine known te
hniques for bounding the 
rossing number of graphs,

due to Leighton and Rao [9℄ and Bhatt and Leighton [3℄ (with a re
ent improvement by Even et al. [4℄), with

some additional observations, and we prove an upper bound on 
r(G) in terms of p
r(G), whi
h is interesting

for graphs with p
r(G) large 
ompared to

P

v2V (G)

deg

G

(v)

2

. The last quantity will appear many times in

our 
onsiderations, and so we introdu
e the notation ssqd(G) for it. The letter n will denote the number of

verti
es of G throughout this paper.

Theorem 1 For every graph G we have


r(G) � O

�

log

3

n

�

p
r(G) + ssqd(G)

��

:

In parti
ular, if G has maximum degree bounded by a 
onstant and pair-
rossing number at least n, then


r(G) = O(p
r(G) log

3

(p
r(G))).

The main step in the proof is a nontrivial lower bound on the pair-
rossing number. Several methods are

known for bounding below the 
rossing number of a given graph; see Shahrokhi et al. [17℄ for a survey. The

well-known lower bound in terms of the number of edges,


r(G) � 


�

m

3

n

2

�

(1)

for all G with n verti
es and m � 4n edges, proved by Ajtai, Chv�atal, Newborn, and Szemer�edi [1℄ and

independently by Leighton [8℄, is also valid for the pair-
rossing number, as is easily 
he
ked.

Another important lower bound is


r(G) � 
(b(G)

2

)�O(ssqd(G)); (2)

where b(G) denotes the bise
tion width of G, that is, the smallest number of edges between V

1

and V

2

, where

(V

1

; V

2

) is a partition of V (G) with jV

1

j; jV

2

j �

1

3

jV (G)j. This bound was proved by Leighton [7℄ for graphs

of bounded degree and by Pa
h, Shahrokhi, and Szegedy [11℄, and independently by S�ykora and Vrt'o [20℄,

for general graphs. The usual proof fails miserably if one tries to repla
e the 
rossing number by the pair-


rossing number: In the �rst step of the proof, one 
onsiders a drawing with the minimum 
rossing number

and repla
es every 
rossing by a new vertex of degree 4, obtaining a planar graph and applying a separator

theorem. For the pair-
rossing number, we have almost no 
ontrol over the total number of 
rossings (and

thus the size of the resulting planar graph). However, the following weaker substitute of the lower bound

(2) 
an be proved for the pair-
rossing number using a low-
ongestion path embeddings [8, 9℄:

Theorem 2 For every graph G, we have

p
r(G) � 


�

b(G)

2

log

2

n

�

�O(ssqd(G)):

This almost solves (up to the log

2

n fa
tor) Problem 11 of Pa
h and T�oth [12℄.

A related problem is to �nd an optimal drawing of G in the plane, with respe
t to 
r(G) or p
r(G). The

best known algorithm is by Even et al. [4℄ and for bounded degree graphs, it approximates 
r(G) + n (not

just 
r(G)!) within a multipli
ative fa
tor of O(log

3

n). The pro
edure is to re
ursively draw G on a 
ir
le

ar
, that is, to put verti
es on the ar
 and to draw all edges as straight line segments. Their bound is an

improvement of an earlier result by Bhatt and Leighton [3℄. A 
orollary of the analysis is that for any graph

G, there exists a drawing of G on the 
ir
le ar
 with at most O(log n(
r(G)+n)) 
rossings. Although we are

not 
on
erned about drawing algorithms, the outlined pro
edure will be used in our proofs. Shahrokhi et

al. [16℄ showed that the algorithm 
an be extended for any graph, yielding an O(log

3

n) of 
r(G) + ssqd(G).
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Re
ent signi�
ant improvement in approximation of bise
tion width, by Arora et al. [2℄, makes it possible to

push the upper bound of the above des
ribed drawing algorithm down to O(log

2

n).

In Se
tion 5 we investigate \lo
ality" of the 
rossing number. That is, if 
r(G) is large, must G ne
essarily

have small nonplanar subgraphs? By a detour via edge expansion, in analogy to the pre
eding se
tion, we

prove the following upper bound on the size of a nonplanar subgraph:

Theorem 3 Let G be a graph with 
rossing number 
r(G) > C

p

ssqd(G)m log

2

n, where m is the number

of edges in G and C is a suÆ
iently large absolute 
onstant. Then G has a nonplanar subgraph on at most

O

�

�mn log

2

n


r(G)

�

verti
es, where � is the maximum degree in G.

In parti
ular, if the maximum degree � is bounded by a 
onstant, the assumption be
omes 
r(G) >

C

0

n log

2

n, and the bound for the size of the nonplanar subgraph be
omes O((n logn)

2

=
r(G)).

For graphs with maximum degree bounded by a 
onstant and with k = 
(n

2

), this result is nearly optimal,

up to a fa
tor of logn. Namely, a 
onstant-degree expander of girth g = 
(logn) (i.e., with minimal length

of a 
y
le 
(log n)) has 
rossing number 
(n

2

), and all subgraphs on fewer than g verti
es are planar (even

trees).

The results and te
hniques of this paper were re
ently used by Pa
h and T�oth [14℄ to prove that the

bound of Theorem 1 holds even for the odd-
rossing number, a version of the 
rossing number that 
ounts

only pairs of edges interse
ting odd number of times.

2 Preliminaries

An (edge) 
ut e(V

1

; V

2

) of a graph G is the set of edges 
onne
ting V

1

and V

2

, for V

1

[V

2

= V and V

1

\V

2

= ;.

The pair (V

1

; V

2

) is 
alled a partition of G, and the size of the partition is the number of edges in the 
ut

e(V

1

; V

2

).

The bise
tion width b(G) was introdu
ed in the previous se
tion, as the size of a minimal partition (V

1

; V

2

)

with jV

1

j; jV

2

j �

1

3

jV (G)j. (Note that we do not insist on partitioning the verti
es into two parts of equal

size; we 
onsider an approximate bise
tion.) The hereditary bise
tion width hb(G) is the maximum of b(H)

over all subgraphs H of G. The edge expansion of G is

�(G) = min

A�V

e(A; V nA)

minfjAj; jV nAjg

:

An embedding of a graph H in a graph G maps verti
es of H to verti
es of G and edges of H to paths in

G. More formally, an embedding is a pair (f; '), where f :V (H) ! V (G) is an inje
tive mapping, and ' is

a mapping that assigns to ea
h edge e = fu; vg 2 E(H) a path '(e) in G 
onne
ting the verti
es f(u) and

f(v). The 
ongestion of the embedding is the maximum number of paths in the embedding passing through

an edge of G, and the dilation is the maximum length of a path '(e), e 2 E(H).

The following theorem is one of our main tools; it will be used in the proof of both Theorem 1 (relating the


rossing number and the pair-
rossing number; the bound on the dilation is not needed here) and Theorem 3.

Theorem 4 Let G be a graph on n verti
es with edge expansion � and maximum degree �. Then there exists

an embedding of the 
omplete graph K

n

in G with 
ongestion O(�

�1

n logn) and dilation O(��

�1

logn).

As a tool for proving this theorem, we will use 
on
urrent multi
ommodity 
ows, namely a uniform

multi
ommodity 
ow: there is a 
ommodity with demand one for ea
h (unordered) pair of verti
es. A

feasible solution of su
h a multi
ommodity 
ow problem is a system of 
ows in G, one 
ow for every pair of

verti
es, with the total 
ow through ea
h edge at most one. The 
ow of the feasible solution is the maximum

f su
h that at least f units are transfered for ea
h 
ommodity. The obje
tive is to �nd a feasible solution

with a maximal 
ow, 
alled the max-
ow of the problem.
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The min-
ut of the uniform multi
ommodity 
ow problem is

' = min

A�V

e(A; V nA)

jAj � jV nAj

:

Observe that ' depends only on the graph G and that it is 
losely related to the expansion � of the graph:

1

n

� � � ' �

2

n

� �: (3)

Proof of Theorem 4. Leighton and Rao [9, Theorem 18℄ proved that on any graph G there exists a solution

of the uniform multi
ommodity 
ow problem with 
ow of size 
('= logn), for whi
h every 
ow path has

length at most O(��

�1

logn), where � is the maximum degree of G. (Later, Kolman and S
heideler proved

an analogous result for a general multi
ommodity 
ow.)

We 
onsider this solution, and we individually res
ale ea
h 
ow so that one unit 
ows between every

pair of verti
es. The largest s
aling fa
tor is O('

�1

logn), and so the total 
ow through ea
h edge after the

res
aling is O('

�1

logn) = O(�

�1

n logn) (using the relation (3) between ' and �).

The 
ow between every pair of verti
es is at least one, all 
ow paths have the desired length, and also

the maximal 
ow through an edge is as desired. It remains to turn ea
h of the unit-
apa
ity 
ows into a

path (that is, to make the 
ows integral). Observing that �

�1

n logn � logn, this 
an be a

omplished by

the randomized rounding of Raghavan and Thompson [15, Theorem 3.1℄, whi
h in
reases the maximal 
ow

through an edge only by another 
onstant fa
tor. 2

In the proof of Theorem 4 we �rst produ
ed unit-
apa
ity 
ows, and then we turned them into paths

by randomized rounding. Let us remark that this rounding step is not essential for the forth
oming proofs.

The integrality of the 
ows only simpli�es some later arguments but it is not 
ru
ial for them.

Remark. For some 
lasses of graphs, the bounds in Theorem 4 
an be improved. A useful parameter,

whi
h to some extent measures the possibility of su
h an improvement, is the 
ow number F = F (G) [5℄.

Let I

0

denote the instan
e of the 
on
urrent multi
ommodity 
ow problem in whi
h there is a 
ommodity

with demand deg(u) � deg(v)=2jE(G)j for ea
h pair of verti
es (u; v). For a feasible solution S, let D(S) be

the length of the longest 
ow path in S and let C(S) be the inverse of the 
ow (i.e., the maximum over all


ommodities of 
ow divided by demand) of S. Then F (G) is the minimum of maxfD(S); C(S)g over all

feasible solutions S of I

0

. The 
ongestion bound in Theorem 4 
an be repla
ed by O(nF ) and the dilation

bound by O(F ) (
f. [5℄). We always have F = O(��

�1

logn), where � is the maximum degree of G, but

sometimes F 
an be smaller by a fa
tor � or logn. For example, for the hyper
ube on n = 2

m

verti
es we

have F = O(log n), and for the 2-dimensional

p

n�

p

n mesh we have F = O(

p

n).

3 Pair-
rossing number and bise
tion width: Proof of Theorem 2

We begin with a simple lemma showing that a graph with large bise
tion width 
ontains a large subgraph

with large expansion.

Lemma 5 Every graph on n verti
es with bise
tion width b 
ontains a subgraph on at least

2

3

n verti
es with

edge expansion at least b=n.

Proof. If �(G) �

b

n

, we are done, and otherwise, there is a subset A

1

, 1 � jA

1

j �

n

2

, that 
an be 
ut

o� by removing at most jA

1

j

b

n

edges. Moreover, jA

1

j <

n

3

, for otherwise, we would get a 
ontradi
tion to

b(G) = b. We look at the subgraph indu
ed by V n A

1

; if it has edge expansion at least

b

n

, we 
an �nish,

and otherwise, we 
an 
ut o� a subset A

2

, et
.

At ea
h step, we 
ut o� at most half of the 
urrent number of verti
es, and so if we do not �nish earlier,

we must rea
h a situation when the 
urrent graph, indu
ed by V n(A

1

[A

2

[� � �[A

k

), has between

n

3

and

2

3

n

verti
es. The set A

1

[� � �[A

k


an be separated from this subgraph by removing at most (jA

1

j+� � �+jA

k

j)

b

n

< b

edges. This 
ontradi
tion shows that we obtain the desired subgraph in some of the earlier steps. 2

4



To prove Theorem 2, it suÆ
es, by the lemma just proved, to show that

p
r(G) � 


�

n

2

�(G)

2

log

2

n

�

�O(ssqd(G)): (4)

Proof of Theorem 2. By Theorem 4, there exists a set of paths P su
h that

� for ea
h pair fu; vg 2

�

V

2

�

there is a path p

uv

2 P 
onne
ting u and v, and

� for ea
h edge e 2 E, there are at most O(�

�1

n logn) paths of P going through it.

Let us �x a drawing of G witnessing p
r(G). Using the paths from P , we draw the 
omplete graph K

V

on

the vertex set V : The edge fu; vg of K

V

is drawn along the path p

uv

.

Crossings in this drawing of K

V


ome from 
rossings in the drawing of G and from 
rossings near verti
es

of G. The number of 
rossing pairs in the drawing of K

V

indu
ed by a 
rossing pair (e

1

; e

2

) of edges of G is

at most O(�

�2

n

2

log

2

n), and the number of 
rossing pairs 
aused by 
rossings of the paths from P near a

vertex w is at most O(deg

2

(w)�

�2

n

2

log

2

n). Thus,

p
r(K

V

) � O

�

n

2

log

2

n

�

2

(p
r(G) + ssqd(G))

�

:

Sin
e p
r(K

V

) = 
(n

4

), for example by (1), the proof of (4), and thus also of the theorem, is 
ompleted. 2

As was noted after the proof of Theorem 4, the rounding of the (non-integral) multi
ommodity 
ow to

an integral one (i.e., a system of paths) 
an easily be avoided. Given arbitrary unit 
ows as in Theorem 4,

we 
an again draw K

V

using the optimal drawing of G. In this 
ase, the edge fu; vg of K

V

is drawn along

a path that is 
hosen at random from all paths that 
onstitute the 
ow between u and v in the solution,

with the random 
hoi
e made a

ording to the sizes of 
ows along these paths. Then we 
an estimate the

expe
ted pair-
rossing number of the resulting drawing of K

V

and 
ompare it with the pair 
rossing number

of K

V

.

Remark. As noted at the end of previous se
tion, the bound of Theorem 4, and thus also the bound of

Theorem 2, 
an be improved for some 
lasses of graphs. In parti
ular, for De Bruijn, 
ube 
onne
ted 
y
les

and butter
y graphs we get p
r(G) = 
(

n

2

log

2

n

), whi
h implies in turn that p
r(G) = 
(
r(G)) for them.

4 Drawing by re
ursive bise
tion: Proof of Theorem 1

We start with a proof of a slightly weaker version of Theorem 1:


r(G) � O

�

log

4

n

�

p
r(G) + ssqd(G)

��

: (5)

We follow the pro
edure of Bhatt and Leighton [3℄ for drawing G, in a slightly simpli�ed form similar to

the version in Shahrokhi et al. [18℄. The pro
edure is re
ursive. It pla
es the verti
es of a given graph on a


ir
le ar
, and the edges are drawn as straight segments.

For a given graph G, the pro
edure �nds a bise
tion (V

1

; V

2

) of G witnessing b(G), divides the given ar


into two subar
s, and re
ursively pla
es the verti
es of G

1

on one of the ar
s and the verti
es of G

2

on the

other ar
 (here G

i

is the subgraph indu
ed by V

i

).

Let `(G) denote the maximum number of edges going \over" a vertex in the resulting drawing of G (an

edge fu; vg is said to go over a vertex w if u and v lie on the ar
 on opposite sides of w). We have the

re
urren
e

`(G) � b(G) + max(`(G

1

); `(G

2

));

and indu
tion then shows that `(G) � C

1

hb(G) logn, where C

1

is a suitable 
onstant.

Now we 
an prove 
r(G) � C log

4

n(p
r(G) + ssqd(G)), for a suitable 
onstant C, by indu
tion on n.

Using the drawing produ
ed by the algorithm, we obtain


r(G) �

�

b(G)

2

�

+ b(G) � (`(G

1

) + `(G

2

)) + 
r(G

1

) + 
r(G

2

):

5



By estimating `(G

1

) and `(G

2

) as above and using the indu
tion hypothesis for G

1

and G

2

, we have


r(G) � C

1

hb(G)

2

logn+

C(log(

2

3

n))

4

�

p
r(G

1

) + p
r(G

2

) + ssqd(G

1

) + ssqd(G

2

)

�

� C

1

hb(G)

2

logn+ C(log n� log

3

2

) log

3

n

�

p
r(G) + ssqd(G)

�

:

The indu
tion step is �nished by using hb(G)

2

� C

2

log

2

n(p
r(G) + ssqd(G)) from Theorem 2. This


ompletes the proof of the weaker bound (5). 2

The stronger bound in Theorem 1 is again based on the re
ursive drawing of the graph on the 
ir
le ar
,

with two additional ideas. The �rst idea is to better split the graph into two parts: Rather then partitioning

the graph into two parts of approximately the same size, it is more appropriate to partition the graph into

two parts with approximately equal pair-
rossing number (see Lemma 6 below). The other improvement is

a better method for 
ounting the 
rossings in the re
ursive drawing of G, based on a re
ent algorithm for


rossing number approximation by Even et al. [4℄. Even et al. a
tually improved the analysis of the re
ursive

pro
edure of Bhatt and Leighton for drawing G.

Lemma 6 For every graph G on n verti
es there exists a partition (V

1

; V

2

) of V (G) with size e(V

1

; V

2

) =

O

�

logn

p

p
r(G) + ssqd(G)

�

su
h that for i = 1; 2,

p
r(G

i

) + ssqd(G

i

) �

2

3

�

p
r(G) + ssqd(G)

�

;

where G

i

is the subgraph of G indu
ed by V

i

.

Proof. The idea is to transform the given graph G into a new graph G

0

in su
h a way that the number

of verti
es in G

0


aptures both ssqd(G) and p
r(G). Then we get the desired partition of G by applying

Theorem 2 to the new graph G

0

.

We 
onsider a drawing of G optimal with respe
t to the pair 
rossing number, and for an edge e, let p(e)

denote the number of pair 
rossings of this edge. We set a weight w(e) to p(e)=2, for every edge. For every

vertex u 2 V , we in
rease the weight of every adja
ent edge but one by deg(v), and the weight of the last

adja
ent edge is in
reased only by deg(v) � 1. We get the new graph G

0

by repla
ing every edge e = fu; vg

by a path of length w(e) � 1 (in other words, we add roughly deg(u) + deg(v) + p(e)=2 new verti
es on

an edge e = fu; vg). It is easy to see that ssqd(G

0

) � 5 ssqd(G) + 4 p
r(G), jV (G

0

)j = p
r(G) + ssqd(G),

logn

0

= O(log n), and moreover, we 
an add the new verti
es in su
h a way that p
r(G

0

) = p
r(G). Also, a

bise
tion of G

0

of size m naturally indu
es a partition of G of size m.

For a subgraph G

0

i

of G

0

, let V

i

denote the set of original verti
es in G

0

i

(that is, those 
oming from G),

and let G

i

be the subgraph of G indu
ed by V

i

. The important observation is that the number of verti
es in

G

0

i

is an upper bound on p
r(G

i

) + ssqd(G

i

). By Theorem 2 there is a bise
tion of size

s = O

�

logn

0

p

p
r(G

0

) + ssqd(G

0

)

�

that separates G

0

into G

0

1

and G

0

2

, and thus we have a partition (V

1

; V

2

) of G of size O(s) su
h that

p
r(G

i

) + ssqd(G

i

) �

2

3

�

p
r(G) + ssqd(G)

�

, for i = 1; 2. 2

Proof of Theorem 1. Let T denote a binary tree representing a re
ursive de
omposition of G a

ording

to Lemma 6: The root of T 
orresponds to the set V , and two 
hildren of a vertex t 2 T asso
iated with a

set V

t


orrespond to the two sets V

t

1

; V

t

2

� V

t


onstituting the partition of V

t

given by Lemma 6.

An edge e = fu; vg of G is split in a tree vertex t if u; v 2 V

t

and jfu; vg \ V

t

i

j = 1 for the two 
hildren

t

1

; t

2

of t. Let G

t

denote the subgraph of G indu
ed by V

t

, and let n

t

= jV

t

j, for a tree vertex t.

Consider the drawing on the 
ir
le ar
 that is based on the re
ursive partitioning by Lemma 6. To bound

the number of edge 
rossings in this drawing, we 
harge a 
rossing of e and e

0

to the �rst edge among e and

e

0

that was split �rst by the partitioning pro
edure. It is easy to observe that for any two 
rossing edges

6



A

1

A

2

E

1

E

2

A

k

E

k

B

1

B

k

B

2

. . .

. . .

Figure 1: A bad graph for vertex-balan
ed partitions.

e; e

0

, the tree vertex in whi
h the edge e was split is an an
estor of the tree vertex in whi
h e

0

was split, or

the other way round (by de�nition, a vertex is an an
estor to itself). In other words, for any tree vertex t

with 
hildren t

1

; t

2

, the edges in G

t

1

do not 
ross with edges in G

t

2

.

Observation 7 (Even et al. [4℄) Let P (u; v) denote the set of verti
es in T on the path from the leaf


orresponding to u to the leaf 
orresponding to v. The number of 
rossings that are 
harged to the edge

e = fu; vg is bounded by

P

t2P (u;v)

je(V

t

1

; V

t

2

)j.

By a 
ombination of Observation 7 and Lemma 6, an edge e = fu; vg is 
harged for at most

X

t2P (u;v)

je(V

t

1

; V

t

2

)j = O

�

X

t2P (u;v)

logn

t

p

p
r(G

t

) + ssqd(G

t

)

�


rossings. Sin
e the partitioning pro
edure guarantees an exponential de
rease of p
r(G

t

) + ssqd(G

t

), an

edge e is 
harged for at most

O

�

logn

p

p
r(G

t

) + ssqd(G

t

)

�

(6)


rossings, where t is the vertex in whi
h e was split. Re
alling that the size of the partition of G

t

is

O

�

logn

t

p

p
r(G

t

) + ssqd(G

t

)

�

;

the number of 
rossings for whi
h a tree vertex t is 
harged is at most

O

�

log

2

n

�

p
r(G

t

) + ssqd(G

t

)

��

:

Sin
e the tree verti
es in the same layer form a partition of V and the number of layers is O(log n), all tree

verti
es are 
harged for at most O

�

log

3

n(p
r(G) + ssqd(G))

�


rossings. Theorem 1 is proved. 2

It is worth mentioning that balan
ing the partitions by Lemma 6, that is, with respe
t to the pair-


rossing number as opposed to the number of verti
es, is 
ru
ial in the above proof. We aim at upper

bounding the number of 
rossings in our ar
-drawing of G in terms of p
r(G). To do so, we rely on the

relation between p
r(G) and b(G) by Theorem 2, namely on the relation b(G) = O(log n

p

p
r(G) + ssqd(G)).

If we simply used a bise
tion that is balan
ed with respe
t to the number of verti
es but not with respe
t to

ssqd(G

i

) + p
r(G

i

), the exponential de
rease of 
ut sizes would not be guaranteed and the bound (6) would

in
rease by a logn fa
tor.

The following example demonstrates this diÆ
ulty. It shows that balan
ing the partitions with respe
t to

the number of verti
es while upper bounding the size of the 
uts by the bound O(log n

p

p
r(G) + ssqd(G))


an really yield a long sequen
e of 
uts with nonde
reasing size: Let k be su
h that n=2

k

=

p

n logn (we

have k = �(logn)). Let A

i

be a set of n=2

i

verti
es, for i = 1; 2; : : : ; k, and let B

1

; B

2

; : : : ; B

k

be sets of

p

n verti
es ea
h. Let G

i

be a bipartite graph on the sets A

i

, B

i

with n edges 
hosen in su
h a way that

7



disjoint 
rossing ar
hing tangled

Figure 2: Types of pairs of paths.

p
r(G

i

) � n

2

= logn. Let E

i

denote the edge set of G

i

(see Fig. 1). Let E

0

be the set of edges of a 
omplete

graph on the set B

k

. Consider the graph

G =

 

k

[

i=1

(A

i

[B

i

);

k

[

i=1

(E

i

) [E

0

!

:

It is easy to 
he
k that G has �(n) verti
es and that p
r(G) = �(n

2

). We observe that E

1

de�nes a bise
tion

of G, and moreover, that even p
r(GnA

1

) = �(n

2

). Similarly, E

2

; E

3

; � � � ; E

k

de�ne bise
tions in next levels

of the re
ursive partitioning su
h that one of the remaining parts of the graph still has pair 
rossing number

�(n

2

) and ea
h of the partitions has size n.

5 Small nonplanar subgraphs in graphs with large 
rossing num-

ber

First we relate the existen
e of small nonplanar subgraphs to edge expansion.

Theorem 8 Let G be a graph with edge expansion � and maximum degree � su
h that ssqd(G)��

�2

�log

2

n <


 � n

2

, for a suÆ
iently small absolute 
onstant 
 > 0. Then there exists a nonplanar subgraph in G of size

O(��

�1

logn).

In parti
ular, a nonplanar subgraph of size O(�

�1

logn) exists in bounded degree graphs with � � 


0

�

logn=

p

n, for a suÆ
iently large absolute 
onstant 


0

> 0.

Proof. Let P be the system of paths from the embedding of K

n

in G guaranteed by Theorem 4. That is,

there is a path of length at most L = O(��

�1

logn) between ea
h pair of verti
es in G, and the maximal

number of paths passing through an edge is C = O(�

�1

n logn).

Let us 
hoose an ordered sixtuple U = (u

1

; u

2

; u

3

; v

1

; v

2

; v

3

) of distin
t verti
es from V (G) at random, all

ordered sixtuples having the same probability. Let F = fp

u

i

;v

j

2 P : i; j = 1; 2; 3g. Let H be the subgraph

indu
ed by the union of these paths. Clearly, H has O(L) verti
es. We want to show that with a positive

probability H is a nonplanar subgraph in G. An obsta
le that we have to over
ome is that the paths in F

may 
ross at verti
es and/or share edges, and thus that we need not always get a subdivision of K

3;3

.

We introdu
e the following types of pairs of paths from P (see Fig. 2): A pair (p; q) is 
alled

� disjoint if p and q are vertex disjoint, with the possible ex
eption of a 
ommon terminal vertex;

� 
rossing if p and q have four di�erent terminal verti
es and they have at least one 
ommon vertex;

� ar
hing if p and q have a 
ommon terminal vertex, and the other terminal vertex of one of the paths

is an internal vertex of the other path; and

8



� tangled if p and q have a 
ommon terminal vertex, the other terminal vertex of p does not lie on q and

vi
e versa, and p and q 
ross in at least one other vertex.

We 
laim: With a positive probability, there are no 
rossing pairs and no ar
hing pairs in F .

To prove the 
laim, we show that the expe
ted number of 
rossing and ar
hing pairs in F is stri
tly

smaller than one. The number of paths of P passing through a vertex v is at most C deg(v), and hen
e the

total number of 
rossing pairs (p; q) with p; q 2 P is at most

P

v2V (G)

(C deg(v))

2

= C

2

ssqd(G). Sin
e a

�xed pair of paths with four distin
t terminal verti
es appears in F with probability O(n

�4

), the expe
ted

number of 
rossing pairs in F is O(C

2

ssqd(G)n

�4

) = O(ssqd(G) � �

�2

n

�2

log

2

n). This 
an be made smaller

than any pres
ribed 
onstant, say smaller than 1=4, by 
hoosing the 
onstant 
 in the assumption of the

theorem suÆ
iently small.

Next, we 
onsider the ar
hing pairs. To 
hoose an ar
hing pair, we 
an �rst sele
t the vertex v that is

terminal for one of the paths, say q, and internal for the other one, p. Then p 
an be 
hosen in at most

C deg(v) ways, and there are only two possibilities of 
hoosing q (one of the terminal verti
es of q is v and

the other one is one of the terminal verti
es of p). Hen
e there are O(C �

P

v2V (G)

deg(v)) ar
hing pairs,

and ea
h of them has probability O(n

�3

) of appearing in F . The expe
ted number of ar
hing pairs in F is

thus O(�

�1

n

�2

logn

P

v2V (G)

deg(v)). Sin
e � � Æ(G), while ssqd(G) � Æ(G) �

P

v2V (G)

deg(v)), where Æ(G)

denotes the minimum degree of G, the above estimate for the expe
ted number of ar
hing pairs is dominated

by the earlier bound for the expe
ted number of 
rossing pairs. We 
on
lude that the expe
ted number of


rossing and ar
hing pairs is smaller than one.

We 
an thus 
hoose a sixtuple U whose paths form only disjoint and tangled pairs. If there is no tangled

pair in F , then H is a subdivision of K

3;3

. It remains to 
he
k that even if tangled pairs appear in F , H

still is nonplanar.

Indeed, suppose that H is planar and F 
ontains tangled pairs. Consider a planar drawing of H . It

de�nes a drawing of K

3;3

: the verti
es of K

3;3

are pla
ed to the verti
es of U , and ea
h edge of K

3;3

is

drawn along the 
orresponding path in the drawing of H . This drawing is not ne
essarily planar, but no

two vertex-disjoint edges 
ross in it. But it is well known that every drawing of K

3;3

in the plane has two

vertex-disjoint edges that 
ross (see, e.g., [10℄). Hen
e H is nonplanar and Theorem 8 is proved. 2

Remark. Similarly as in Theorem 4, the terms �

�1

logn and ��

�1

logn 
an be repla
ed by the 
ow

number F of G. Then, for bounded degree graphs, the 
ondition F < 


p

n guarantees a nonplanar minor of

size O(F ) in G. In a way, this is the best possible in general: a two-dimensional

p

n�

p

n mesh is a planar

graph with 
ow number 
(

p

n).

Lemma 9 For every graph G,


r(G) � 2 � hb(G) �m � logn ;

where m is the number of edges in G.

Proof. Consider the re
ursive drawing pro
edure of G on an ar
: in ea
h level use the minimal bise
tion

to divide the 
urrent part H into H

1

and H

2

and re
ursively draw H

1

on one side of the ar
 and H

2

on the

other. The depth of the re
ursion is at most 2 logn, and thus ea
h edge 
rosses at most 4 �hb(G) � logn other

edges, whi
h sums into 2 � hb(G) �m � logn over all edges. 2

Proof of Theorem 3. Let us 
onsider a graph G with n verti
es, m edges, and 
r(G) = k. By Lemma 9,

there is a subgraph G

1

with b(G

1

) = 


�

k

m logn

�

. Lemma 5 then yields a subgraph G

2

on n

2

�

2

3

jV (G

1

)j

verti
es with edge expansion

�(G

2

) = 


�

b(G

1

)

n

2

�

= 


�

k

n

2

m logn

�

:

Applying Theorem 8 to G

2

, we obtain a nonplanar subgraph of size

O

�

�(G

2

)mn

2

logn � logn

2

k

�

= O

�

�mn log

2

n

k

�

:

It remains to 
he
k that the assumption of Theorem 8 holds for G

2

, namely that ssqd(G

2

)�(G

2

)

�2

log

2

n

2

<


n

2

2

. Using the above lower bound for �(G

2

), it is suÆ
ient to 
he
k that ssqd(G

2

)m

2

(log

4

n)=k

2

< 
, and

this follows from the assumption k � C

p

ssqd(G)m log

2

n in Theorem 3. 2

9



6 Open problems

An obvious open problem is to de
ide whether 
r(G) = p
r(G) for all G. We 
urrently do not see any

good reason why this equality should always hold, and so we believe that it makes sense to 
ontinue the

investigation of upper bounds on 
r(G) in terms of p
r(G).

A ni
e problem 
on
erns the pair-
rossing number of a 
onstant-degree expander G. While 
r(G) = 
(n

2

)

(sin
e b(G) = 
(n)), the method of Theorem 2 
annot yield su
h lower bound for p
r(G), sin
e the 
ows

simply 
annot be made suÆ
iently large. Still, it is very natural to 
onje
ture that p
r(G) = 
(n

2

).

In Se
tion 5 we proved a lower bound on the edge expansion (of a subgraph) in terms of the 
rossing

number, using the re
ursive drawing pro
edure. Although the resulting bound is almost tight in some 
ases

(for bounded-degree graphs with quadrati
 
rossing number, say), perhaps it 
an be improved for smaller


rossing numbers. For example, is it true that for all k, every graph with maximum degree bounded by a


onstant 
ontains a subgraph with edge expansion 


�

n=

p

(k + n)polylogn

�

?

Finally, the 
rossing number is mu
h less understood for graphs with large degrees than for those with

degrees bounded by a 
onstant. The term ssqd(G) appears very often in various bounds and, if some degrees

are large, it usually makes the bounds uninteresting. One of the main tools for bounding the 
rossing number,

the re
ursive pro
edure of drawing on an ar
 by re
ursive bise
tion, no longer works in the presen
e of high

degrees: For example, while K

2;n

is planar, any straight-edge drawing with verti
es on an ar
 has 
(n

2

)


rossings. Further, the bise
tion width of K

2;n

is 
(n), of the same order as for K

3;n

; the former graph is

planar, while the latter has 
rossing number 
(n

2

). So the bise
tion width is no longer suitable for estimating

the 
rossing number. It seems that substantial new ideas are needed for, say, a good approximation algorithm

for the 
rossing number of general graphs.
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