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Abstra
t

A 
lassi
al 
ow is a nonnegative linear 
ombination of unit 
ows along simple paths.

A multiroute 
ow, �rst 
onsidered by Kishimoto and Takeu
hi, generalizes this


on
ept. The basi
 building blo
ks are not single paths with unit 
ows but rather

tuples 
onsisting of k edge disjoint paths, ea
h path with a unit 
ow. A multiroute


ow is a nonnegative linear 
ombination of su
h tuples.

We present a simple 
ombinatorial proof of the duality theorem for multiroute


ows and 
uts and its 
orollary whi
h 
hara
terizes multiroute 
ows in terms of


lassi
al 
ows. Spe
i�
ally, we show that a (
lassi
al) 
ow of size F is a k-
ow if and

only if the 
ow through every edge is at most F=k. This duality then immediately

yields an eÆ
ient algorithm.
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1 Introdu
tion

A 
lassi
al 
ow is a nonnegative linear 
ombination of unit 
ows along simple

paths. A multiroute 
ow, �rst 
onsidered by Kishimoto and Takeu
hi [9℄,

generalizes this 
on
ept. The basi
 building blo
ks are not single paths with

unit 
ows but rather tuples 
onsisting of k edge disjoint paths, ea
h path with

a unit 
ow. Su
h a stru
ture of k edge disjoint paths (from s to t), ea
h with

a unit 
ow, is 
alled an elementary k-
ow. A multiroute 
ow (or a k-
ow) is a

nonnegative linear 
ombination of elementary k 
ows. We postpone for later

dis
ussion what a size of a 
ut means for the multiroute 
ow.

Whereas 
lassi
al 
ow has the 
exibility to split (and merge), k-
ow has the

obligation to split. The motivation for enfor
ed splitting 
omes from 
ommuni-


ation appli
ations: a multiroute 
hannel is more tolerant against link failures

(
f. [3,5,7,10℄).

The 
elebrated Max-Flow Min-Cut theorem [6℄ o

upies a 
entral position in


lassi
al 
ow theory. Is there an analogue for the multiroute 
ow? Menger's

theorem immediately provides a ne
essary and suÆ
ient 
ondition for a non-

zero multiroute 
ow: it exists if and only if the sour
e and target verti
es are

k-edge-
onne
ted. However, the question about the maximal multiroute 
ow

is more subtle and the answer is not obvious.

A 2-
ow was �rst introdu
ed by Kishimoto and Takeu
hi in the early 90's.

Kishimoto and Takeu
hi [9℄ and Kishimoto [8℄, and Aggarwal and Orlin [1℄

gave two eÆ
ient algorithms for �nding a maximal k-
ow. Given the maximal

k-
ow, they both �nd a 
ut of the same size [9,1℄, whi
h implies the duality of

the general multiroute 
ows and 
uts. A similar algorithm for 
omputing the

minimal 
ut of a multiroute 
ow (and thus also an algorithm for the maximal

k-
ow) is given by Aneja et al. [2℄ in the 
ontext of parametri
 analysis of

minimal 
uts (edge 
apa
ities depend to some extend on a varying parameter).

A dis
rete multi
ommodity variant of the multiroute 
ow problem, namely the

k Disjoint Flow Problem, was studied by Bag
hi et al. [4℄.

In this note, we present a simple 
ombinatorial proof of the duality of multi-

route 
ows and 
uts. As a by produ
t of the duality theorem we get a 
har-

a
terization of multiroute 
ows in terms of 
lassi
al 
ows: A (
lassi
al) 
ow

of size F is a k-
ow if and only if the 
ow through every edge is at most F=k

(see Theorem 3.2). This duality also immediately yields an eÆ
ient algorithm

for �nding the maximum k-
ow. Although these results are not new, a dire
t

proof of the duality was not known before. Overall, our proofs are signi�
antly

simpler than previously known. We believe that they provide a valuable new

insight into the stru
ture of k-
ows.
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2 Preliminaries

A network is an undire
ted graph G = (V;E) together with a 
apa
ity fun
tion


 : E ! R and two distinguished verti
es s and t 
alled the sour
e and the

sink respe
tively.

An elementary s � t 
ow is a 
ow of one unit from s to t along a simple

path. A famous result in 
lassi
al 
ow theory says that every s� t 
ow 
an be

de
omposed into (a �nite number of) s� t paths and 
y
les, or in other words,

that every a
y
li
 
ow is a non-negative linear 
ombination of elementary


ows. We take this approa
h to de�ne to k-
ows.

An elementary k-
ow is an s� t 
ow along k edge disjoint paths from s to t,

ea
h path 
arrying a unit of 
ow. A k-
ow is any 
ow that is a non-negative

linear 
ombination of elementary k-
ows [8,1℄.

As usual, an s�t 
ut is a partition of verti
es V into two groups S and

�

S = V nS

su
h that s 2 S and t 2

�

S. Often we will just talk about a 
ut and we will also

often view the 
ut as a set of edges f(u; v) j u 2 S ^ v 2

�

Sg = fe

1

; � � � ; e

l

g.

The size C(S; V n S) of the 
ut is then equal to

P

l

i=1


(e

i

). An alternative

de�nition is that the size of the 
ut fe

1

; � � � ; e

l

g is the size of the maximal


ow in a simple network G

0

where the sour
e s

0

and sink t

0

are 
onne
ted by l

edges with respe
tive 
apa
ities 
(e

1

); � � � ; 
(e

l

). The meaning is that the size

of a 
ut is the maximal amount of 
ow that 
an get through if there are no

other restri
tions.

For multiroute 
ows, we are going to de�ne the k-size of a 
ut in an analogous

way. The k-size of a 
ut fe

1

; � � � ; e

l

g is the maximal amount of k-
ow in a

network where the sour
e and destination are 
onne
ted by l edges with re-

spe
tive 
apa
ities 
(e

1

); � � � ; 
(e

l

). Note that the k-size of a 
ut depends only

on the 
apa
ities of the l edges. In the following, 


k

(


1

; � � � ; 


l

) will denote the

k-size of a 
ut fe

1

; � � � ; e

l

g, 


i

= 
(e

i

). Sometimes we will talk about a k-
ut

instead of a 
ut to stress that we are interested in the k-size of the 
ut.

To give an example, the size of a 
ut 
onsisting of two edges with 
apa
ities 1

and 100 is 101 but the maximal 2-
ow that 
an pass through this 
ut is only

2. Thus, the 2-size of this 
ut is two.

Our de�nition deviates from the original de�nition of Kishimoto [8℄ and also

from the de�nition given by Aggarwal and Orlin [1℄. However, we think that

our de�nition provides a better insight in the meaning of the k-size of a 
ut.

Moreover, for k = 1 the k-size of a 
ut 
learly 
oin
ides with the size of the


ut. The next lemma shows how to 
al
ulate the k-size of a 
ut and also shows

that our de�nition is equivalent to the previous one, as the previous de�nitions

essentially de�ne the k-size as the value 
al
ulated in the lemma.
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Lemma 2.1 Given a 
ut C with l edges, let 


1

; � � � ; 


l

denote the edge 
apa
-

ities in nonin
reasing order (i.e., 


i

� 


i+1

) and let M

j

=

k

k�j

P

l

i=j+1




i

. Then

the k-size of the 
ut is




k

(


1

; � � � ; 


l

) = min

j=0;:::;k�1

M

j

:

Furthermore, if the minimum is a
hieved at M

j

, then 


i

� M

j

=k � 


i

0

, for

any i � j and i

0

> j, and




k

(


1

; � � � ; 


l

) = 


k

(M

j

=k; � � � ;M

j

=k; 


j+1

; : : : ; 


l

)

Proof. Suppose that the minimum is a
hieved at M

j

. Obviously, no k-
ow is

larger then M

j

: in ea
h elementary k-
ow, there are at least k� j edges from




j+1

; : : : ; 


l

and their total 
apa
ity allows only a total 
ow of M

j

.

By the minimality ofM

j

, for any i � j and i

0

> j, we have 


i

�M

j

=k � 


i

0

, as

otherwise M

i�1

or M

i

0

would be smaller than M

j

. The last part of the lemma

follows by the de�nition of M

j

, as de
reasing all 


i

, i < j, to M

j

=k does not


hange M

j

and does not de
rease any other M

j

0

below M

j

.

It remains to 
onstru
t a k-
ow of size M

j

. We organize the 
apa
ity from the

smallest l � j edges in a re
tangle (k � j)� (M

j

=k) (k � j 
olumns of height

M

j

=k). We \�ll" the re
tangle by the available 
apa
ity 


j+1

+ 


j+2

+ � � �+ 


l

by 
olumns from left to right, in ea
h 
olumn from top to bottom, starting

with 


j+1

in the leftmost 
olumn and ending with 


l

in the rightmost. The

re
tangle 
an now be divided into some number of horizontal sli
es su
h that

in ea
h sli
e the portion of 
apa
ity in ea
h 
olumn 
omes from a single edge.

Moreover, sin
e the edge 
apa
ities 


j+1

; � � � ; 


l

are at mostM

j

=k, in ea
h sli
e

the k� j portions of 
apa
ities belong to distin
t k� j edges. Thus, ea
h sli
e


orresponds to (a multiple of) an elementary (k� j)-
ow, of size proportional

to the height of the sli
e. Together, we have a (k � j)-
ow of size

P

l

i=j+1




i

that does not use the j heaviest edges. Adding a 
ow of M

j

=k along the j

heaviest edges, we get a k-
ow of size M

j

. 2

3 Duality

We say that an (s; t)-
ow of size F is k-balan
ed, if every edge 
arries at most

F=k units of 
ow. An edge e is 
riti
al if it 
arries F=k units of 
ow. A k-

system is a set of k edge disjoint path between two verti
es s and t; we view a

k-system as a set of edges. A te
hni
al observation 
ru
ially useful in proving

the duality theorem is the following lemma.
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Fig. 1. Size of a 
ut fe

1

; � � � ; e

l

g, if 
(e

1

) �

1

k

P

l

i=1


(e

i

).

Lemma 3.1 For every k-balan
ed 
ow f without 
y
les there exists a k-

system that uses all 
riti
al edges in f .

Proof. Let F denote the size of the 
ow f . Let G

0

= (V

0

; E

0

; 


0

) be a dire
ted

network obtained from the 
ow f as follows. V

0

= V [ fs

0

; t

0

g, where s

0

and t

0

are new sour
e and target verti
es. The set of edges E

0


ontains (i) all edges

e 2 E with non-zero 
ow, their 
apa
ity 


0

(e) = f(e), i.e., the value of the


ow, and (ii) k edges from s

0

to s and k edges from t to t

0

, the 
apa
ity of

ea
h edge e in
ident with s

0

or t

0

is 


0

(e) = F=k.

By the de�nition of s

0

, t

0

and edges in
ident to them, and the assumption that

f is a
y
li
, a set of edges Q � E

0

is a k-system between s

0

and t

0

in G

0

if and

only if Q 
ontains all k edges from s

0

to s as well as all k edges from t to t

0

,

and at ea
h node v 2 V

0

� fs

0

; t

0

g, Q has the same in-degree and out-degree

(i.e., satis�es the 
ow 
onservation, if all the edges 
arry the same 
ow).

Let Q be the k-system in G

0

that uses the largest number of 
riti
al edges

(among all possible k-systems). Towards 
ontradi
tion, assume that there ex-

ists a 
riti
al edge (u; v) 62 Q. Let S be the set of all verti
es rea
hable from v by

an \augmenting" path of a spe
ial kind. The paths are allowed to use two types

of edges: (i) in forward dire
tion, edges not used by Q, and (ii) in ba
kward

dire
tion, edges used by Q but only if they are not 
riti
al. Formally, the set

S 
onsists of all verti
es rea
hable from v in a graph

�

G = (V

0

; E

+

[E

�

) where

E

+

= E

0

� Q and E

�

= f(y; x)j(x; y) 2 Q and (x; y) is not a 
riti
al edgeg.

Obviously, s

0

and t

0

are not in S as no edges in
ident to them are in E

+

[E

�

.

We 
laim that u is not in S. Assume, towards 
ontradi
tion, that u 2 S. Sin
e

(u; v) 2 E

+

, by de�nition of S there is a 
y
le C in

�

G 
ontaining (u; v). Add to

Q all edges in C\E

+

and remove all edges (x; y) 2 Q su
h that (y; x) 2 C. The


ow 
onservation is preserved, thus thus the new set is a k-system. However,

the number of 
riti
al edges in
reased: none was removed and at least one,
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namely (u; v) was added. This is a 
ontradi
tion with the 
hoi
e of Q and we


on
lude that u 62 S.

Finally, we get a 
ontradi
tion by observing that the amount of 
ow f 
owing

into the set S is larger that the amount of 
ow f 
owing out of S. Sin
e

s

0

; t

0

62 S, Q enters S exa
tly the same number of times as it leaves S. By

de�nition of E

�

, Q enters S along edges with 
ow F=k. Therefore the 
ow

into S along edges from Q is at least as large as the 
ow from S along edges

from Q. There is also a 
ow of size F=k going into S along the edge (u; v) 62 Q.

By de�nition of E

+

, there is no outgoing 
ow from S along edges not in Q.

Thus, the 
ow going into S is stri
tly larger (by at least F=k) than the 
ow

out of S, a 
ontradi
tion. We 
on
lude that Q 
ontains all 
riti
al edges. 2

From Lemma 3.1 we almost immediately get the 
hara
terization of multiroute


ows in terms of 
lassi
al 
ows.

Theorem 3.2 A 
ow without 
y
les is k-balan
ed if and only if it is a k-
ow.

Proof. Every k-
ow is k-balan
ed by de�nition.

Given a k-balan
ed 
ow f , let Q be the k-system that uses all 
riti
al edges,

obtained by Lemma 3.1. Let 


Q

be the minimal 
ow on edges from Q and let




0

Q

be the maximal 
ow on edges in E�Q. In our 
ow f , we subtra
t the value

minf


Q

; F=k�


0

Q

g from ea
h edge in Q. We observe that the remaining 
ow is

balan
ed again. Sin
e either the number of edges used by the remaining 
ow

de
reases or the number of 
riti
al edges in
reases, eventually we distribute all

the original 
ow into k-systems. More pre
isely, let I be the number of all edges

in f plus the number of non-
riti
al edges in f . In ea
h iteration, I de
reases

by at least one, so in O(m) iterations we �nd a 
omplete de
omposition in

k-systems. 2

Theorem 3.3 (Duality of k-
ows and k-
uts) The size of the maximal

k-
ow in G is equal the size of the minimal k-
ut in G.

Proof. The nontrivial part of the theorem is to �nd in G a 
ut with k-size

equal the maximal k-
ow. Let f be the maximal k-
ow in G, F be its size and

let G

0

be the network where all 
apa
ities larger than F=k are de
reased to

F=k. Observe that f �ts in G

0

. Moreover, the maximal 
ow in G

0

has size F

(larger 
ow would imply there is also a larger k-
ow inG). Let C = fe

1

; � � � ; e

l

g

be edges in a minimal 
ut in G

0

, ordered nonin
reasingly by their original


apa
ities in G, and let j be the maximal index su
h that 


j

> F=k. Then

k

k�j

P

l

i=j+1




i

= F . Considering Lemma 2.1 we 
on
lude that C is a 
ut of

k-size F , and thus a minimal k-
ut in G. 2
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Finally, let us 
omment on the algorithmi
 issue. The duality in Theorem 3.3

implies that a regular 
ow algorithm 
an be used to �nd a k-
ow of a given

size if it exists: knowing there is a k-
ow of size F , it is suÆ
ient to restri
t

the 
apa
ity on ea
h edge e to minf
(e); F=kg and then run the regular 
ow

algorithm. Moreover, the Lemma 2.1 implies that for networks with integral


apa
ities, the value of a 
ut is a rational number x=y � kU with y � k,

where U is the maximal 
apa
ity of an edge. This implies that the maximal

k-
ow 
an be found by binary sear
h, using O(log kU) runs of maximum 
ow

algorithms, as Kishimoto [8℄ and Aggarwal and Orlin [1℄ did.

Open problems

A lot of attention has been paid to max-
ow min-
ut theorems for multi
om-

modity 
ows in the last ten years (
f. an ex
ellent survey by Shmoys [11℄).

This immediately raises the question: Is there an analogous max k-
ow min

k-
ut theorem for multi
ommodity multiroute 
ows? Though there is a 
lear

relation between single 
ommodity (
lassi
al) 
ows and multiroute 
ows, the

above question is unanswered so far and the methods used to prove the min-
ut

max-
ow theorems for 
lassi
al multi
ommodity 
ows do not seem to apply

easily to multiroute multi
ommodity 
ows.
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