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Abstract

In a recent paper Chekuri and Khanna improved the analysis of the
Greedy algorithm for the Edge Disjoint Paths problem and proved the
same bounds also for the related Uniform Capacity Unsplittable Flow
Problem. Here we show that their ideas can be used to get the same
approximation ratio even for the more general Unsplittable Flow Problem
with nonuniform edge capacities.

1 Introduction

In the maximum edge disjoint paths problem (EDP) we are given a (directed on
undirected) graph G = (V, E) and a set T = {(s;,;) : 1 <i < k} of k requests.
The objective is to connect a maximum number of pairs from 7' along edge
disjoint paths. The unsplittable flow problem (UFP) is a natural generalization:
the edges in G have capacities prescribed by ¢ : E — IRy and every request r;
in T has an associated demand d;. A feasible solution is a subset of requests
from T such that all of them can be routed in G without violating the capacity
constraints, each request along a single path. The objective is to find a feasible
solution with maximal total demand. Throughout the paper we will assume
that the maximal demand and the maximal edge capacity is at most one. This
is not a restriction since it can be always achieved by a suitable scaling of the
demands and the capacities.

A common assumption in dealing with the UFP is that the minimal edge
capacity is one, that is, the minimal capacity is at least as large as the maximal
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demand. We will call this a no bottleneck assumption. A unit capacity unsplit-
table flow problem (UCUFP) is a variant of the problem in which all capacities
are equal to one.

For the UCUFP Kleinberg [5] proved an O(y/m- ";;’:‘Tcd(e)) approximation ratio
of a greedy algorithm, where m is the number of edges in G. The upper bound
was improved by Bajeva and Srinivasan [2] to O(y/m) for the slightly more
general UFP under the no-bottleneck assumption, by an algorithm based on
randomized rounding of an optimal fractional solution of the corresponding LP.
Later on, Kolman and Scheideler [7] presented a variant of the greedy algorithm
with an O(y/m) approximation ratio even for the UFP without the no-bottleneck
assumption.

For the simpler EDP, the best approximation ratio pending for a long time
was also only O(y/m). In a recent work, Chekuri and Khanna [3] substantially
extended the understanding of the problem by improving the analysis of the
greedy algorithm for dense graphs. They proved an O(min{n>/?,/m}) upper
bound for undirected graphs and O(min{n*/% \/m}) for directed graphs. More-
over, they showed that the same bounds apply also for the unit capacity UFP:
the point was that requests with demand more than 1/2 behave like requests
in the EDP, and for requests with demand at most 1/2 there already was an
algorithm with O(y/n) approximation ratio [2, 1, 7].

We pause to note that for many graph classes the approximation ratio of
the greedy algorithm is much better (e.g., O(logn) for expander or hypercubic
graphs; O(F') in general, where F' is the flow number of the respective graph [7]),
however, in terms of n this is only O(n) in the worst case of graphs with Q(n?)
edges.

On the lower bound side, in terms of the number of edges m, it was shown
by Guruswami et al. [4] that on directed networks it is NP-hard to approximate
the EDP (and, thus, the UFP) within a factor of m'/?>~¢, for any € > 0. In
terms of the number of vertices n, the above lower bound is n!/2—¢,

The contribution of this paper is that the same bounds as for the EDP can
be achieved for the UFP on graphs with non-uniform edge capacities and even
for the UFP without the no-bottleneck assumption. The presented algorithm
combines the ideas from the previous best algorithm for the UFP without the
no-bottleneck assumption [7] and the above mentioned improved algorithm for
the EDP [3]. Its advantage is also that it is completely selfcontained and does
not use other algorithms as subroutines.

It is worth mentioning at this point that the presented algorithm cannot be
extended on directed networks for the more general UFP with profits (there is
a profit p; associated with each request 7; from T'), due to a lower bound n'~¢,
for any € > 0, by Azar and Regev [1].

The main open problem is the same as for the EDP: is it possible to approx-
imate the UFP within O(y/n) in polynomial time? Is it possible to prove the
n'/2=¢ lower bound also for undirected networks, or is it possible to approximate
the problem better on undirected networks?



2 Tools

The basic idea of the \/m approximation algorithm for the EDP is the simple
fact that there can be in G at most v/m edge disjoint paths of length /m and
more. Chekuri and Khanna observed that even a more strict restriction holds:

Theorem 2.1 (Chekuri and Khanna, 2003) Let G(V, E) be a simple unit
capacity undirected graph and let T be the collection of all source-sink pairs
such that the shortest distance in G between source and sink is at least l. Then
the value of the maximum multicommodity flow for pairs in T is bounded by

O(n?/12).

A slightly weaker but similar result holds for directed graphs too.

We will need analogous bounds for capacitied networks and requests with
demands. The presented proofs of these bounds follow the lines of the original
proofs for the EDP. However, in our case, the situation is complicated since
many paths may use a single edge while some edges are unavailable for some
requests due to small capacity. More care must be given to the distances and
degrees in the network. It is worth noting that in contrast to the original proof,
here we essentially use the fact that the paths in the optimal UFP solution are
unsplittable. Most of the previous approximations for the EDP and the UFP
are based on comparison with an optimal fractional solution [2, 7, 3].

Let G(V, E) be a (directed or undirected) network with edge capacities pre-
scribed by ¢: E — IR;.. A d-path is a path carrying d units of flow and we talk
about an s — t path if we want to stress that the terminal vertices are s and ¢.
An s —t d-path is feasible if the path obeys the capacity constraints. An edge
e is d-critical if c(e) > d > c(e)/2. For a source-sink pair (s,t) with demand
d, let the demand-d-distance dist,(s,t) from s to ¢ be the minimal number of
d-critical edges on a feasible s — ¢ d-path. If there is no such path, the distance
is infinite.

Lemma 2.2 Let G(V, E) be an undirected network with edge capacities and let
dmax € (0,1] and | € IN. For every pair of nodes (s;,t;) define a demand d;
such that distg,(s,t) is at least | and d; is the minimal possible. Let T be the
collection of all source-sink pairs (s;,t;) with demand d; < dmax and let O be the
optimal solution for the UFP instance T. Then the total flow in O is bounded
by O(dmaxn?/1?).

Proof. We say that a vertex u in G is a high degree vertex with respect to
demand d if the number of d-critical edges adjacent to w is more than 6n/l,
and is a low degree vertexr with respect to d otherwise. If it is clear from the
context with respect to what demand are we talking about the degree, we will
talk about high and low degree vertices only.

Claim 2.3 For every request (s,t) € O with demand d, the s — t d-path in O
uses at least 1/6 d-critical edges adjacent to low degree vertices.



Proof. Suppose by contradiction that there exists a request (s,¢) € O with an
s — t d-path with less than [/6 d-critical edges adjacent to low degree vertices.
Let G4 be the subgraph of G containing only edges with capacity at least d and
let G, denote the graph we get when contracting pairs of vertices connected in
G4 by an edge with capacity 2d and more. Note that the number of edges on
any s — t path is still at least [ and that there are only d-critical edges in G,.

Now it is possible to use the arguments of Chekuri and Khanna. Let 7 be a
breadth-first search tree of G/, rooted at s and let L; (layer) denote the set of
nodes at distance 7 from s in 7. Assume that among the first [ layers, there are
at most [/6 — 1 layers consisting entirely of low degree vertices (otherwise the
claim is obvious). Let a block B; be a set of nodes on layers Ls; 1, L3;+2, L3its,
0 <i < 1/3. By our assumption there are at least /6 blocks containing no layer
consisting entirely of low degree vertices. Since there are at most n vertices, one
of these blocks, say a block B;, contains at most 6n/l nodes. However, this is a
contradiction since all nodes in the middle level of Bj, in the level 35 + 2, must
be low degree nodes - they are adjacent to nodes in B; only.

Since the number of d-critical edges adjacent to low degree vertices on a
shortest s — t d-path is the same in G and in G}, the proof is completed. O

Consider an interval (1/2%+1 1/2¥], for some integral k. By the above claim,
every request in O with demand d € (1/2%+1,1/2*] uses at least 1/6 (1/2k+1)-
critical and (1/2*)-critical edges adjacent to low degree vertices (with respect
to 1/2%*+1 and 1/2F, resp.). Since each vertex of a low degree with respect to d
has at most 6n/l d-critical edges, there are only O(n?/I?) requests with demand
d € (1/2%+1,1/2*] in the optimal solution. Since the maximal single demand in
O is dmax, the total flow in O is bounded by O(dmaxn?®/1?). O

An analogous lemma will be needed for directed networks:

Lemma 2.4 Let G(V,E) be a directed network with edge capacities and let
dmax € (0,1] and I € IN. For every pair of nodes (s;,t;) define a demand d;
such that distg,(s,t) is at least | and d; is the minimal possible. Let T be the
collection of all source-sink pairs (s;,t;) with demand d; < dyax and let O be the
optimal solution for the UFP instance T. Then the total flow in O is bounded
by O(dmaxn/1*).

Proof. The goal is to find a cut E' C E with total capacity O(dmaxn®/l*)
separating all pairs in T. The cut E' is constructed iteratively. Set E' = 0 at
the beginning. Let G' = G(V, E — E') and choose a request (s,t) € T with the
minimal demand, say d, that still has a feasible path in G'. Remove from G’ all
edges with capacity strictly less than d and contract all pairs of nodes connected
by an edge with capacity 2d and more. Let G/, denote the resulting network, 7
the breadth-first search tree of G/, rooted at s and L; (layer) the set of nodes
at distance ¢ from s in 7.

Claim 2.5 There is a j, 1/3 < j < 2l/3, such that the number of edges going
in Gl from Lj to Ljiq is O(n?/1?). Moreover, these edges separate Q(I%) pairs



of nodes that have been connected in G;.

Proof. Apply the argument of Chekuri and Khanna: let B; = Lo; U Lojy1,
i > 0. By the construction of T', we have t € B, for some r > [/2. Since there
are at most n nodes, there must be a By, with [/6 < k < [/3 and size at most
6n/l. Clearly, the number of edges from Loy, to Lajy1 is O(n?/1*). Moreover,
by the construction of 7, these edges separate the first /6 nodes on an s — ¢
path from the last 1/6 nodes on the same path, in total Q(/?) pairs. O

Since we take as (s,t) the minimal request with a feasible path in G', the
cut from the above construction applied to G’ (it was defined for G’;) separates
Q(I?) pairs than have been connected in G’ by a path with flow d or more at
the beginning of the iteration. Thus, after O(n?/I?) iterations all pairs from T
are separated and in each iteration the size of the cut is O(dmaxn?/I1?). Since
the size of the cut is an upper bound on he size of an UFP solution, the proof
is completed. O

3 The Bounded Greedy Algorithm

There are several different versions of the Greedy algorithm. Chekuri and
Khanna use the following one for the EDP (and, actually, it is also one of the ba-
sic building blocks of their UFP algorithm): for each unrouted request compute
its shortest feasible path and connect the pair with the minimum shortest path
(cf. [6]). Kleinberg [5] proposed for the EDP the Bounded greedy algorithm
(BGA) and used it with parameter [ = y/m: process the requests in any order
and if there is a free path of length at most [ connecting the terminal nodes,
accept the request and use any such path for it.

We will use for the UFP with non-uniform edge capacities an extended vari-
ant of the BGA called careful BGA [7]: process the requests according to their
demands, starting with the largest. Accept a request r if there exists a feasible
path p for it such that after routing r the total flow on at most [ edges of p is
larger than half of their capacity. We say that the request r uses these edges in
their upper half. Let By denote the solution we get. Let B> denote the solution
consisting of only the request with the maximal demand dpax (without loss of
generality we assume that such a request always fits in the empty network). As
our solution we take the better of these two, B = max(By, Bs).

For a set U of flow paths let ||{/|| denote the total flow through all of then.

Theorem 3.1 The approzimation ratio of the careful BGA with parameter | =
min{/m,n*?} on undirected networks, and with parameter | = min{\/m,n*/5}
on directed networks, is O(l) for the UFP, even without the no-bottleneck as-
sumption.

Proof. Since the edge capacities may substantially vary, the separation of the
requests into those with demand at most 1/2 and those with demand more than
1/2 [3] does not help in this setting and a different approach must be taken.



We will assume that for undirected networks I = n?/3 and for directed networks
I = n*/® since for I = \/m the result is already known [7].

Let O denote the optimal solution and @' C O its subset consisting of
requests rejected by the first run of the careful BGA algorithm, that is of requests
not in Bi. Obviously, ||O — O'|| < ||B||. Consider a path p € O'. There are two
possible reasons why the request r corresponding to p is not in B;: either (1)
p was infeasible, which means the existence of an edge e € p where r did not
fit in, or (2) there are (at least) I edges ey, -+, e; on p that would be used by
r in their upper half, that is for each e; the sum of d(p) and the flow on ¢; in
the moment of deciding about p was larger than half of their capacity c(e;)/2.
Let O; C O' denote the requests rejected by the BGA for the first reason and
O, C O’ for the second, O, = O — O;.

Consider a request p € O;. Since the requests were processed according
to their demands, the flow on some e € p in the moment of rejecting p was
strictly more than c(e)/2. Let B, denote the paths from B; participating on
this flow that use the edge e in the upper half. Due to processing the requests
according to their demands, the sum of flows of paths in B, is at least c(e)/4: if
d(p) < ¢(e)/4, it follows from the lack of space for p on e, and if d(p) > c(e)/4,
there is a path ¢ using e in the upper half with d(q) > d(p). Each of paths
q € B, is a witness for p and its weight for p is d(q) - d(p)/c(e). Note that the
total weight of each path ¢ € By as a witness for paths in Oy is at most d(q) - [,
and, on the other hand, each path p € O; has witnesses in B; with total weight
at least d(p)/4. Thus ||Oq]| < 41-]|B4]|.

We further distinguish reasons for rejecting p € Os: either (a) there are
more than [/2 edges on p such that d(p) > c¢(e)/2 for each of them, or (b) there
are [/2 edges e € p each with a flow at least c(e) — d(p) > d(p). Let O} be
the subset of O consisting of requests rejected for the reason (a) and let G' be
the network G with the capacity of each edge decreased by the flow along it in
B;. Since for undirected (directed, resp.) networks, O} is a subset of T from
Lemma, 2.2 (Lemma 2.4, resp.), ||O4]| = O(dmaxn?/1?) = O(L-||B||) for | = n/3
(J|O]] = O(dmaxn®*/1*) = O(1 - ||B]|) for | = n*/?, resp.).

Consider now a path p € Oy — O)}. The reason for rejecting p guarantees
that for d(p) units of flow along p in the optimal solution, we have [ - d(p)/2
units of volume in B, and any request r € B; contributes to this volume by at
most n - d(r) units. Thus, [|O2 — Os|| = O(F - ||B1]]) = O(I - || B1]])-

Putting together bounds on the partitions of O completes the proof. O
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