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Abstra
t

In a re
ent paper Chekuri and Khanna improved the analysis of the

Greedy algorithm for the Edge Disjoint Paths problem and proved the

same bounds also for the related Uniform Capa
ity Unsplittable Flow

Problem. Here we show that their ideas 
an be used to get the same

approximation ratio even for the more general Unsplittable Flow Problem

with nonuniform edge 
apa
ities.

1 Introdu
tion

In the maximum edge disjoint paths problem (EDP) we are given a (dire
ted on

undire
ted) graph G = (V;E) and a set T = f(s

i

; t

i

) : 1 � i � kg of k requests.

The obje
tive is to 
onne
t a maximum number of pairs from T along edge

disjoint paths. The unsplittable 
ow problem (UFP) is a natural generalization:

the edges in G have 
apa
ities pres
ribed by 
 : E ! IR

+

and every request r

i

in T has an asso
iated demand d

i

. A feasible solution is a subset of requests

from T su
h that all of them 
an be routed in G without violating the 
apa
ity


onstraints, ea
h request along a single path. The obje
tive is to �nd a feasible

solution with maximal total demand. Throughout the paper we will assume

that the maximal demand and the maximal edge 
apa
ity is at most one. This

is not a restri
tion sin
e it 
an be always a
hieved by a suitable s
aling of the

demands and the 
apa
ities.

A 
ommon assumption in dealing with the UFP is that the minimal edge


apa
ity is one, that is, the minimal 
apa
ity is at least as large as the maximal

�
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demand. We will 
all this a no bottlene
k assumption. A unit 
apa
ity unsplit-

table 
ow problem (UCUFP) is a variant of the problem in whi
h all 
apa
ities

are equal to one.

For the UCUFP Kleinberg [5℄ proved an O(

p

m�

max 
(e)

mind

i

) approximation ratio

of a greedy algorithm, where m is the number of edges in G. The upper bound

was improved by Bajeva and Srinivasan [2℄ to O(

p

m) for the slightly more

general UFP under the no-bottlene
k assumption, by an algorithm based on

randomized rounding of an optimal fra
tional solution of the 
orresponding LP.

Later on, Kolman and S
heideler [7℄ presented a variant of the greedy algorithm

with an O(

p

m) approximation ratio even for the UFP without the no-bottlene
k

assumption.

For the simpler EDP, the best approximation ratio pending for a long time

was also only O(

p

m). In a re
ent work, Chekuri and Khanna [3℄ substantially

extended the understanding of the problem by improving the analysis of the

greedy algorithm for dense graphs. They proved an O(minfn

2=3

;

p

mg) upper

bound for undire
ted graphs and O(minfn

4=5

;

p

mg) for dire
ted graphs. More-

over, they showed that the same bounds apply also for the unit 
apa
ity UFP:

the point was that requests with demand more than 1=2 behave like requests

in the EDP, and for requests with demand at most 1=2 there already was an

algorithm with O(

p

n) approximation ratio [2, 1, 7℄.

We pause to note that for many graph 
lasses the approximation ratio of

the greedy algorithm is mu
h better (e.g., O(log n) for expander or hyper
ubi


graphs; O(F ) in general, where F is the 
ow number of the respe
tive graph [7℄),

however, in terms of n this is only O(n) in the worst 
ase of graphs with 
(n

2

)

edges.

On the lower bound side, in terms of the number of edges m, it was shown

by Guruswami et al. [4℄ that on dire
ted networks it is NP-hard to approximate

the EDP (and, thus, the UFP) within a fa
tor of m

1=2��

, for any � > 0. In

terms of the number of verti
es n, the above lower bound is n

1=2��

.

The 
ontribution of this paper is that the same bounds as for the EDP 
an

be a
hieved for the UFP on graphs with non-uniform edge 
apa
ities and even

for the UFP without the no-bottlene
k assumption. The presented algorithm


ombines the ideas from the previous best algorithm for the UFP without the

no-bottlene
k assumption [7℄ and the above mentioned improved algorithm for

the EDP [3℄. Its advantage is also that it is 
ompletely self
ontained and does

not use other algorithms as subroutines.

It is worth mentioning at this point that the presented algorithm 
annot be

extended on dire
ted networks for the more general UFP with pro�ts (there is

a pro�t p

i

asso
iated with ea
h request r

i

from T ), due to a lower bound n

1��

,

for any � > 0, by Azar and Regev [1℄.

The main open problem is the same as for the EDP: is it possible to approx-

imate the UFP within O(

p

n) in polynomial time? Is it possible to prove the

n

1=2��

lower bound also for undire
ted networks, or is it possible to approximate

the problem better on undire
ted networks?
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2 Tools

The basi
 idea of the

p

m approximation algorithm for the EDP is the simple

fa
t that there 
an be in G at most

p

m edge disjoint paths of length

p

m and

more. Chekuri and Khanna observed that even a more stri
t restri
tion holds:

Theorem 2.1 (Chekuri and Khanna, 2003) Let G(V;E) be a simple unit


apa
ity undire
ted graph and let T be the 
olle
tion of all sour
e-sink pairs

su
h that the shortest distan
e in G between sour
e and sink is at least l. Then

the value of the maximum multi
ommodity 
ow for pairs in T is bounded by

O(n

2

=l

2

).

A slightly weaker but similar result holds for dire
ted graphs too.

We will need analogous bounds for 
apa
itied networks and requests with

demands. The presented proofs of these bounds follow the lines of the original

proofs for the EDP. However, in our 
ase, the situation is 
ompli
ated sin
e

many paths may use a single edge while some edges are unavailable for some

requests due to small 
apa
ity. More 
are must be given to the distan
es and

degrees in the network. It is worth noting that in 
ontrast to the original proof,

here we essentially use the fa
t that the paths in the optimal UFP solution are

unsplittable. Most of the previous approximations for the EDP and the UFP

are based on 
omparison with an optimal fra
tional solution [2, 7, 3℄.

Let G(V;E) be a (dire
ted or undire
ted) network with edge 
apa
ities pre-

s
ribed by 
 : E ! IR

+

. A d-path is a path 
arrying d units of 
ow and we talk

about an s� t path if we want to stress that the terminal verti
es are s and t.

An s� t d-path is feasible if the path obeys the 
apa
ity 
onstraints. An edge

e is d-
riti
al if 
(e) � d > 
(e)=2. For a sour
e-sink pair (s; t) with demand

d, let the demand-d-distan
e dist

d

(s; t) from s to t be the minimal number of

d-
riti
al edges on a feasible s� t d-path. If there is no su
h path, the distan
e

is in�nite.

Lemma 2.2 Let G(V;E) be an undire
ted network with edge 
apa
ities and let

d

max

2 (0; 1℄ and l 2 IN. For every pair of nodes (s

i

; t

i

) de�ne a demand d

i

su
h that dist

d

i

(s; t) is at least l and d

i

is the minimal possible. Let T be the


olle
tion of all sour
e-sink pairs (s

i

; t

i

) with demand d

i

� d

max

and let O be the

optimal solution for the UFP instan
e T . Then the total 
ow in O is bounded

by O(d

max

n

2

=l

2

).

Proof. We say that a vertex u in G is a high degree vertex with respe
t to

demand d if the number of d-
riti
al edges adja
ent to u is more than 6n=l,

and is a low degree vertex with respe
t to d otherwise. If it is 
lear from the


ontext with respe
t to what demand are we talking about the degree, we will

talk about high and low degree verti
es only.

Claim 2.3 For every request (s; t) 2 O with demand d, the s � t d-path in O

uses at least l=6 d-
riti
al edges adja
ent to low degree verti
es.
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Proof. Suppose by 
ontradi
tion that there exists a request (s; t) 2 O with an

s� t d-path with less than l=6 d-
riti
al edges adja
ent to low degree verti
es.

Let G

d

be the subgraph of G 
ontaining only edges with 
apa
ity at least d and

let G

0

d

denote the graph we get when 
ontra
ting pairs of verti
es 
onne
ted in

G

d

by an edge with 
apa
ity 2d and more. Note that the number of edges on

any s� t path is still at least l and that there are only d-
riti
al edges in G

0

d

.

Now it is possible to use the arguments of Chekuri and Khanna. Let � be a

breadth-�rst sear
h tree of G

0

d

rooted at s and let L

i

(layer) denote the set of

nodes at distan
e i from s in � . Assume that among the �rst l layers, there are

at most l=6� 1 layers 
onsisting entirely of low degree verti
es (otherwise the


laim is obvious). Let a blo
k B

i

be a set of nodes on layers L

3i+1

; L

3i+2

; L

3i+3

,

0 � i < l=3. By our assumption there are at least l=6 blo
ks 
ontaining no layer


onsisting entirely of low degree verti
es. Sin
e there are at most n verti
es, one

of these blo
ks, say a blo
k B

j

, 
ontains at most 6n=l nodes. However, this is a


ontradi
tion sin
e all nodes in the middle level of B

j

, in the level 3j +2, must

be low degree nodes - they are adja
ent to nodes in B

j

only.

Sin
e the number of d-
riti
al edges adja
ent to low degree verti
es on a

shortest s� t d-path is the same in G and in G

0

d

, the proof is 
ompleted. ut

Consider an interval (1=2

k+1

; 1=2

k

℄, for some integral k. By the above 
laim,

every request in O with demand d 2 (1=2

k+1

; 1=2

k

℄ uses at least l=6 (1=2

k+1

)-


riti
al and (1=2

k

)-
riti
al edges adja
ent to low degree verti
es (with respe
t

to 1=2

k+1

and 1=2

k

, resp.). Sin
e ea
h vertex of a low degree with respe
t to d

has at most 6n=l d-
riti
al edges, there are only O(n

2

=l

2

) requests with demand

d 2 (1=2

k+1

; 1=2

k

℄ in the optimal solution. Sin
e the maximal single demand in

O is d

max

, the total 
ow in O is bounded by O(d

max

n

2

=l

2

). ut

An analogous lemma will be needed for dire
ted networks:

Lemma 2.4 Let G(V;E) be a dire
ted network with edge 
apa
ities and let

d

max

2 (0; 1℄ and l 2 IN. For every pair of nodes (s

i

; t

i

) de�ne a demand d

i

su
h that dist

d

i

(s; t) is at least l and d

i

is the minimal possible. Let T be the


olle
tion of all sour
e-sink pairs (s

i

; t

i

) with demand d

i

� d

max

and let O be the

optimal solution for the UFP instan
e T . Then the total 
ow in O is bounded

by O(d

max

n

4

=l

4

).

Proof. The goal is to �nd a 
ut E

0

� E with total 
apa
ity O(d

max

n

4

=l

4

)

separating all pairs in T . The 
ut E

0

is 
onstru
ted iteratively. Set E

0

= 0 at

the beginning. Let G

0

= G(V;E �E

0

) and 
hoose a request (s; t) 2 T with the

minimal demand, say d, that still has a feasible path in G

0

. Remove from G

0

all

edges with 
apa
ity stri
tly less than d and 
ontra
t all pairs of nodes 
onne
ted

by an edge with 
apa
ity 2d and more. Let G

0

d

denote the resulting network, �

the breadth-�rst sear
h tree of G

0

d

rooted at s and L

i

(layer) the set of nodes

at distan
e i from s in � .

Claim 2.5 There is a j; l=3 < j � 2l=3, su
h that the number of edges going

in G

0

d

from L

j

to L

j+1

is O(n

2

=l

2

). Moreover, these edges separate 
(l

2

) pairs
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of nodes that have been 
onne
ted in G

0

d

.

Proof. Apply the argument of Chekuri and Khanna: let B

i

= L

2i

[ L

2i+1

,

i � 0. By the 
onstru
tion of T , we have t 2 B

r

for some r � l=2. Sin
e there

are at most n nodes, there must be a B

k

with l=6 � k < l=3 and size at most

6n=l. Clearly, the number of edges from L

2k

to L

2k+1

is O(n

2

=l

2

). Moreover,

by the 
onstru
tion of � , these edges separate the �rst l=6 nodes on an s � t

path from the last l=6 nodes on the same path, in total 
(l

2

) pairs. ut

Sin
e we take as (s; t) the minimal request with a feasible path in G

0

, the


ut from the above 
onstru
tion applied to G

0

(it was de�ned for G

0

d

) separates


(l

2

) pairs than have been 
onne
ted in G

0

by a path with 
ow d or more at

the beginning of the iteration. Thus, after O(n

2

=l

2

) iterations all pairs from T

are separated and in ea
h iteration the size of the 
ut is O(d

max

n

2

=l

2

). Sin
e

the size of the 
ut is an upper bound on he size of an UFP solution, the proof

is 
ompleted. ut

3 The Bounded Greedy Algorithm

There are several di�erent versions of the Greedy algorithm. Chekuri and

Khanna use the following one for the EDP (and, a
tually, it is also one of the ba-

si
 building blo
ks of their UFP algorithm): for ea
h unrouted request 
ompute

its shortest feasible path and 
onne
t the pair with the minimum shortest path

(
f. [6℄). Kleinberg [5℄ proposed for the EDP the Bounded greedy algorithm

(BGA) and used it with parameter l =

p

m: pro
ess the requests in any order

and if there is a free path of length at most l 
onne
ting the terminal nodes,

a

ept the request and use any su
h path for it.

We will use for the UFP with non-uniform edge 
apa
ities an extended vari-

ant of the BGA 
alled 
areful BGA [7℄: pro
ess the requests a

ording to their

demands, starting with the largest. A

ept a request r if there exists a feasible

path p for it su
h that after routing r the total 
ow on at most l edges of p is

larger than half of their 
apa
ity. We say that the request r uses these edges in

their upper half. Let B

1

denote the solution we get. Let B

2

denote the solution


onsisting of only the request with the maximal demand d

max

(without loss of

generality we assume that su
h a request always �ts in the empty network). As

our solution we take the better of these two, B = max(B

1

;B

2

).

For a set U of 
ow paths let jjUjj denote the total 
ow through all of then.

Theorem 3.1 The approximation ratio of the 
areful BGA with parameter l =

minf

p

m;n

2=3

g on undire
ted networks, and with parameter l = minf

p

m;n

4=5

g

on dire
ted networks, is O(l) for the UFP, even without the no-bottlene
k as-

sumption.

Proof. Sin
e the edge 
apa
ities may substantially vary, the separation of the

requests into those with demand at most 1=2 and those with demand more than

1=2 [3℄ does not help in this setting and a di�erent approa
h must be taken.
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We will assume that for undire
ted networks l = n

2=3

and for dire
ted networks

l = n

4=5

sin
e for l =

p

m the result is already known [7℄.

Let O denote the optimal solution and O

0

� O its subset 
onsisting of

requests reje
ted by the �rst run of the 
areful BGA algorithm, that is of requests

not in B

1

. Obviously, jjO �O

0

jj � jjBjj. Consider a path p 2 O

0

. There are two

possible reasons why the request r 
orresponding to p is not in B

1

: either (1)

p was infeasible, whi
h means the existen
e of an edge e 2 p where r did not

�t in, or (2) there are (at least) l edges e

1

; � � � ; e

l

on p that would be used by

r in their upper half, that is for ea
h e

i

the sum of d(p) and the 
ow on e

i

in

the moment of de
iding about p was larger than half of their 
apa
ity 
(e

i

)=2.

Let O

1

� O

0

denote the requests reje
ted by the BGA for the �rst reason and

O

2

� O

0

for the se
ond, O

2

= O

0

�O

1

.

Consider a request p 2 O

1

. Sin
e the requests were pro
essed a

ording

to their demands, the 
ow on some e 2 p in the moment of reje
ting p was

stri
tly more than 
(e)=2. Let B

e

denote the paths from B

1

parti
ipating on

this 
ow that use the edge e in the upper half. Due to pro
essing the requests

a

ording to their demands, the sum of 
ows of paths in B

e

is at least 
(e)=4: if

d(p) � 
(e)=4, it follows from the la
k of spa
e for p on e, and if d(p) > 
(e)=4,

there is a path q using e in the upper half with d(q) � d(p). Ea
h of paths

q 2 B

e

is a witness for p and its weight for p is d(q) � d(p)=
(e). Note that the

total weight of ea
h path q 2 B

1

as a witness for paths in O

1

is at most d(q) � l,

and, on the other hand, ea
h path p 2 O

1

has witnesses in B

1

with total weight

at least d(p)=4. Thus jjO

1

jj � 4l � jjB

1

jj.

We further distinguish reasons for reje
ting p 2 O

2

: either (a) there are

more than l=2 edges on p su
h that d(p) > 
(e)=2 for ea
h of them, or (b) there

are l=2 edges e 2 p ea
h with a 
ow at least 
(e) � d(p) � d(p). Let O

0

2

be

the subset of O

2


onsisting of requests reje
ted for the reason (a) and let G

0

be

the network G with the 
apa
ity of ea
h edge de
reased by the 
ow along it in

B

1

. Sin
e for undire
ted (dire
ted, resp.) networks, O

0

2

is a subset of T from

Lemma 2.2 (Lemma 2.4, resp.), jjO

0

2

jj = O(d

max

n

2

=l

2

) = O(l � jjBjj) for l = n

2=3

(jjO

0

2

jj = O(d

max

n

4

=l

4

) = O(l � jjBjj) for l = n

4=5

, resp.).

Consider now a path p 2 O

2

� O

0

2

. The reason for reje
ting p guarantees

that for d(p) units of 
ow along p in the optimal solution, we have l � d(p)=2

units of volume in B

1

, and any request r 2 B

1


ontributes to this volume by at

most n � d(r) units. Thus, jjO

2

�O

0

2

jj = O(

n

l

� jjB

1

jj) = O(l � jjB

1

jj).

Putting together bounds on the partitions of O 
ompletes the proof. ut
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