
Petr Kolman Bernard Lidický
Jean-Sébastien Sereni

ON FAIR EDGE DELETION PROBLEMS

P. KOLMAN, B. LIDICKÝ, AND J.-S. SERENI

Abstract. In edge deletion problems, we are given a graph G and a graph
property π and the task is to find a subset of edges the deletion of which

results in a subgraph of G satisfying the property π. Typically the objective
is to minimize the total number of deleted edges while in less common fair

versions the objective is to minimize the maximum number of edges removed

from a single vertex. We focus on the minimum fair odd cycle transversal
(OCT) problem where the task is to make the graph bipartite; the problem is

closely related to improper colorings of graphs. Though the classical version

of the problem was diligently studied, the minimum fair version brings new
challenges. We describe a Θ(

√
n) approximation algorithm for general graphs

and an exact polynomial time algorithm for graphs of bounded treewidth.

Though there are several general frameworks (e.g., MSOL) for dealing with
optimization problems on graphs of bounded treewidth, the minimum fair

OCT does not seem to fit into any of them. Analogous results are proved for
minimum fair cut problem.

1. Introduction

Many problems in combinatorial optimization can be formulated as edge (or
node) deletion problems. Given a graph G = (V,E) and a graph property π (e.g., be-
ing a tree, a bipartite graph or a series-parallel graph), the problem is to find a
subset of edges the deletion of which results in a subgraph of G satisfying the prop-
erty π [31]. Typically, the objective function is to minimize the total number of
deleted edges. (Since many edge deletion problems are NP-complete [5, 31], finding
good approximation algorithms is an active and relevant area [2, 3].) We study edge
deletion problems under a different objective function: our goal is to minimize the
maximum number of edges removed from a single vertex (i.e., we want to minimize
the maximum degree in (V, F) where F is the set of deleted edges). As we shall
see, such an objective function has both a theoretical appeal and a relevance for
practical applications.

Lin and Sahni [26] coined the term fair edge deletion problems in a paper dealing
with the following problem: given an undirected graph G = (V,E), find a subset
F of edges such that (V,E \F) is connected and acyclic, and the maximum degree
of the graph (V, F) is as small as possible. They proved that the problem is NP-
complete. Surprisingly enough, this is one of the very rare edge deletion problems
studied with the aforementioned fair objective function.

We focus on the (minimum) fair odd cycle transversal problem. An odd cycle
transversal (OCT) of a graph G = (V,E) is a subset F ⊆ E of edges such that

Key words and phrases. odd cycle transversal, approximation algorithm, polynomial-time al-

gorithm, tree-width, linear programming, improper coloring, cut, fair objective function, dynamic

programming.

This research was partially supported by the grant GA ČR 201/09/0197.

1

2 KAM, KAM, AND KAM,CNRS

the graph (V,E \ F) is bipartite. The minimum OCT problem consists in finding
an OCT of minimum size. The minimum fair OCT, on the other hand, consists in
finding an OCT F such that the maximum degree of (V, F) is as small as possible.
Informally, instead of minimizing the total cost, we aim at minimizing the maximum
cost at a vertex. It is natural to ask whether the fair version substantially differs
from the usual version of the problem. To answer this, we first review some known
results about the minimum OCT problem and explain some links between the fair
OCT problem and graph coloring.

The minimum OCT problem is also known as the odd-cycle (edge) cover [25], as
the maximum cut problem and as the minimum uncut problem. The problem is NP-
hard for general graphs [17] but polynomial on planar graphs [23] and on graphs
with bounded tree-width [6]. Regarding approximations, there is an O(

√
log n)-

approximation [1] for the minimum uncut problem (i.e., we minimize the number
of removed edges) and a 0.879-approximation [18] for the maximum cut problem
(i.e., we maximize the number of edges that remain in the graph). In both cases,
the approximations are based on semidefinite relaxations of the problem considered.

Let us now underline the links between OCTs and improper colorings (also known
as defective colorings). An (`, k)-coloring of a graph G = (V,E) is a partition of
V into ` parts such that each part induces a subgraph of G with maximum degree
at most k. Note that a graph has a (2, k)-coloring if and only if the optimum
value of the minimum fair OCT problem is at most k. Improper coloring is a very
natural generalization of the usual notion of proper coloring, which is a core topic of
graph theory (in particular, an (`, 0)-coloring is just a proper `-coloring). Improper
colorings have been introduced and studied both as a theoretical notion [15, 22, 28,
29, 30] and as a tool to model practical problems, such as the telecommunication
problem proposed by the company Alcatel [20, 21, 24]. Among the numerous results
about improper colorings, let us point out that even for planar graphs, the (2, k)-
coloring problem is NP-complete [12, 16] and, thus, the minimum fair OCT is
NP-hard on planar graphs.

The substantial difference between the complexity of the fair and the usual ver-
sions of the OCT (cf. planar graphs) provides a momentum to study the fair OCT.
(For example, it is not clear whether the minimum fair OCT problem for bounded
tree-width graphs should be expected to be polynomial or NP-Complete.) Another
reason to study the fair OCT is the lack of algorithms for the (`, k)-coloring prob-
lems and, in particular, the (2, k)-coloring problem. Conditions on the girth of a
planar graph to ensure the existence of a (2, k)-coloring have been studied [22, 28],
as well as approximation algorithms for special classes of graphs [20, 24], however,
general approximation algorithms are missing.
New results. Our contributions are as follows. First, we use linear programming
to obtain an approximation algorithm of ratio Θ(

√
n) for graphs on n vertices and

we show that the bound on the performance of the algorithm is tight even for
planar graphs (Section 2). Remarkably, the integrality gap of the linear program
is Ω(n). Next, we provide a polynomial time algorithm to solve the minimum
fair OCT problem for series-parallel graphs (Subsection 3.1). Series-parallel graphs
have tree-width at most 2, and it turns out that it is possible to generalize our
approach to obtain an exact algorithm for bounded tree-width graphs; this is the
main result of the paper (Subsection 3.2).

ON FAIR EDGE DELETION PROBLEMS 3

Since there are dozens or even hundreds of papers describing polynomial time
algorithms for different problems on graphs of bounded treewidth, we feel obligated
to explain why we did write one more. A classical result of Courcelle [13] states that
every graph property that is expressible in Monadic Second Order Logic (MSOL)
can be solved in linear-time for graphs of bounded tree-width. Several frameworks
generalizing this results have been designed, such as the Extended MSOL [4] and
monadic second order evaluations [14]; other approaches yielding similar results
include, e.g., the predicate calculus [10], cf. [9]. To some extend, these results make
it possible to replace most of the specialized algorithms by a single general algorithm
(though, most likely, the performance of the general algorithm will fall short of the
performance of the specialized algorithms). It is straightforward to check that the
minimum OCT problem (i.e., the maximum cut problem) can be formulated in the
Extended MSOL and in the predicate calculus. Similarly, for an arbitrary but fixed
integer k, the question whether there exists an OCT F such that the maximum
degree of the graph (V, F) is at most k can be formulated in the same frameworks.
However, as far as we know, the fair problems that we study in this paper fail
to fall into any of these frameworks. This rises an entitling question, namely to
formally define a class of problems that contains the minimum fair OCT problem,
and are solvable in polynomial time for graphs of bounded tree-width. The question
is all the more tempting that the methods we use to obtain polynomial-time exact
algorithms are not far from standard technics; this may hint at the existence of a
formal framework tailored to express fair problems.
Minimum fair cut. As we also observe, all our results extend to the minimum
fair cut problem. Here, given a graph G = (V,E) and two vertices x, y ∈ V , the
problem consists in finding an x-y cut F ⊆ E such that the maximum degree of
(V, F) is as small as possible. Closely related is the matching cut problem. Is there
a cut F in G that is also a matching? Chvátal [11] proved that for general graphs,
the problem is NP-hard (cf. [27]); he did not use the name matching cut. For planar
graphs, Bonsma [8] described an exact polynomial time algorithm for the matching
cut. We describe a Θ(

√
n)-approximation algorithm for the minimum fair cut on

general graphs, an exact algorithm for series-parallel graphs and outline how to
generalize this algorithm for graphs of bounded tree-treewidth.
Notation. Given a graph G = (V,E) and a vertex v ∈ V , we let δ(v) be the set of
edges adjacent to v. If F ⊆ E, then degF (v) denotes the degree of v in the graph
(V, F) and ∆F the maximum degree in (V, F); we say that ∆F is the value of the
set F . For X ⊆ V , we define G[X] to be the subgraph of G induced by X.

2. Approximation Algorithm

Given a graph G = (V,E), let C be the set of all odd cycles (viewed as edge
sets). The minimum fair OCT problem can be formulated using integer linear
programming as follows.

min k subject to(1)
∀C ∈ C,

∑
e∈C xe ≥ 1

∀u ∈ V,
∑

e∈δ(v) xe ≤ k

∀e ∈ E, xe ∈ {0, 1}

In a linear programming relaxation, the last condition is replaced by xe ≥ 0.

4 KAM, KAM, AND KAM,CNRS

We pause to note that the number of inequalities in the linear program (LP)
may be exponential in the size of G, nevertheless, the LP is solvable in polynomial
time using the ellipsoid method (given a vector x, one can check whether there is
a violated inequality [19]).

We also notice that the integrality gap of the relaxation by itself is very large,
namely n: for odd n, consider a graph composed of a single cycle of length n. Then,
the fractional optimum is 2/n (for each edge we set xe = 1/n) while the integral
optimum is 1. We now combine the relaxation with a few observations to obtain
an O(

√
n)-approximation.

Solve the LP for the graph G = (V,E), and set F = {e ∈ E : xe ≥ 1/(4
√

n)} and
F ′ = E \F . Let H be the subset of edges of E that have both end degrees at most√

n+1 in (V,E \F), that is, H = {{u, v} ∈ E \F | degF ′(u) ≤
√

n+1, degF ′(v) ≤√
n + 1}. Let G′ = (V,E \ (F ∪H)).

Lemma 2.1. The graph G′ = (V,E \ (F ∪H)) is bipartite.

Proof. Suppose on the contrary that G′ contains an odd cycle, and let C be the
shortest of them. First, note that the length of C is at least 4

√
n + 1: since x is

a feasible solution of the LP for G′, every odd cycle of length at most 4
√

n in G′

contains an edge e with xe ≥ 1/(4
√

n).
Let D be the set of edges with exactly one endpoint in C; note that the only

edges with two endpoints in C are edges of the cycle. Since at least one of every
two successive nodes in C has at least

√
n + 2 neighbors and since at least

√
n of

these neighbors are outside C, the set D contains
√

n · 4
√

n/2 = 2n or more edges.
On the other hand, since C is the shortest odd cycle, every vertex outside C has
at most two neighbors in C. Hence, D contains strictly fewer than 2n edges, a
contradiction. ¤

Theorem 2.2. The above procedure computes an O(
√

n) approximation of the
minimum fair odd cycle transversal.

Proof. Let k̂ be the integral optimum and k̄ the fractional optimum (so k̄ ≤ k̂).
We assume that the input graph G is not bipartite, that is, k̂ ≥ 1. Then, for every
vertex u ∈ V the set H contains at most

√
n+1 edges adjacent to u. Moreover, for

every vertex u ∈ V the rounding procedure guarantees that the number of edges
from F adjacent to u is at most 4

√
n

∑
e∈δ(u) xe ≤ 4

√
nk̄. ¤

A simple example demonstrates that the bound on the approximation ratio of
the algorithm is tight even for planar (and series-parallel) graphs. Think about
a graph obtained from a cycle of length 2

√
n + 1 by replacing all edges but one

by
√

n/2 internally vertex disjoint paths of length two. The minimum value of an
OCT is one while the value of an OCT reported by the algorithm is

√
n.

We conclude this section with an observation that the integrality gap of the LP
is large even for planar (and series-parallel) graphs with large minimum degree.

Theorem 2.3. The integrality gap of the LP (1) for 2-connected planar (and series-
parallel) graphs with minimum degree

√
n + 1 is Ω(

√
n).

Proof. Let n be an integer such that
√

n is an integer. Consider
√

n vertices
v1, v2, . . . , v√n. For each i ∈ {1, 2, . . . ,

√
n − 1}, add

√
n parallel edges between

vi and vi+1, and subdivide each of these edges once. Thus, vi and vi+1 are linked
by

√
n internally disjoint paths P i

1, . . . , P
i√

n
of length 2. Last, add an edge be-

tween v√n and vi for every i ∈ {1, . . . , d
√

n/2e}. Let G = (V,E) be the obtained

ON FAIR EDGE DELETION PROBLEMS 5

graph. Thus, G is a planar graph with n vertices and maximum degree 2
√

n + 1.
Further, every odd cycle of G contains the vertex v√n and has length at least
2 · b

√
n/2c + 1. Thus, setting xe = 1/

√
n for every edge e of G yields a feasible

fractional solution with objective value 2 + 1√
n
. However, the integral optimum

is d
√

n/2e. To see this, let F be an OCT of G. If all the edges {v√n, vi} for
i ∈ {1, . . . , d

√
n/2e} belong to F , then the degree of v√n in (V, F) is at least

d
√

n/2e, as wanted. So, assume that there exists i ∈ {1, . . . , d
√

n/2e} such that
{v√n, vi} /∈ F . Then, observe that there must exist j ∈ {i, . . . ,

√
n} such that F

contains at least one edge of each of the paths P j
s . (For otherwise there would exist

an odd cycle vi, yi, vi+1, yi+1, . . . , v√n−1, y
√

n−1, v
√

n in (V,E \F), where yt belongs
to P t

s for some integer s.) Consequently, one of vj and vj+1 has degree at least
d
√

n/2e in the graph (V, F). This concludes the proof. ¤
Minimum Fair Cut Problem. The same approach yields a Θ(

√
n) approximation

algorithm for the minimum fair cut problem; the difference is that in the linear
program (1) we replace the set C of all odd cycles by the set of all x-y-paths. For
the lack of space we omit further details.

3. Exact Algorithms

Given a graph G = (V,E) and a collection H of subgraphs of G, an H -
transversal (or a transversal of H) is a set F ⊆ E such that every subgraph H ∈ H
contains an edge in F . Thus, an odd-cycle transversal of G is an H -transversal
where H is the collection of all odd cycles of G.

Our goal is to present polynomial-time algorithms to solve the minimum fair
OCT and the minimum fair cut problems for bounded tree-width graphs. As an
introduction to the method used, we first focus on series-parallel graphs (which
form a subclass of the class of graphs with tree-width at most two). Then, we
present the algorithm for graphs of tree-width at most τ , for any fixed integer τ .

Before doing so, let us note that the minimum value of an OCT problem is not
bounded by any function of the tree-width. To this end, consider again the graph
G described in proof of Theorem 2.3 and note that G is a series parallel graph (and
thus, has tree-width at most two) and the minimum value of an OCT is

√
n/2. An

analogous observation holds for the minimum fair x-y cut problem.

3.1. Series-Parallel Graphs. A graph G with two dedicated and distinct nodes
s, t ∈ V , the source and the sink, is series-parallel if and only if one of the following
holds:

1 (Base case): G consists only of the nodes s, t and the edge {s, t}.
2 (Parallel decomposition): G can be obtained from two series-parallel graphs

G1 and G2, with source-sink pairs s1, t1 and s2, t2, by taking the disjoint
union of G1 and G2 and identifying s1 with s2 and t1 with t2, which gives
the source s and sink t of G, respectively.

3 (Series decomposition): G is obtained analogously to the parallel composi-
tion from two series-parallel graphs G1 and G2, except that in this case t1
is identified with s2 and s = s1, t = t2.

When talking about a series-parallel graph G, we always assume that s and t are
the source and sink nodes of G; the nodes s and t are also called terminals of G.

6 KAM, KAM, AND KAM,CNRS

We define a binary operation ⊕ over family of collections of subsets of E by
setting A⊕ B = {F ′ ∪ F ′′ | F ′ ∈ A, F ′′ ∈ B}. The precedence of ⊕ is higher than
the precedence of ∪.

A path is odd if it has an odd number of edges, and even otherwise. Apart
from transversals for odd-cycles, we use transversals for odd and even s-t paths. In
particular, for a series parallel graph G with terminals s and t, we let

• TC(G) be the set of all odd-cycle transversals in G,
• TO(G) be the set of all transversals of odd-cycles and odd s-t paths in G,
• TE(G) be the set of all transversals of odd-cycles and even s-t paths in G,
• TA(G) be the set of all transversals of odd-cycles and all s-t paths in G.

The definitions of the series and parallel compositions of two graphs yield recur-
sive relations on the sets of transversals, as we observe in the next lemma.

Lemma 3.1. For a graph G obtained by the parallel composition from G1 and G2,
the following equalities hold.

TC(G) = TA(G1)⊕ TC(G2) ∪ TC(G1)⊕ TA(G2) ∪ TO(G1)⊕ TO(G2) ∪ TE(G1)⊕ TE(G2) ,

TO(G) = TO(G1)⊕ TO(G2) ,

TE(G) = TE(G1)⊕ TE(G2) ,

TA(G) = TA(G1)⊕ TA(G2) .(2)

For a graph G obtained by the series composition from G1 and G2, the following
equalities hold.

TC(G) = TC(G1)⊕ TC(G2) ,

TO(G) = TA(G1)⊕ TC(G2) ∪ TC(G1)⊕ TA(G2) ∪ TO(G1)⊕ TO(G2) ∪ TE(G1)⊕ TE(G2) ,

TE(G) = TA(G1)⊕ TC(G2) ∪ TC(G1)⊕ TA(G2) ∪ TO(G1)⊕ TE(G2) ∪ TE(G1)⊕ TO(G2) ,

TA(G) = TA(G1)⊕ TC(G2) ∪ TC(G1)⊕ TA(G2) .(3)

Proof. The equalities follow from the recursive structure of series-parallel graphs.
Think about the first equality in (2). There are three types of odd cycles in G.
Cycles contained in G1, cycles contained in G2 and cycles going through both G1

and G2. To destroy the odd cycles of the third type, we have to do destroy all s-t-
paths in G1, or all s-t-paths in G2, or all odd s-t-paths in G1 and all odd s-t-paths
in G2, or all even s-t-paths in G1 and all even s-t-paths in G2. The equality follows.
An analogous reasoning yields the other equalities. ¤

We solve the minimum fair odd-cycle transversal using dynamic programming.
We heavily exploit the recursive structure of series-parallel graphs which implies the
recursive structure of the transversals captured in the previous lemma. To simplify
the exposition, we introduce some additional notation. For a graph G = (V,E), we
let ∆ be the maximum degree of G. Recall that degF (v) is the degree of v ∈ V in
the graph (V, F). Hence, the minimum fair odd-cycle transversal problem amounts
to compute min{∆F : F ∈ TC(G)}, for a given graph G. Recall that the value of
an odd-cycle transversal F is defined as ∆F .

As tools for the dynamic programming we define, for a series parallel graph G,
four matrices C, E, O, A, each of size (∆+1)× (∆+1). For (i, j) ∈ {0, 1, . . . ,∆}2,

• C(i, j) = min{∆F : F ∈ TC , degF (s) ≤ i, degF (t) ≤ j},
• O(i, j) = min{∆F : F ∈ TO, degF (s) ≤ i, degF (t) ≤ j},
• E(i, j) = min{∆F : F ∈ TE , degF (s) ≤ i, degF (t) ≤ j},
• A(i, j) = min{∆F : F ∈ TA, degF (s) ≤ i, degF (t) ≤ j},

ON FAIR EDGE DELETION PROBLEMS 7

we assume that the minimum over an empty set is ∞. In other words, C(i, j) is
the minimum value of an odd-cycle transversal that uses at most i edges adjacent
to s and j edges adjacent to t; if no such transversal exists, then C(i, j) = ∞.
The meaning of entries in other matrices is analogous. For notational convenience,
we often use C(G, i, j) to mean the entry C(i, j) of the matrix associated with the
graph G; analogous conventions are used for the matrices O, E and A, too.

Lemma 3.2. Given a series-parallel graph G, the matrices C, O, E and A can be
computed in polynomial time.

Proof. Exploiting Lemma 3.1, we compute the entries recursively. To give an ex-
ample, let G be a series-parallel graph obtained by the parallel composition of G1

and G2, where Gi has source and sink si and ti, respectively. Then,

C(G, i, j) = min{∆F1∪F2 : (F1, F2) ∈ TA(G1)× TC(G2) ∪ TC(G1)× TA(G2)

∪ TO(G1)× TO(G2) ∪ TE(G1)× TE(G2),

degF1
(s1) + degF2

(s2) ≤ i, degF1
(t1) + degF2

(t2) ≤ j} .

Note that with matrices C, O, E and A for the graphs G1 and G2, the formula (4)
provides an efficient way of computing the value C(G, i, j) (in time O(i2j2)). Since
calculating the values for the simplest series-parallel graph (i.e., two nodes con-
nected by an edge) is trivial, it is possible to compute the matrices C, O, E and A
for the given series-parallel graph G in polynomial time. ¤

As C(G, ∆, ∆) is the value of a minimum fair odd-cycle transversal in G, we
obtain the following theorem.

Theorem 3.3. The minimum fair odd-cycle transversal in series-parallel graphs
can be computed in polynomial time.

Minimum Fair Cut Problem. An algorithm solving the minimum fair cut prob-
lem on series parallel graphs can be obtained by a similar approach. Let G = (V,E)
be a series-parallel graph with two terminal nodes s and t and let x 6= y be two
nodes from V . For u, v ∈ V , we define Pu,v to be the set of all paths between u
and v. We work with a number of different transversals.

• T (G, x, y) is the set of all transversals of Px,y,
• Ta(G, x, y) is the set of all transversals of Px,y ∪ Px,s ∪ Py,s ∪ Px,t ∪ Py,t,
• Ts(G, x, y) is the set of all transversals of Px,y ∪ Px,s ∪ Py,s,
• Tt(G, x, y) is the set of all transversals of Px,y ∪ Px,t ∪ Py,t,
• Tm(G, x, y) is the set of all transversals of Px,y ∪ Px,s ∪ Py,t,
• Tb(G, x, y) is the set of all transversals of Px,y ∪ Px,s,
• Tc(G, x, y) is the set of all transversals of Px,y ∪ Px,t,
• Td(G, x, y) is the set of all transversals of Px,y ∪ Px,s ∪ Px,t,
• Ta(G, x) is the set of all transversals of Px,s ∪ Px,t,
• Ts(G, x) is the set of all transversals of Px,s,
• Tt(G, x) is the set of all transversals of Px,t,
• Tb(G, x) is the set of all transversals of Px,s ∪ Px,t ∪ Ps,t,
• Tc(G, x) is the set of all transversals of Px,s ∪ Ps,t,
• Td(G, x) is the set of all transversals of Px,t ∪ Ps,t,
• T (G) is the set of all transversals of Ps,t.

For the forthcoming exposition, it is convenient to distinguish four cases, accord-
ing to the structure of G and the location of x and y in G.

8 KAM, KAM, AND KAM,CNRS

Case 1. The graph G = (V,E) is obtained by the parallel composition of graphs
G1 = (V1, E1), G2 = (V2, E2), and x ∈ V1 and y ∈ V2.
Case 2. The graph G = (V,E) is obtained by the parallel composition of graphs
G1 = (V1, E1), G2 = (V2, E2), and x, y ∈ V1.
Case 3. The graph G = (V,E) is obtained by the series composition of graphs
G1 = (V1, E1), G2 = (V2, E2), and x ∈ V1 and y ∈ V2.
Case 4. The graph G = (V,E) is obtained by the series composition of graphs
G1 = (V1, E1), G2 = (V2, E2), and x, y ∈ V1.

Without loss of generality we assume that these four cases cover all possible
combinations of the structure of G and the location of x and y in G. In a similar
way as for the minimum fair odd-cycles transversal problem, for each of the four
cases, a set of equations describes the relations between the transversals in question.
The equations follow from a careful case-distinction and elementary arguments; we
omit the technical details.

Lemma 3.4. The following equations hold.
For cases 1 and 2.

Ta(G, x) = Ta(G1, x),

Ts(G, x) = Ta(G1, x) ∪ Ts(G1, x)⊕ T (G2),

Tt(G, x) = Ta(G1, x) ∪ Tt(G1, x)⊕ T (G2),

Tb(G, x) = Tb(G1, x)⊕ T (G2),

Tc(G, x) = Tc(G1, x)⊕ T (G2),

Td(G, x) = Td(G1, x)⊕ T (G2),

T (G) = T (G1)⊕ T (G2).

For case 1.

T (G, x, y) = Ta(G1, x) ∪ Ta(G2, y) ∪ Ts(G1, x)⊕ Tt(G2, y) ∪ Tt(G1, x)⊕ Ts(G2, y),

Ta(G, x, y) = Ta(G1, x)⊕ Ta(G2, y),

Ts(G, x, y) = Ts(G1, x)⊕ Ta(G2, y) ∪ Ta(G1, x)⊕ Tt(G2, y),

Tt(G, x, y) = Tt(G1, x)⊕ Ta(G2, y) ∪ Ta(G1, x)⊕ Tt(G2, y),

Tm(G, x, y) = Ts(G1, x)⊕ Tt(G2, y),

Tb(G, x, y) = Ta(G1, x) ∪ (Ts(G1, x)⊕ Tt(G2, y),

Tc(G, x, y) = Ta(G1, x) ∪ (Tt(G1, x)⊕ Ts(G2, y),

Td(G, x, y) = Ta(G1, x).

For case 2.

T (G, x, y) = T (G1, x, y)⊕ T (G2) ∪ Ts(G1, x, y) ∪ Tt(G1, x, y) ∪ Tm(G1, x, y) ∪ Tn(G1, x, y),

Ta(G, x, y) = Ta(G1, x, y),

Ts(G, x, y) = Ts(G1, x, y)⊕ T (G2) ∪ Ta(G1, x, y),

Tt(G, x, y) = Tt(G1, x, y)⊕ T (G2), Ta(G1, x, y),

Tm(G, x, y) = Tm(G1, x, y)⊕ T (G2), Ta(G1, x, y),

Tb(G, x, y) = Tb(G1, x, y)⊕ T (G2), Td(G1, x, y),

Tc(G, x, y) = Tc(G1, x, y)⊕ T (G2), Td(G1, y, x),

Td(G, x, y) = Td(G1, x, y).

ON FAIR EDGE DELETION PROBLEMS 9

For cases 3 and 4.

Ta(G, x) = Ta(G1, x) ∪ Ts(G1, x)⊕ T (G2),

Ts(G, x) = Ts(G1, x, y),

Tt(G, x) = Tt(G1, x) ∪ T (G2),

Tb(G, x) = Tb(G1, x) ∪ Ts(G1, x)⊕ T (G2),

Tc(G, x) = Tc(G1, x) ∪ Ts(G1, x)⊕ T (G2),

Td(G, x) = Td(G1, x) ∪ Tt(G1, x)⊕ T (G2),

T (G) = T (G1) ∪ T (G2).

For case 3.

T (G, x, y) = Tt(G1, x) ∪ Ts(G2, y),

Ta(G, x, y) = Tb(G1, x)⊕ Tt(G2, y) ∪ Ts(G1, x)⊕ Tb(G2, y) ∪
Tc(G1, x)⊕ Td(G2, y) ∪ Ta(G1, x)⊕ Ta(G2, y),

Ts(G, x, y) = Ts(G1, x)⊕ Ts(G2, y) ∪ Tc(G1, x),

Tt(G, x, y) = Tt(G1, x)⊕ Tt(G2, y) ∪ Td(G2, y),

Tm(G, x, y) = Ta(G1, x)⊕ Tt(G2, y) ∪ Ts(G1, x)⊕ Ta(G2, y),

Tb(G, x, y) = Ta(G1, x) ∪ Ts(G1, x)⊕ Ts(G2, y),

Tc(G, x, y) = Tt(G1, x) ∪ Tc(G2, y),

Td(G, x, y) = Ta(G1, x) ∪ Ts(G1, x)⊕ Tc(G2, y).

For case 4.

T (G, x, y) = T (G1, x, y),

Ta(G, x, y) = Ta(G1, x, y) ∪ Ts(G1, x, y)⊕ T (G2),

Ts(G, x, y) = Ts(G1, x),

Tt(G, x, y) = Tt(G1, x, y) ∪ T (G1, x, y)⊕ T (G2),

Tm(G, x, y) = Tm(G1, x, y) ∪ Tc(G1, x, y)⊕ T (G2),

Tb(G, x, y) = Tb(G1, x, y),

Tc(G, x, y) = Tc(G1, x, y) ∪ T (G1, x, y)⊕ T (G2),

Td(G, x, y) = Td(G1, x, y) ∪ Tb(G1, x)⊕ T (G2).

�

Analogously to the odd-cycle transversal problem, with a series-parallel graph G
and each of the set of transversals in question, we associate a square matrix of size
(∆ + 1) × (∆ + 1). For a series-parallel graph G with source s and sink t and set
of transversals T ′, we define the entry (i, j) of the matrix MT ′ as MT ′(G, i, j) =
min{∆F : F ∈ T ′, degF (s) ≤ i, degF (t) ≤ j}. The proof of the following lemma
goes along the same lines as the proof of Lemma 3.2. As the entry MT (G)(G, ∆, ∆)
contains the value of the minimum fair x-y cut in G, we immediately obtain the
main theorem.

Lemma 3.5. Given a series-parallel graph G, the matrices associated with the sets
of transversals can be computed in polynomial time. ¤

Theorem 3.6. Given a series-parallel graph with two distinguished nodes x and y,
the minimum fair x-y-cut can be computed in polynomial time. ¤

10 KAM, KAM, AND KAM,CNRS

3.2. Graphs with Bounded Tree-Width. The method described in this section
exploits a special type of tree decomposition, namely a nice tree decomposition. Let
us just recall that in a nice tree decomposition there are four types of nodes: leaf,
join, introduce and forget nodes. The leaf nodes are leaves in the tree, the join
nodes are inner nodes with two children and the introduce and forget nodes are
inner nodes with one child. We refer to the survey by Bodlaender and Koster [7]
for further exposition on this topic.

Given a graph G = (V,E), assume that a subset S = {v1, . . . , vs} ⊆ V is a vertex
separator of G; the bags from a nice tree decomposition of G will be used as the
vertex separators. We let (VL, VR) be a partition of V \ S such that there are no
edges between VL and VR in G; the set VL is called the left part of G and VR the
right part of G. Let GL = G[VL ∪S] and GR = G[VR ∪S], let ES = E ∩S×S. For
every two distinct vertices x, y ∈ S, we define

• PG,O
x,y to be the set of all odd x-y-paths in G,

• PG,E
x,y to be the set of all even x-y-paths in G,

• CG to be the set of all odd cycles in G.
Then we define a collection of sets

SG = {CG} ∪
⋃

x 6=y∈S

{PG,O
x,y , PG,E

x,y } .

For every R ⊆ SG, we let T G
R be the set of all transversals of the paths and cycles

in
⋃

P∈R P in the graph G.

Lemma 3.7. Let G = (V,E) be a graph and S = {v1, . . . , vs} ⊆ V a vertex
separator of G. For every R ⊆ SG, there exist sets R1, . . . ,Rk ⊆ SGL and sets
R′

1, . . . ,R′
k ⊆ SGR such that

T G
R =

k⋃
i=1

TRi ⊕ TR′
i
.

¤

The proof is similar to the proofs of Lemma 3.1 and Lemma 3.4 for series-parallel
graphs; we omit it.

As in the previous section, a polynomial algorithm does not have time to examine
all transversals of CG or the other sets. Instead, for each set of transversals T G

R
we store some information about the most relevant transversals. For every subset
R ⊆ SG, every s-tuple (d1, d2, . . . , ds) ∈ {0, 1, . . . ,∆}s and every E′

S ⊆ ES , we set

MG
R(d1, d2, . . . , ds, E

′
S) = min{∆F : F ∈ T G

R , F∩S × S = E′
S , ∀1 ≤ i ≤ s, δF (vi) ≤ di} .

In words, MG
R(d1, d2, . . . , ds, E

′
S) is the minimum value of a transversal of

⋃
P∈R P

with the property that on S it coincides with E′
S , and for each vi ∈ S, the transversal

uses at most di edges adjacent to vi. We let MG
R be the whole (s + 1)-dimensional

matrix; in total there are 2|S
G| such matrices associated with the graph G and the

separator S, each of size (∆ + 1)s · 2|ES |.
The next lemma follows from Lemma 3.7. The key observation is that the size

of the set SG is bounded by O(2τ).

Lemma 3.8. Assume that we have a nice tree decomposition T of a graph G with
tree-width τ = O(1). Let i be a join node in T with a bag S and with children GL

and GR, and assume that we have the matrices MGL

R′ and MGR

R′′ for every subset

ON FAIR EDGE DELETION PROBLEMS 11

R′ ⊆ SGL and R′′ ⊆ SGR . Then, it is possible to calculate all the matrices MG
R

for R ⊆ SG, in polynomial time. ¤

Analogous statements hold for all other types of nodes (i.e., leaf node, intro-
duce node and forget node) in the nice tree decomposition of G, yielding the main
theorem.

Theorem 3.9. The minimum fair odd-cycle transversal problem is solvable in poly-
nomial time on graphs with bounded tree-width.

Proof. By the definition of the matrix MG
CG , the minimum value of an OCT in G

is equal the minimum
min

E′
S⊆ES

MG
CG(∆, . . . ,∆, E′

S) .

The time bound follows from Lemma 3.8 and the fact that the nice decomposition
tree of G has size O(|V |). ¤

Applying the same method for the minimum fair cut problem, we obtain the
following theorem.

Theorem 3.10. The minimum fair cut problem is solvable in polynomial time on
graphs with bounded tree-width. ¤

Open Problems and Future Work

As already explained in the Introduction, a challenging open problem is to for-
mally define a class of polynomial-time problems, as large as possible, that contains
the minimum fair OCT. We anticipate that another extension of MSOL (or of the
other approaches) will encompass these problems. Note that the problem itself
(finding a bipartite subgraph) is expressible in MSOL, and what makes the prob-
lem hard is the objective function.

Finding better approximation algorithms on planar and general graphs for the
two problems considered in this paper, as well as for other fair edge deletion prob-
lems, is also a challenging task.

References

[1] A. Agarwal, M. Charikar, K. Makarychev, and Y. Makarychev. O(
√

log n) approximation

algorithms for min UnCut, min 2CNF deletion, and directed cut problems. In Proceedings of

the 37th Annual ACM Symposium on Theory of Computing (STOC), pages 573–581, 2005.
[2] N. Alon, A. Shapira, and B. Sudakov. Additive approximation for edge-deletion problems.

In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science

(FOCS), pages 419–428, 2005.
[3] N. Alon, A. Shapira, and B. Sudakov. Additive approximation for edge-deletion problems.

Ann. Math., 170:371–411, 2009.

[4] S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable graphs. Journal
of Algorithms, 12:308–340, 1991.

[5] T. Asano. An application of duality to edge-deletion problems. SIAM Journal on Computing,
16(2):312–331, 1987.

[6] H. L. Bodlaender and K. Jansen. On the complexity of the maximum cut problem. In Nordic

Journal of Computing, volume 7. 2000.
[7] H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of bounded

treewidth. Computer Journal, 51(3):255–269, 2008.
[8] P. S. Bonsma. The complexity of the matching-cut problem for various graph classes. Elec-

tronic Notes in Discrete Mathematics, 13:18–21, 2003.

12 KAM, KAM, AND KAM,CNRS

[9] R. B. Borie. Generation of polynomial-time algorithms for some optimization problems on
tree-decomposable graphs. Algorithmica, 14(2):123–137, 1995.

[10] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algorithms

from predicate calculus descriptions of problems on recursively constructed graph families.
Algorithmica, 7:555–581, 1992.

[11] V. Chvátal. Recognizing decomposable graphs. J. Graph Theory, 8(1):51–53, 1984.

[12] R. Corrêa, F. Havet, and J.-S. Sereni. About a Brooks-type theorem for improper colouring.
Australas. J. Combin., 43:219–230, 2009.

[13] B. Courcelle. The monadic second-order theory of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990.

[14] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable graphs.

Theoretical Computer Science, 109(1–2):49–82, 1 Mar. 1993.
[15] L. J. Cowen, R. H. Cowen, and D. R. Woodall. Defective colorings of graphs in surfaces:

partitions into subgraphs of bounded valency. J. Graph Theory, 10(2):187–195, 1986.

[16] L. J. Cowen, W. Goddard, and C. E. Jesurum. Defective coloring revisited. J. Graph Theory,
24(3):205–219, 1997.

[17] M. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified NP-complete graph problems.

Theoretical Computer Science, 1:237–267, 1976.
[18] M. X. Goemans and D. P. Williamson. .879-approximation algorithms for MAX CUT and

MAX 2SAT. In Proceedings of the 26th Annual ACM Symposium on the Theory of Computing

(STOC), pages 422–431, 1994.
[19] M. Groetschel and W. R. Pulleyblank. Weakly bipartite graphs and the max-cut problem.

Operations Research Letters, 1(1):23 – 27, 1981.

[20] F. Havet, R. J. Kang, and J.-S. Sereni. Improper colouring of unit disk graphs. Networks,
54(3):150–164, 2009.

[21] F. Havet and J.-S. Sereni. Channel assignment and improper choosability of graphs. In Graph-
theoretic concepts in computer science, volume 3787 of Lecture Notes in Comput. Sci., pages

81–90. Springer, Berlin, 2005.

[22] F. Havet and J.-S. Sereni. Improper choosability of graphs and maximum average degree. J.
Graph Theory, 52(3):181–199, 2006.

[23] D. S. Johnson. The NP-completeness column: An ongoing guide. Journal of Algorithms,

6(1):145–159, 1985.
[24] R. J. Kang, T. Müller, and J.-S. Sereni. Improper colouring of (random) unit disk graphs.

Discrete Math., 308(8):1438–1454, 2008.

[25] J. Komlós. Covering odd cycles. Combinatorica, 17(3):393–400, 1997.
[26] L.-S. Lin and S. Sahni. Fair edge deletion problems. IEEE Trans. Computers, 38(5):756–761,

1989.

[27] M. Patrignani and M. Pizzonia. The complexity of the matching-cut problem. In Graph-
Theoretic Concepts in Computer Science, volume 2204 of Lecture Notes in Computer Science,
pages 284–295, 2001.

[28] R. Škrekovski. List improper colourings of planar graphs. Combin. Probab. Comput.,

8(3):293–299, 1999.

[29] R. Škrekovski. List improper colorings of planar graphs with prescribed girth. Discrete Math.,
214(1-3):221–233, 2000.

[30] D. R. Woodall. Defective choosability of graphs with no edge-plus-independent-set minor. J.

Graph Theory, 45(1):51–56, 2004.
[31] M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297–309, 1981.

E-mail address: kolman,lidicky,sereni@kam.mff.cuni.cz

