
The Greedy Algorithm for the Minimum

Common String Partition Problem

Marek Chrobak∗ Petr Kolman†∗ Jǐŕı Sgall‡

July 23, 2004

Abstract

In the Minimum Common String Partition problem (MCSP) we are given two strings on
input, and we wish to partition them into the same collection of substrings, minimizing the
number of the substrings in the partition. This problem is NP-hard, even for a special case,
denoted 2-MCSP, where each letter occurs at most twice in each input string. We study a
greedy algorithm for MCSP that at each step extracts a longest common substring from the
given strings. We show that the approximation ratio of this algorithm is between Ω(n0.43) and
O(n0.69). In case of 2-MCSP, we show that the approximation ratio is equal to 3. For 4-MCSP,
we give a lower bound of Ω(log n).

1 Introduction

By a partition of a string A we mean a sequence P = (P1, P2, . . . , Pm) of strings whose concatenation
is equal to A, that is P1P2 . . . Pm = A. The strings Pi are called the blocks of P. If P is a partition
of A and Q is a partition of B, then the pair π = 〈P,Q〉 is called a common partition of A,B, if Q
is a permutation of P. For example, π = 〈(ab, bccad, cab), (bccad, cab, ab)〉 is a common partition of
strings A = abbccadcab and B = bccadcabab.

The minimum common string partition problem (MCSP) is defined as follows: given two strings
A, B, find a common partition of A, B with the minimal number of blocks, or report that no common
partition exists. By k-MCSP we denote the version of MCSP where each letter occurs at most k
times in each input string.

The necessary and sufficient condition for A,B to have a common partition is that each letter
has the same number of occurrences in A and B. Strings with this property are called related.
Verifying whether two strings are related can be done easily in linear time, and for the rest of the
paper we assume, without loss of generality, that the input strings are related. In particular, A
and B have the same length, that we denote by n.

In this article, we study the greedy algorithm for MCSP that constructs a common partition
by iteratively extracting the longest common substring of the input strings. More precisely, the
algorithm can be described in pseudo-code as follows:

∗Department of Computer Science, University of California, Riverside, CA 92521. marek@cs.ucr.edu. Supported
by NSF grant CCR-0208856.

†Institute for Theoretical Computer Science, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech
Republic. kolman@kam.mff.cuni.cz. Supported by project LN00A056 of MŠMT ČR and NSF grants CCR-0208856
and ACI-0085910.

‡Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, Czech Republic. sgall@math.cas.cz. Supported
by Inst. for Theor. Comp. Sci., Prague (project LN00A056 of MŠMT ČR) and by grant IAA1019401 of GA AV ČR.

1

Algorithm Greedy
Let A and B be two related input strings
while there are symbols in A or B outside marked blocks do

S← longest common substring of A, B that does not
overlap previously marked blocks

mark one occurrence of S in each of A and B as blocks
(P,Q)← sequence of consecutive marked blocks in A and B, respectively

For example, if A = cdabcdabceab, B = abceabcdabcd, then Greedy first marks substring
abcdabc, then ab, and then three single-letter substrings c, d, e, so the resulting partition is

〈(c, d, abcdabc, e, ab), (ab, c, e, abcdabc, d)〉,

while the optimal partition is 〈(cdabcd, abceab), (abceab, cdabcd)〉. As illustrated by the above ex-
ample, the common partition computed by Greedy is not necessarily optimal. The question we
study is what is the approximation ratio of Greedy on MCSP and its variants. We prove the
following results:

Theorem 1.1 (a) The approximation ratio of Greedy for MCSP is between Ω(n0.43) and O(n0.69).
(b) For 4-MCSP, the approximation ratio of Greedy is at least Ω(log n).
(c) For 2-MCSP, the approximation ratio of Greedy is equal to 3.

Our results extend to the signed variation of the minimum common partition problem, where
each letter has a plus or minus sign associated with it (cf. [1, 3]). In the signed MCSP, a block
P from A may be matched with a block Q from B if either P = Q (including signs), or PR = Q
where PR denotes the reversal of P , defined as the block P in the reverse order and with all signs
switched. As in MCSP, we want to find a minimum common partition of A and B, under the above
restrictions.

Related work. The minimum common string partition problem was introduced by Chen et
al. [1]. They pointed out that MCSP is closely related to the well-known problem of sorting by
reversals and they use MCSP for comparison of two DNA sequences. In this application, the letters
in the alphabet represent different genes in the DNA sequences, and the cardinality of the minimum
common partition measures the similarity of these sequences. The restricted case of k-MCSP is of
particular interest here. Goldstein et al. [3] proved that 2-MCSP is NP-hard.

The size of the minimum partition of A and B can be thought of as a distance between A and B.
The classical edit-distance of two strings is defined as the smallest number of insertions, deletions,
and substitutions required to convert one string into another [5]. Kruskal and Sankoff [4], and
Tichy [8] were the first consider block operations in string comparison, in addition to the character
operations. Lopresti and Tomkins [6] investigated several different distance measures; one of them
is identical to the MCSP measure.

Shapira and Storer [7] study the problem of edit distance with moves in which the allowed string
operations are the following: insert a character, delete a character, move a substring. They observe
that if the input strings A, B are related, then the minimum number of the above listed operations
needed to convert A into B is within a constant factor of the minimum number of only substring
movements needed to convert A into B; and the latter quantity is within a constant factor of the
minimum common partition size. Shapira and Storer also considered a greedy algorithm nearly

2

identical to ours and claimed an O(log n) upper bound on its approximation ratio; as it turns out,
however, their analysis is flawed.

Cormode and Muthukrishnan [2] describe an O(log n log∗ n)-approximation algorithm for the
problem of edit distance with moves. As explained above, this result yields an O(log n log∗ n)-
approximation for MCSP. Better bounds for MCSP are known for some special cases. A 1.5-
approximation algorithm for 2-MCSP was given by Chen et al. [1]; a 1.1037-approximation algorithm
for 2-MCSP and a 4-approximation algorithm for 3-MCSP were given by Goldstein et al. [3]. All
these algorithms are considerably more complicated than Greedy. Due to its simplicity and ease
of implementation, Greedy is a likely choice for solving MCSP in many practical situations, and
thus its analysis is of its own independent interest.

2 Preliminaries

By A = a1a2 . . . an and B = b1b2 . . . bn we denote the two arbitrary, but fixed, input strings of
Greedy. Without loss of generality, we assume that A and B are related. If π is a common
partition of A, B, then we use notation #blocks(π) for the number of blocks in π, that we refer to
as the size of π. The size of a minimum partition of A, B is denoted by dist(A,B).

We typically deal with occurrences of letters in strings, rather than with letters themselves.
By a “substring” we mean (unless stated otherwise) a specific occurrence of one string in another.
Thus we identify a substring S = apap+1 . . . ap+s of A with the set of indices {p, p + 1, . . . , p + s}
and we write S = {p, p + 1, . . . , p + s}, where |S| = s + 1 is the length of S. Of course, the same
convention applies to substrings of B. If S is a common substring of A, B, we use notations SA

and SB to distinguish between the occurrences of S in A and B.
Partitions as functions. Suppose that we are given a bijection ξ : [n] → [n] (where [n] =
{1, 2, . . . , n}) that preserves letters of A and B, that is, bξ(i) = ai for all i ∈ [n]. A pair of consecutive
positions i, i+1 ∈ [n] is called a break of ξ if ξ(i+1) 6= ξ(i)+1. Let #breaks(ξ) denote the number
of breaks in ξ. For a common substring S of A, B, say S = apap+1 . . . ap+s = bqbq+1 . . . bq+s, we
say that ξ respects S if it maps consecutive letters of SA onto consecutive letters in SB, that is,
ξ(i) = i + q − p for i ∈ SA.

A letter-preserving bijection ξ induces a common partition (also denoted ξ, for simplicity) whose
blocks are the maximum length substrings of A that do not contain breaks of ξ. The partition
obtained in this way does not have any “unnecessary” blocks, that is, #blocks(ξ) = #breaks(ξ)+1.
And vice versa, if π = 〈P,Q〉 is a common partition of A, B, we can think of π as a letter-
preserving bijection π : [n]→ [n] that respects each block of the partition. Obviously, we then have
#blocks(π) ≥ #breaks(π) + 1. We use this relationship throughout the paper, identifying common
partitions with their corresponding bijections.
Reference partitions. Let π be a minimum common partition of A and B. (This partition may
not be unique, but for all A,B, we choose one minimum common partition in some arbitrary way.)
In the first step, Greedy is guaranteed to find a substring S1 of length at least the maximum
length of a block in π. For the analysis of Greedy, we would like to have a similar estimate for
all later steps, too. However, already in the second step there is no guarantee that Greedy finds
a substring as long as the second longest block in π, since this block might overlap S1 and it may
be now partially marked (in A or B). To get a lower estimate on |St|, for t > 1, we introduce a
corresponding reference common partition of A,B that respects all the blocks S1, . . . , St−1 selected
by Greedy in steps 1 to t − 1. This partition may gradually “deteriorate” (in comparison to
the minimum partition of A and B), that is, it may include more blocks and its blocks may get

3

shorter. Furthermore, it may not include a minimum common partition of the unmarked segments.
Nevertheless, reference partitions provide a useful estimate on the “damage” caused by Greedy
when it makes wrong choices (that is, when it marks strings which are not in the optimum partition).

Denote by g the number of steps of Greedy on A,B. For t = 0, 1, . . . , g, the reference common
partition ρt is defined inductively as follows. Initially, ρ0 = π. Consider any t = 1, . . . , g. Suppose
that SA

t = {p, p + 1, . . . , p + s} and SB
t = {q, q + 1, . . . , q + s}. Define function δ : SA

t → SB
t such

that δ(i) = i + q − p for i ∈ SA
t . Then ρt is defined by

ρt(i) =

{
δ(i) for i ∈ SA

t

ρt−1(δ−1ρt−1)`(i)(i) for i ∈ [n]− SA
t

(1)

where `(i) = min
{
λ ≥ 0 : ρt−1(δ−1ρt−1)λ(i) 6∈ SB

t

}
. We show that each ρt is well-defined and we

also bound the increase of the number of breaks from ρt−1 to ρt:

Lemma 2.1 For each t = 0, 1, . . . , g, (a) ρt is a common partition of A, B, (b) ρt respects
S1, . . . , St, and (c) if t > 0 then #breaks(ρt) ≤ #breaks(ρt−1) + 4.

Proof: The proof of the lemma is by induction. For t = 0, (a) and (b) are trivially true. Suppose
that t > 0 and that the lemma holds for t − 1. To simplify notation let S = St, ρ = ρt−1 and
ρ′ = ρt.

Consider a bipartite graph G ⊆ [n]× [n], with edges (i, ρ(i)), for i ∈ [n], and (i, δ(i)), for i ∈ SA.
These two types of edges are called ρ-edges and δ-edges, respectively.

Let S̄A = [n]− SA and S̄B = [n]− SB. In this proof, to avoid introducing additional notation,
we think of SA and S̄A as the sets of nodes on the “left-hand” side of G and SB and S̄B as the
nodes on the “right-hand” side. Then, any node in S̄A or S̄B is incident to one ρ-edge, and each
node in SA or SB is incident to one ρ-edge and one δ-edge. Thus, G is a collection of vertex disjoint
paths and cycles whose edges alternate between ρ-edges and δ-edges. We call them G-paths and
G-cycles. All G-cycles have even length and contain only nodes from SA and SB. All maximal
G-paths have odd lengths, start in S̄A, end in S̄B, and their interior vertices are in SA or SB. The
G-path starting at i ∈ S̄A has the form

i, ρ(i), δ−1ρ(i), ρδ−1ρ(i), . . . , ρ(δ−1ρ)`(i)(i).

Thus, for i ∈ S̄A, ρ′(i) is simply the other endpoint of the G-path that starts at i. This implies
that ρ′ is 1-1 and letter-preserving, so it is indeed a common partition. Condition (b) follows
immediately from the inductive assumption and the definition of ρ′. It remains to prove (c).

Lemma 2.2 Suppose that i, i + 1 is a break of ρ′. Then one of the following conditions holds:
(B0) Exactly one of i, i + 1 is in SA.
(B1) i, i + 1 ∈ S̄A and there is λ ≤ min {`(i), `(i + 1)} such that (δ−1ρ)λ(i), (δ−1ρ)λ(i + 1) is a
break of ρ.
(B2) i, i + 1 ∈ S̄A and there is λ ≤ min {`(i), `(i + 1)} such that exactly one of ρ(δ−1ρ)λ(i),
ρ(δ−1ρ)λ(i + 1) belongs to SB.

We refer to breaks of types (B0), (B1), (B2), respectively, as breaks induced by the endpoints of
SA, breaks induced by the breaks inside SA (only if i,i + 1 is a new break), and breaks induced by
the endpoints of SB.

Proof: If exactly one of i, i + 1 is in SA, the case (B0) holds. Since i, i + 1 is never a break in
ρ′ if both i and i + 1 are in SA, we assume that i, i + 1 ∈ S̄A for the rest of the proof.

4

c c c c c ca a a a a a a ad d db b b b b
1 2 3 4 5

cccccc aaaaaaaa ddd bbbbb
5 1 3 2 4

cccccc aaaaaaaa bbbbb ddd
1 23 45 6 79 8

c c c c c ca a a a a a a ab b b b bd d d
1 2 3 4 5 6 7 98

Figure 1: An example illustrating the construction of ρ′. The upper part shows ρ and some G-paths.
The lower part shows ρ′. The strings in the partitions are numbered, and the common substring
St = abccababd is shaded.

Consider the largest integer λ ≤ min {`(i), `(i + 1)} for which (δ−1ρ)λ(i), (δ−1ρ)λ(i + 1) are
consecutive in SA, that is (δ−1ρ)λ(i + 1) = (δ−1ρ)λ(i) + 1. (We remark that it is not necessarily
true that (δ−1ρ)h(i + 1) = (δ−1ρ)h(i) + 1 for h = 1, . . . , λ; these indices may diverge and then meet
later, any number of times.) Let j = (δ−1ρ)λ(i). We have two sub-cases. If ρ(j+1) 6= ρ(j)+1, then
j, j + 1 is a break of ρ, so the condition (B1) is satisfied. If ρ(j + 1) = ρ(j) + 1, then at least one of
ρ(j), ρ(j + 1) must be in SB, for otherwise i, i + 1 would not be a break of ρ′. But we also cannot
have both ρ(j), ρ(j + 1) ∈ SB, since then (δ−1ρ)λ+1(i), (δ−1ρ)λ+1(i + 1) would be consecutive in
SA, violating the choice of λ. Therefore the case (B2) holds. 2

We now complete the proof of part (c) of Lemma 2.1. There are no breaks of ρ′ inside SA, and
we have at most two breaks of type (B0) corresponding to the endpoints of SA. By the disjointness
of G-paths and cycles, there are at most two breaks of ρ′ of type (B2), each corresponding to one
endpoint of SB. Similarly, each break of ρ (inside or outside SA) induces at most one break of ρ′

of type (B1). This implies (c), and the proof of the lemma is complete. 2

Note that we did not use the fact that S has maximum length. So our construction of ρt can
be used to convert any common partition π into another partition π′ that respects a given common
substring S, and has at most four more breaks than π.

Lemma 2.1 implies that in every step t of the algorithm, every block in the reference partition
ρt is either completely marked or completely unmarked.

3 Upper Bound for MCSP

In this section we show that Greedy’s approximation ratio is O(n0.69). The proof uses reference
common partitions introduced in Section 2 to keep track of the length of the common substrings

5

selected by Greedy.
For p ≥ q ≥ 1, we define H(p, q) to be the smallest number h with the following property:

for any input strings A,B, if at some step t of Greedy there are at most p unmarked symbols
in A and at most q unmarked blocks in the current reference partition ρt, then Greedy makes
at most h more steps until it stops (so its final common partition has at most t + h blocks.) For
convenience, we allow non-integral p and q in the definition. Note that H(p, q) is non-decreasing
in both variables.

Before proving the O(n0.69) upper bound, we sketch a slightly weaker but simpler bound of
O(n0.75). Lemma 2.1 immediately gives a recurrence H(p, q) ≤ H(p(1− 1/q), q + 3) + 1 (whenever
both values of H are defined), as in one step of Greedy, the longest common substring has at
least p

q letters (which will be marked in the next partition), and the number of unmarked blocks
in the reference partition increases by at most 3. We prove by induction on p that for p ≥ q and a
sufficiently large constant C, we have H(p, q) ≤ Cp

3
4 q

1
4 − 1

3q. For q = 1 this is trivial, as Greedy
finds the single unmarked block. We choose C such that for all q ≤ p < 5q, the right-hand side is
at least p, which is a trivial upper bound on H(p, q). For p ≥ 5q ≥ 10, we have p(1− 1/q) ≥ q + 3,
thus we can use the inductive assumption and the recurrence to obtain

H(p, q) ≤ H(p(1− 1/q), q + 3) + 1

≤ Cp
3
4 (1− 1/q)

3
4 (q + 3)

1
4 − 1

3(q + 3) + 1

≤ Cp
3
4 q

1
4 − 1

3q.

The last inequality follows from (q−1)
3
4 (q+3)

1
4 ≤ (q−1)

1
2 [(q−1)

1
4 (q+3)

1
4] ≤ (q−1)

1
2 (q+1)

1
2 ≤ q.

This completes the induction step and the proof. The bound we proved implies that H(p, q) ≤
O(p

3
4)q. Thus, if the input of Greedy consists of two strings A,B of length n, the number of

blocks in Greedy’s partition is at most H(n, dist(A,B)) = O(n0.75)dist(A,B).
The idea of the proof of the improved bound is to consider, instead of one step of Greedy, a

number of steps proportional to the number of blocks in the original optimal partition, and show
that during these steps Greedy marks a constant fraction of the input string. This yields an
improved recurrence for H(p, q).

Lemma 3.1 For all p, q satisfying p ≥ 9q/5+3, we have H(p, q) ≤ H(5p/6, (3q+5)/2)+(q+5)/6.

Proof: Consider a computation of Greedy on A,B, where, after some step t (i.e., with t blocks
having already been marked), there are p unmarked symbols in A, and q unmarked reference
blocks of ρt. We denote these blocks by R1, R2, . . . , Rq, in the order of non-increasing length, that
is |Rz| ≥ |Rz+1|, for z = 1, . . . , q − 1. We analyze the computation of Greedy starting at step
t + 1. Let g be the number of additional steps that Greedy makes. Our goal is to show that

g ≤ H(5
6p, 3q+5

2) + q+5
6 (2)

(Since the bound is monotone in p and q, we do not need to consider the case of fewer than q
unmarked blocks or fewer than p unmarked symbols.) If g ≤ (q + 5)/6, inequality (2) trivially
holds, so in the rest of the proof we assume that g > (q + 5)/6.

Let Ti = St+i be the common substring selected by Greedy in step t+ i. We say that Greedy
hits Rz in step t + i if Ti overlaps Rz, either in A or in B, that is, if either TA

i ∩ RA
z 6= ∅ or

TB
i ∩RB

z 6= ∅.

6

Claim A: For all j = 1, . . . , g, the total length of those blocks R1, . . . , Rq that are hit by Greedy

in A in steps t + 1, . . . , t + j is at most 6
∑j

i=1 |Ti|.
Proof: We estimate the total length of the blocks Rz that are hit at step t+ i in A but have not

been hit in steps t + 1, . . . , t + i − 1. The total length of the blocks that are contained in SA
i and

SB
i is at most 2|Ti|. There are up to four blocks that are hit partially, but by the greedy choice of

Ti, each has length at most |Ti|, and the claim follows. 2

Claim B: 6
∑b(q+5)/6c

i=1 |Ti| ≥ p.
Proof: Let l be the minimum integer such that 6

∑l
i=1 |Ti| ≥ p. Since

∑g
i=1 |Ti| = p, l is

well defined and l ≤ g. For j = 1, . . . , l, define χj as the maximal index for which
∑χj

x=1 |Rx| ≤
6

∑j−1
i=1 |Ti|. Since 6

∑l−1
i=1 |Ti| < p =

∑q
x=1 |Rx|, all χj are well defined, and χl < q. We also note

that χ1 = 0. For each j = 1, . . . , l, Claim A implies that one of the blocks R1, . . . , Rχj+1 is not
hit by any of the blocks T1, . . . , Tj−1 and thus, by the definition of Greedy and the ordering of
the blocks Rz, |Tj | ≥ |Rχj+1|. Considering again the ordering of the blocks Rz, we have 6|Tj | ≥
|Rχj+1|+ ... + |Rχj+6|. We conclude that χj+1 ≥ χj + 6, for j = 1, . . . , l− 1. This, in turn, implies
that q ≥ χl + 1 ≥ 6l − 5. Therefore l ≤ (q + 5)/6, and Claim B follows, by the choice of l and its
integrality. 2

By Claim B, after exactly b(q + 5)/6c steps, Greedy marks at least p/6 letters, so the number
of remaining unmarked letters is at most p′ = 5p/6. By Lemma 2.1, the number of unmarked blocks
increases by at most 3 in each step (since one new block is marked), so the number of unmarked
blocks induced by Greedy in these b(q + 5)/6c steps is at most 3b(q + 5)/6c ≤ (q + 5)/2. Thus
the total number of unmarked blocks after these steps is at most q′ = q + (q + 5)/2 = (3q + 5)/2.
The condition in the lemma guarantees that H(p′, q′) is defined, so, by induction, the total number
of steps is at most H(p′, q′) + (q + 5)/6. This completes the proof if inequality (2) and the lemma.
2

Finally, we prove the upper bound in Theorem 1.1(a).

Theorem 3.2 Greedy is an O(nγ)-approximation algorithm for MCSP, where γ = log 3
2/ log 9

5 ≈
0.69.

Proof: We prove by induction on p that for p ≥ q and a sufficiently large constant C,

H(p, q) ≤ Cpγ(q + 5)1−γ − 1
3q.

We choose C so that for all q ≤ p < 9q/5 + 3, the right-hand side is at least p and thus the
inequality is valid. For p ≥ 9q/5 + 3, by Lemma 3.1, the inductive assumption, and the choice of
γ, we have

H(p, q) ≤ H(5
6p, 3q+5

2) + q+5
6

≤ C(5
6p)γ(3

2(q + 5))1−γ − 1
3 ·

3q+5
2 + q+5

6

= Cpγ(q + 5)1−γ − 1
3q.

Let A,B be input strings of length n and with dist(A,B) = m. Then the number of blocks in
Greedy’s partition is at most H(n, m) = O(nγ)m, and the theorem follows. 2

7

4 Lower Bound for MCSP

We show that the approximation ratio of Greedy is Ω(n1/ log2 5) = Ω(n0.43). We first construct
strings Ci, Di, Ei, Fi as follows. Initially, C0 = a and D0 = b. Suppose we already have Ci and Di,
and let Σi be the set of letters used in Ci, Di. Define a new alphabet Σ′

i that has a new letter, say
a′, for each a ∈ Σ. We first create strings Ei and Fi by replacing all letters a ∈ Σ in Ci and Di,
respectively, by their corresponding letters a′ ∈ Σ′

i. Then, let

Ci+1 = CiDiEiDiCi, and Di+1 = DiEiFiEiDi.

For each i, we consider the instance of strings Ai = CiDi and Bi = DiCi. For example, E0 = c,
F0 = d, A0 = ab, B0 = ba, C1 = abcba, D1 = bcdcb, A1 = abcbabcdcb, and B1 = bcdcbabcba, etc.

Let n = 2 · 5i. We have |Ai| = |Bi| = n and dist(Ai, Bi) ≤ 2. We claim that Greedy’s common
partition of Ai and Bi has 2i+2 − 2 = Ω(n1/ log2 5) substrings. We assume here that Greedy does
not specify how the ties are broken, that is, whenever a longest substring can be chosen in two or
more different ways, we can decide which choice Greedy makes.

The proof is by induction. For i = 0, Greedy produces two substrings, as claimed. For i ≥ 0,

Ai+1 = Ci Di Ei Di Ci Di Ei Fi Ei Di, Bi+1 = Di Ei Fi Ei Di Ci Di Ei Di Ci.

There are three common substrings of length 5i+1: CiDiEiDiCi, DiEiFiEiDi, and EiDiCiDiEi,
and no longer common substrings exist. To justify this, we use the fact that the alphabet of Ci,
Di is disjoint from the alphabet of Ei, Fi. Suppose that S is a common substring of length at least
5i+1. To have this length, S must contain either the first or the second Ei from Ai+1. We now have
some cases depending on which Ei is contained in S, and where it is mapped into Bi+1 via the
occurrence of S in Bi+1. If S contains the first Ei, then, by the assumption about the alphabets,
this Ei must be mapped into either EiFiEi or into the last Ei in Bi+1. If it is mapped into EiFiEi,
then S must be EiDiCiDiEi. If it is mapped into the last Ei in Bi+1, then S must be CiDiEiDiCi.
In the last case, S contains the second Ei in Ai+1. By the same considerations as in the first case,
it is easy to show that then S must be either DiEiFiEiDi or EiDiCiDiEi.

Breaking the tie, assume that Greedy marks substring EiDiCiDiEi. The modified strings are:

Ci Di Ei Di Ci Di Ei Fi Ei Di, Di Ei Fi Ei Di Ci Di Ei Di Ci,

where the overline indicates the marked substring. In the first string the unmarked segments are
Ai, A′

iDi, and in the second string the unmarked segments are Bi and DiB
′
i, where A′

i = FiEi and
B′

i = EiFi are identical as Ai, Bi respectively, but with the letters renamed. The argument in the
previous paragraph and the disjointness of the alphabets implies that the maximum length of a
non-marked common substring is 5i. We break the tie again, and make Greedy match the two
Di’s in FiEiDi and DiEiFi, and the resulting strings have the form

Ai Ei Di Ci Di Ei A
′
i Di, Di B

′
i Ei Di Ci Di Ei Bi.

Now, we have two non-marked pairs of substrings {Ai, Bi} and {A′
i, B

′
i}. These two pairs of

strings have disjoint alphabets and will be processed by Greedy independently of each other. By
induction, Greedy produces 2i+2 − 2 substrings from Ai, Bi, and the same number from A′

i and
B′

i. So we get the total of 2(2i+2 − 2) + 2 = 2i+3 − 2 strings.

8

5 Lower Bound for Greedy on 4-MCSP

In this section we show that Greedy’s approximation ratio is Ω(log n) even on 4-MCSP instances.
To simplify the description, we allow the input instances A,B to be multisets of equal number
of strings, rather than single strings. It is quite easy to see that this does not significantly affect
the performance of Greedy, for we can always replace A,B by two strings A,B, as follows: If
A = {A1, . . . , Am} and B = {B1, . . . , Bm}, let A = A1x1y1A2x2y2 . . . Am−1xm−1ym−1Am and
B = B1y1x1B2y2x2 . . . Bm−1ym−1xm−1Bm, where x1, y1, . . . , xm−1, ym−1 are new letters. Then
both the optimal partition and the partition produced by Greedy on A,B are the same as on
A,B, except for the singletons x1, y1, . . . , xm−1, ym−1. Since in our construction m is a constant, it
is sufficient to show a lower bound of Ω(log n) for multisets of m strings.

For i = 1, 2, . . ., we fix strings qi, q
′
i, ri, r

′
i that we will refer to as elementary strings. Each

elementary string qi, q
′
i, ri, r

′
i has length 3i−1 and consists of 3i−1 distinct and unique letters (that

do not appear in any other elementary string.)
We recursively construct instances Ai, Bi of 4-MCSP. The invariant of the construction is that

Ai, Bi have the form:

Ai: P1qi, P2qiri, P3qi, P4qir
′
i, P5q

′
i, P6q

′
iri, P7q

′
i, P8q

′
ir

′
i

Bi: P1qiri, P2qi, P3qir
′
i, P4qi, P5q

′
iri, P6q

′
i, P7q

′
ir

′
i, P8q

′
i

where P1, . . . , P8 are some strings of length smaller than 3i−1 with letters distinct from qi, q
′
i, ri, r

′
i.

Initially, we set all P1, . . . , P8 = ε, and construct A1, B1 as described above. In this case
qi, q

′
i, ri, r

′
i are unique, single letters.

To construct Ai+1, Bi+1, we append pairs of elementary strings to the strings from Ai, Bi. For
convenience, we omit the subscripts for elementary substrings, writing q = qi, q̄ = qi+1, etc. After
rearranging the strings, the new instance is

Ai+1: P1qr q̄, P4qr
′ q̄r̄, P7q

′r′ q̄, P6q
′r q̄r̄′, P3qr

′ q̄′, P2qr q̄′r̄, P5q
′r q̄′, P8q

′r′ q̄′r̄′

Bi+1: P1qr q̄r̄, P4qr
′ q̄, P7q

′r′ q̄r̄′, P6q
′r q̄, P3qr

′ q̄′r̄, P2qr q̄′, P5q
′r q̄′r̄′, P8q

′r′ q̄′

Note that this instance has the same structure as the previous one, since we can take P ′
1 = P1qr,

P ′
2 = P4qr

′, etc.. Thus we can continue this construction recursively. Each letter appears at most
four times in Ai and Bi, so this is indeed an instance of 4-MCSP; the claimed bound on the length
of the P ′

j ’s also follows easily.
Consider the i-th instance, Ai and Bi. To estimate the optimal partition, we match the 8 pairs

of strings as aligned above, adding the shorter string from each pair to the common partition.
There are only 4 additional strings left, namely r̄, r̄′, r̄, r̄′, implying dist(Ai,Bi) ≤ 12.

We show that Greedy computes a partition with Θ(i) = Θ(log n) blocks. To this end, we
claim that, starting from Ai+1,Bi+1, Greedy first matches all suffixes that consist of two elemen-
tary strings as shown below (Ai+1 and Bi+1 are rearranged to show the matched strings aligned
vertically):

Ai+1: P4qr
′ q̄r̄, P6q

′r q̄r̄′, P2qr q̄′r̄, P8q
′r′ q̄′r̄′, P1q rq̄, P7q

′ r′q̄, P3q r′q̄′, P5q
′ rq̄′

Bi+1: P1qr q̄r̄, P7q
′r′ q̄r̄′, P3qr

′ q̄′r̄, P5q
′r q̄′r̄′, P6q

′ rq̄, P4q r′q̄, P8q
′ r′q̄′, P2q rq̄′

Indeed, the instance has four common substrings of length 2·3i, namely q̄r̄, q̄r̄′, q̄′r̄, q̄′r̄′, and, by
the choices of the lengths of elementary strings and the bound on the lengths of the Pj ’s, all other
common substrings are shorter. Thus, Greedy starts by removing (marking) these four suffixes.
Similarly, at this step, the new instance will have four common substrings of length 3i + 3i−1,

9

namely rq̄, r′q̄, r′q̄′, rq̄′, and all other common substrings are shorter. Greedy will remove these
four suffixes. The resulting instance is simply Ai, Bi and we can continue recursively, getting Θ(i)
blocks. If n is the length (total number of characters) of Ai, we have i = Θ(log n) and the proof of
the lower bound is complete.

6 Upper Bound for Greedy on 2-MCSP

In this section we prove that on 2-MCSP instances Greedy’s approximation ratio is at most 3. In
the next section we will give a matching lower bound.

Consider two arbitrary, but fixed, related strings A = a1a2 · · · an and B = b1b2 · · · bn in which
each letter appears at most twice. Let π be a minimum common partition of A,B, and denote by
g the number of steps of Greedy on A,B. For each t = 0, . . . , g, let St be the block marked by
Greedy in step t, and let ρt be the common reference partition of A,B at step t, as defined in
Section 2. In particular, ρ0 = π, and ρg is the is the final partition computed by Greedy.

Our proof is based on amortized analysis. We show how to define a potential Φt of ρt that has
the following three properties:

(P1) Φ0 ≤ 3 ·#blocks(ρ0) + 1,

(P2) Φt ≤ Φt−1 for t = 1, . . . , g, and

(P3) Φg ≥ #blocks(ρg) + 1.

If such Φt’s exist, then, using the optimality of ρ0 and conditions (P1), (P2), (P3), we obtain
#blocks(ρg) ≤ Φg − 1 ≤ Φ0 − 1 ≤ 3 · #blocks(ρ0) = 3 · #blocks(π) = 3 · dist(A,B), and the 3-
approximation of Greedy follows immediately. It remains to define the potential and show that
it has the desired properties.

Classification of breaks. Consider some step t. A break i, i + 1 of ρt is called original if it is
also a break of π; otherwise we call this break induced. Letters inside blocks marked by Greedy
are called marked. For any letter ai in A, we say that ai is unique in ρt if ai is not marked, and
there is no other non-marked appearance of ai in A.

Suppose that i, i+1 is an original break in ρt. We say that this break is left-mature (resp. right-
mature) if ai (resp. ai+1) is unique; otherwise it is called left-immature (resp. right-immature).
If a break is both left- and right-mature, we call it mature. If it is neither, we call it immature.
The intuition behind these terms is that, if, say, a break i, i + 1 is left-mature, then the value of
ρt(i) does not change anymore as t grows. We extend this terminology to the endpoints of A. For
the left endpoint, if a1 is unique in ρt we call this endpoint right-mature, otherwise it is immature.
Analogous definitions apply to the right endpoint.

Claim C: For any step t and an unmarked position i, if ρt(i) 6= π(i) then ai is unique.
Consider the first t for which ρt(i) 6= π(i). Then, by the definition of ρt, St must contain the

other occurrence of ai, and thus in ρt this other occurrence is marked. We conclude that ai is
unique in ρt.

This fact immediately yields the following:

Claim D: For any step t, if a break i, i + 1 of ρt is induced, then one of symbols ai, ai+1 must be
either marked or unique.

10

Claim E: Suppose that SA
t contains a unique letter that belongs to a block R of ρt−1. Then the

whole block R is contained in SA
t .

This fact follows directly from the definition of the algorithm, for Greedy will match this
unique letter with its occurrence in B and then extend the match to at least the boundaries of R.

Potential. We first assign potentials to the breaks and endpoints of ρt:

(φ1) Each induced break has potential 1.

(φ2) The potential of an original break depends on the degree of maturity. If a break is immature
it has potential 3. If it is left-mature and right-immature, or vice versa, it has potential 2. If
it is mature, it has potential 1.

(φ3) The left endpoint has potential 2 or 1, depending on whether it is right-immature or right-
mature, respectively. The potential of the right endpoint is defined in a symmetric fashion.

The potential Φt of ρt is defined as the sum of the potentials of the breaks and endpoints in
ρt. For t = 0, all breaks in π have potential at most 3 and the endpoints have potential at most 2,
yielding Φ0 ≤ 3 ·#breaks(π)+4 = 3 ·#blocks(π)+1. For t = g, all letters in A are marked, therefore
the potentials of all breaks and endpoints are equal 1 and Φg ≥ #breaks(ρg) + 2 = #blocks(ρg) + 1.
Properties (P1) and (P3) hold.

Proof of property (P2). Some breaks i, i+1 of ρt−1 could disappear in ρt, either because they
are inside SA

t , or because after changing the values of ρt−1, we might have ρt(i + 1) = ρt(i) + 1.
These changes do not increase the potential. The potentials of the breaks of ρt−1 that remain in
ρt also do not increase.

Thus only the new breaks (i.e., those in ρt but not in ρt−1) can contribute to the increase of
the potential. According to Lemma 2.2, there are three types of new breaks in ρt:

(B0) Breaks induced by the endpoints of SA
t .

(B1) Breaks induced by the breaks of ρt−1 inside SA
t .

(B2) Breaks induced by the endpoints of SB
t .

All these new breaks have potential 1 in ρt. We consider the three types of breaks separately.
We show that with each new break we can associate some old break (or an endpoint) of ρt−1 that
either disappears in ρt or whose potential decreases. This mapping is not necessarily one-to-one.
However, the number of new breaks associated with each old break does not exceed the decrease
of the potential of this old break. This way we can “pay” for the potential of the new breaks.
Breaks of type (B0). Each such new break is inside some block of ρt−1. If there are no such breaks,
we are done. If there is one new break of type (B0), then there must be at least one break of ρt−1

inside SA
t (because SA

t was chosen greedily), and we use one unit of its potential to pay for the new
break.

If there are two new breaks of type (B0), we distinguish two subcases. If SA
t contains two breaks

of ρt−1 inside it, then we use one unit of each of these breaks’ potentials to pay for the endpoints
of SA

t . If SA
t contains just one break inside, say j, j + 1, then this break is immature, for otherwise

SA
t would have to contain a whole block, by Claim E, contradicting the assumptions of this case

(as then SA
t would also have to contain the two old breaks adjacent to this block). Then j, j + 1

11

S B

UX

l’ j’

t−1ρρt−1

S A
i

U X
jl

ππ

Figure 2: Charging of new breaks of type (B2)

has potential 3 in ρt−1, and we use two units from this potential to pay for the two breaks of type
(B0).

Before proceeding further, we stress that at this point all breaks of ρt−1 inside SA
t whose previous

potential was 2 or 3 still have at least one unit of potential left.
Breaks of type (B1). Let i, i + 1 be a new break of type (B1). Since each letter appears in A at
most twice, the exponent λ in the break classification in Lemma 2.2, Case (B1), must be equal 1.
This means that j, j + 1 is a break of ρt−1, where j = δ−1ρt−1(i) (and j + 1 = δ−1ρt−1(i + 1)) and
j, j + 1 ∈ SA

t . Further, aj and aj+1 are not unique, so j, j + 1 is an immature break, and thus it
has potential 3. By the previous paragraph, at least one unit of this potential is still unused, so we
can use it to pay for the new break i, i + 1.

In the previous paragraph we used only the potentials of immature breaks contained in SA
t . So

the breaks whose previous potential was 2 (left mature and right immature, or vice versa) still have
one unit of potential left.
Breaks of type (B2). The argument for these breaks is more tedious. Suppose that the right
endpoint of SB

t induces a break i, i + 1 in ρt. Let X be a block of ρt−1 that contains i, i + 1, and
let j + 1 be the first position in XA. The situation is depicted in Figure 2. (Block XA can appear
before or after SA.) Assume that j + 1 6= 1, that is, XA is not the first block in A (if XA is the
first block, then the left endpoint of A is right-immature and we charge the new break i, i + 1 to
this endpoint of A). We distinguish two cases.
Subcase B2.1: j, j + 1 is an original break. Since aj+1 is not unique, j, j + 1 is a right-immature
break in ρt−1. This break becomes right-mature in ρt, its potential decreases by 1, and we use this
unit of the potential to pay for the new break i, i + 1.
Subcase B2.2: j, j +1 is an induced break. This case is harder, because the potential of j, j +1 will
not decrease in step t. We are going to find an original, left-mature right-immature break l, l + 1
in SA. By the earlier discussion, one unit of potential of such a break can be used to pay for the
new break i, i + 1.

Let l = π−1(ρt−1(j)). (Note that the assumption of the case implies t ≥ 2.) By the definition of
j, by the fact that j, j +1 is an induced break, and since aj+1 is not unique (and thus ρt−1(j +1) =
π(j + 1)), we have π(j) ∈ SB. That is, one of the occurrences of the letter aj in the string B is in
the block SB. The index l specifies the position of the other occurrence of the letter aj in A, and
since SA and SB contain the same letters, we have l ∈ SA. Since π(j) is not the last (rightmost)
letter in SB, we have also l + 1 ∈ SA.

12

Claim F: l, l + 1 is an original break.
Let UA be the block of ρt−1 to the left of XA and let j′ = ρt−1(j), l′ = π(j). In some previous

step Greedy matched (marked) UA with UB, and did not extend this match to aj+1. There could
be three reasons for this: either j′ = n, or aj+1 6= bj′+1, or the block to the right of UB had already
been marked. If j′ = n, Claim F is trivial. If aj+1 6= bj′+1, then, since al+1 = bl′+1 = aj+1, we have
al+1 6= bj′+1 and the claim follows. Finally, suppose that the block to the right of UB is marked.
Then, since there are still two unmarked copies of the letter aj+1 in A, we have bj′+1 6= aj+1 and
the previous argument applies. Claim F is thus proven.

By Claim F, l, l+1 is an original break. Since al+1 = aj+1, this break is right-immature in ρt−1.
Further, since al = aj and aj is marked, this break is also left-mature. Therefore its potential in
ρt−1 was 2, and we still have one unit of its potential left to pay for the new break i, i + 1.

We have shown how to charge the break of type (B2) induced by the right endpoint of SB
t to

some break whose potential decreases. In the same way we can charge the break of type (B2) (if
any) induced by the left endpoint of SB

t . It remains to show that the charges generated from these
two cases do not conflict.

Indeed, for both endpoints, in case (B2.1) we charge to breaks outside SA, while in case (B2.2)
to breaks inside SA. In case (B2.1), the right endpoint is charged to j, j + 1, which is then an
original right-immature break. It actually can happen that the left endpoint is charged to the same
break j, j + 1, but if so, j, j + 1 would be also left-immature and start with potential 3. In case
(B2.2), to charge the right endpoint, we identify some right-immature and left-mature break inside
SA, while for the left endpoint we would find a right-mature and left-immature break inside SA.
Thus no conflicts occur.

The above argument shows that we can pay for the potentials of the new breaks in ρt using the
decrease of the potentials of some breaks of ρt−1. This completes the proof of property (P2).

Summarizing, we obtain the upper bound of 3 for 2-MCSP, the upper bound of Theorem 1.1(c).

7 Lower Bound for Greedy on 2-MCSP

In this section we prove that the approximation ratio of Greedy on 2-MCSP instances is not better
than 3, matching the upper bound of the previous section.

For a large even integer l, let A′ = a1a2 . . . al2 , where a1, a2, · · · , al2 are l2 distinct letters. We
also define a string B′ = b1b2 . . . bl2 , where the letters bi are determined as follows. For i 6≡ 1
(mod l + 1), let bi = ai. For all i ≡ 1 (mod l + 1), let bi be new letters, distinct from each other
and from all aj . Define two more strings

A′′ = al2−l+2al2−l+3 . . . al2 . . . al+1al+2 . . . a2l−1 a2a3 . . . al a1

B′′ = bl2 bl2−l+1bl2−l+2 . . . bl2−1 . . . blbl+1 . . . b2l−2 b1b2 . . . bl−1

Informally, A′ and B′ consist of the same l − 1 substrings of length l, separated (and ended) by l
delimiters, namely by the letters a1, al+2, a2l+3, ... , al2 in A′, and b1, bl+2, b2l+3, ... , bl2 in B′.
String A′′ is obtained from A′ by cutting it into a singleton a1 and l + 1 substrings of length l− 1,
each that we refer to as A-slices, and concatenating them in reverse order. Similarly, B′′ consists of
a singleton bl2 and l +1 B-slices, concatenated in reverse order. Note that the A-slices and B-slices
are not aligned with respect to each other.

For example, for l = 4, using notation ȧi and äi to distinguish the delimiters from other letters,
we have

A′ = ȧ01 a02 a03 a04 a05 ȧ06 a07 a08 a09 a10 ȧ11 a12 a13 a14 a15 ȧ16

13

B′ = ä01 a02 a03 a04 a05 ä06 a07 a08 a09 a10 ä11 a12 a13 a14 a15 ä16

A′′ = a14 a15 ȧ16 ȧ11 a12 a13 a08 a09 a10 a05 ȧ06 a07 a02 a03 a04 ȧ01

B′′ = ä16 a13 a14 a15 a10 ä11 a12 a07 a08 a09 a04 a05 ä06 ä01 a02 a03

In this example, the A-slices are a02a03a04, a05ȧ06a07, etc, and the B-slices are ä01a02a03, a04a05ä06,
etc.

To prove the lower bound, we consider the instance A,B where

A = A′$#B′′ and B = B′#$A′′,

where $ and # are two more new letters. As no letter occurs more than twice in A and in B, this
is indeed an instance of 2-MCSP.

To obtain a partition, we can match the A-slices in A′ and A′′, and the B-slices in B′ and B′′

(as indicated by spaces in the definition of A′′ and B′′), and we will be left with 4 singletons a1,
bl2 , $, and #. This shows that dist(A,B) ≤ 2(l + 1) + 4 ≤ 2l + 6.

Now we estimate the number of blocks in the partition computed by Greedy. A′ and B′ have
l − 1 common substrings of length l, namely the substrings between the delimiter symbols. We
claim that A and B have no other common substrings of length l. Clearly, by the placement of the
delimiters, A′ and B′ have no other common substrings of length l. The longest common substring
of A′ and A′′ as well as of B′ and B′′ has length l− 1, because the A-slices and B-slices have length
l − 1 and are listed in reverse order. The strings A′′ and B′′ also have no common substring of
length l, since their corresponding slices are not aligned. By the choice of the boundaries $# and
#$ in the middle of A and B, there is no common substring (of length more than 1) that overlaps
these boundaries.

Consequently, Greedy starts by matching the l− 1 common substrings of A′ and B′ of length
l. This gives the first l − 1 blocks. After this, each letter occurs in the non-marked parts of A′,
B′ exactly once, and thus the bijection between the non-marked letters is unique. It remains to
estimate the number of blocks (or breaks) in this bijection.

The remaining l delimiters ai in A′, as well as the two symbols $ and #, will form another l +2
single-letter blocks in the final partition.

We now bound the number of breaks in B′′. Each delimiter bi, for i ≡ 1 (mod l + 1) will form
a single-letter block (because of the initial matching of Greedy), and thus we will have a break
to the left and right of it in B′′ (except for bl2 which appears at the beginning of B′′); this gives
2l − O(1) breaks. There is also a break before and after each letter bi, i ≡ 1 (mod l − 1) as for
such i, bibi+1 is a consecutive pair in B′′ but the possibly matching pair aiai+1 is not consecutive in
A′′; similarly ai−1ai is consecutive in A′′ but bi−1bi is not consecutive in B′′. This gives 2l − O(1)
breaks. Finally, since l − 1 and l + 1 are relatively prime, only O(1) breaks may be counted twice,
by the Chinese remainder theorem.

Altogether, Greedy produces 2l + 1 blocks of A′$# and 4l − O(1) blocks of B′′, for the total
of 6l−O(1) blocks. Since the optimal partition has at most 2l + 6 blocks, the lower bound of 3 on
the approximation ratio follows by taking l arbitrarily large.

8 Final Comments

We have established that Greedy’s approximation ratio is O(n0.69), but not better than Ω(n0.43).
It would be interesting to determine the exact approximation ratio of this algorithm. In particular,
is it below, above, or equal to Θ(

√
n)? Also, we have observed a difference between the performance

14

of Greedy on 2-MCSP instances and 4-MCSP instances: Whereas the approximation ratio for 2-
MCSP is 3, for 4-MCSP it is not better than Ω(log n). The reason for this is, roughly, that for
2-MCSP every new cut (i.e., an induced cut) is adjacent to a unique letter and, since Greedy does
not make mistakes on unique letters, these new cuts do not induce any further cuts. However,
for k > 2, new cuts may induce yet more new cuts again. An intriguing question is whether for
4-MCSP the upper bound matches the Ω(log n) lower bound, or whether it is higher? The question
about the exact approximation ratio of Greedy for k-MCSP remains open even for k = 3.

References

[1] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, T. Jiang. Assignment of orthologous
genes via genome rearrangement. Submitted. 2004.

[2] G. Cormode, J.A. Muthukrishnan, The string edit distance matching with moves. Proc. 13th
Annual Symposium on Discrete Algorithms (SODA), pp. 667-676, 2002.

[3] A. Goldstein, P. Kolman, and J. Zheng: Minimum common string partitioning problem: Hard-
ness and approximations. Manuscript. 2004.

[4] J. B. Kruskal and D. Sankoff. An anthology of algorithms and concepts for sequence compari-
son. In Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence
Comparison, Edited by David Sankoff and Joseph B. Kruskal, Addison-Wesley. 1983.

[5] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals (in
Russian). Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.

[6] D. Lopresti, A. Tomkins. Block edit models for approximate string matching. Theoretical
Computer Science 181 (159–179) 1997.

[7] D. Shapira, J.A. Storer. Edit distance with move operations. Proc. 13th Annual Symposium
on Combinatorial Pattern Matching (CPM), pp. 85–98, 2002.

[8] W. F. Tichy. The string-to-string correction problem with block moves. ACM Trans. Computer
Systems 2 (309–321) 1984.

15

