A Simple Combinatorial Proof of Duality
of Multiroute Flows and Cuts

Amitabha Bagchi, Amitabh Chaudhary

Department of Information and Computer Science
University of California
Irvine, CA 92697, USA

Petr Kolman !

Institute of Theoretical Computer Science
Charles University
Malostranské nam. 25
118 00 Praha 1, Czech Republic

Jiri Sgall

Mathematical Institute, AS CR, Zitnd 25
115 67 Praha 1, Czech Republic

Abstract

A classical flow is a nonnegative linear combination of unit flows along simple paths.
A multiroute flow, first considered by Kishimoto and Takeuchi, generalizes this
concept. The basic building blocks are not single paths with unit flows but rather
tuples consisting of k edge disjoint paths, each path with a unit flow. A multiroute
flow is a nonnegative linear combination of such tuples.

We present a simple combinatorial proof of the duality theorem for multiroute
flows and cuts and its corollary which characterizes multiroute flows in terms of
classical flows. Specifically, we show that a (classical) flow of size F' is a k-flow if and
only if the flow through every edge is at most F'/k. This duality then immediately
yields an efficient algorithm.
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1 Introduction

A classical flow is a nonnegative linear combination of unit flows along simple
paths. A multiroute flow, first considered by Kishimoto and Takeuchi [9],
generalizes this concept. The basic building blocks are not single paths with
unit flows but rather tuples consisting of k& edge disjoint paths, each path with
a unit flow. Such a structure of k edge disjoint paths (from s to t), each with
a unit flow, is called an elementary k-flow. A multiroute flow (or a k-flow) is a
nonnegative linear combination of elementary k flows. We postpone for later
discussion what a size of a cut means for the multiroute flow.

Whereas classical flow has the flezibility to split (and merge), k-flow has the
obligation to split. The motivation for enforced splitting comes from communi-

cation applications: a multiroute channel is more tolerant against link failures
(cf. [3,5,7,10]).

The celebrated Max-Flow Min-Cut theorem [6] occupies a central position in
classical flow theory. Is there an analogue for the multiroute flow? Menger’s
theorem immediately provides a necessary and sufficient condition for a non-
zero multiroute flow: it exists if and only if the source and target vertices are
k-edge-connected. However, the question about the maximal multiroute flow
is more subtle and the answer is not obvious.

A 2-flow was first introduced by Kishimoto and Takeuchi in the early 90’s.
Kishimoto and Takeuchi [9] and Kishimoto [8], and Aggarwal and Orlin [1]
gave two efficient algorithms for finding a maximal k-flow. Given the maximal
k-flow, they both find a cut of the same size [9,1], which implies the duality of
the general multiroute flows and cuts. A similar algorithm for computing the
minimal cut of a multiroute flow (and thus also an algorithm for the maximal
k-flow) is given by Aneja et al. [2] in the context of parametric analysis of
minimal cuts (edge capacities depend to some extend on a varying parameter).
A discrete multicommodity variant of the multiroute flow problem, namely the
k Disjoint Flow Problem, was studied by Bagchi et al. [4].

In this note, we present a simple combinatorial proof of the duality of multi-
route flows and cuts. As a by product of the duality theorem we get a char-
acterization of multiroute flows in terms of classical flows: A (classical) flow
of size F is a k-flow if and only if the flow through every edge is at most F/k
(see Theorem 3.2). This duality also immediately yields an efficient algorithm
for finding the maximum k-flow. Although these results are not new, a direct
proof of the duality was not known before. Overall, our proofs are significantly
simpler than previously known. We believe that they provide a valuable new
insight into the structure of k-flows.



2 Preliminaries

A network is an undirected graph G = (V, E) together with a capacity function
¢: F — R and two distinguished vertices s and ¢ called the source and the
sink respectively.

An elementary s — t flow is a flow of one unit from s to ¢ along a simple
path. A famous result in classical flow theory says that every s —t¢ flow can be
decomposed into (a finite number of) s —¢ paths and cycles, or in other words,
that every acyclic flow is a non-negative linear combination of elementary
flows. We take this approach to define to k-flows.

An elementary k-flow is an s — t flow along k edge disjoint paths from s to ¢,
each path carrying a unit of flow. A k-flow is any flow that is a non-negative
linear combination of elementary k-flows [8,1].

As usual, an s—t cut is a partition of vertices V into two groups S and S = V\ S
such that s € S and ¢t € S. Often we will just talk about a cut and we will also
often view the cut as a set of edges {(u,v) | u € SAv € S} = {er,---,e}.
The size C(S,V \ S) of the cut is then equal to Y!_, c(e;). An alternative
definition is that the size of the cut {e;,---,e} is the size of the maximal
flow in a simple network G’ where the source s’ and sink ' are connected by [
edges with respective capacities c(e1), -+, c(e;). The meaning is that the size
of a cut is the maximal amount of flow that can get through if there are no
other restrictions.

For multiroute flows, we are going to define the k-size of a cut in an analogous
way. The k-size of a cut {ej,---,¢;} is the maximal amount of k-flow in a
network where the source and destination are connected by [ edges with re-
spective capacities c(e1),- - -, c(e;). Note that the k-size of a cut depends only
on the capacities of the [ edges. In the following, v (c1, - - -, ¢;) will denote the
k-size of a cut {e1, -+, ¢}, ¢; = c(e;). Sometimes we will talk about a k-cut
instead of a cut to stress that we are interested in the k-size of the cut.

To give an example, the size of a cut consisting of two edges with capacities 1
and 100 is 101 but the maximal 2-flow that can pass through this cut is only
2. Thus, the 2-size of this cut is two.

Our definition deviates from the original definition of Kishimoto [8] and also
from the definition given by Aggarwal and Orlin [1]. However, we think that
our definition provides a better insight in the meaning of the k-size of a cut.
Moreover, for k£ = 1 the k-size of a cut clearly coincides with the size of the
cut. The next lemma shows how to calculate the k-size of a cut and also shows
that our definition is equivalent to the previous one, as the previous definitions
essentially define the k-size as the value calculated in the lemma.



Lemma 2.1 Given a cut C with | edges, let ¢y, -+, ¢; denote the edge capac-
ities in nonincreasing order (i.e., ¢; > ¢;11) and let M; = ki_] Zizjﬂ c;. Then
the k-size of the cut is

Ye(er, - a) = j:(gf_l,i_,%,le'

Furthermore, if the minimum is achieved at M;, then ¢; > M;/k > cy, for
any i < j and i > j, and

’Yk(Cla : ",Cz) = ’Yk(Mj/ka e -,Mj/k,cj+1, - -aCZ)

Proof. Suppose that the minimum is achieved at M;. Obviously, no k-flow is
larger then A/;: in each elementary k-flow, there are at least k — j edges from
Cj+1,---,c and their total capacity allows only a total flow of M.

By the minimality of M, for any ¢ < j and ¢’ > j, we have ¢; > M;/k > ¢y, as
otherwise M;_, or My would be smaller than M;. The last part of the lemma
follows by the definition of M;, as decreasing all ¢;, i < j, to M;/k does not
change M; and does not decrease any other M; below M;.

It remains to construct a k-flow of size M;. We organize the capacity from the
smallest [ — j edges in a rectangle (k — j) x (M;/k) (k — j columns of height
M;/k). We “fill” the rectangle by the available capacity ¢j 11 +¢jqpo+ -+ ¢
by columns from left to right, in each column from top to bottom, starting
with ¢;y1 in the leftmost column and ending with ¢ in the rightmost. The
rectangle can now be divided into some number of horizontal slices such that
in each slice the portion of capacity in each column comes from a single edge.
Moreover, since the edge capacities ¢;;1, - -, ¢, are at most A /k, in each slice
the k — j portions of capacities belong to distinct £ — j edges. Thus, each slice
corresponds to (a multiple of) an elementary (k — j)-flow, of size proportional
to the height of the slice. Together, we have a (k — j)-flow of size ij:j+1 ¢
that does not use the j heaviest edges. Adding a flow of A /k along the j
heaviest edges, we get a k-flow of size M;. O

3 Duality

We say that an (s, t)-flow of size F' is k-balanced, if every edge carries at most
F/k units of flow. An edge e is critical if it carries F'/k units of flow. A k-
system is a set of k edge disjoint path between two vertices s and ¢; we view a
k-system as a set of edges. A technical observation crucially useful in proving
the duality theorem is the following lemma.
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Fig. 1. Size of a cut {ey, -, ¢}, if c(e;) < %Zé:l c(e;).

Lemma 3.1 For every k-balanced flow f without cycles there exists a k-
system that uses all critical edges in f.

Proof. Let F denote the size of the flow f. Let G' = (V', E', /) be a directed
network obtained from the flow f as follows. V' =V U {s',t'}, where s’ and ¢
are new source and target vertices. The set of edges E' contains (i) all edges
e € F with non-zero flow, their capacity ¢'(e) = f(e), i.e., the value of the
flow, and (ii) £ edges from s’ to s and k edges from ¢ to t, the capacity of
each edge e incident with s’ or ¢’ is '(e) = F/k.

By the definition of s’, t and edges incident to them, and the assumption that
f is acyclic, a set of edges @ C E' is a k-system between s’ and t' in G’ if and
only if () contains all k£ edges from s’ to s as well as all £ edges from ¢ to ¢/,
and at each node v € V' — {¢,t'}, @ has the same in-degree and out-degree
(i.e., satisfies the flow conservation, if all the edges carry the same flow).

Let @ be the k-system in G’ that uses the largest number of critical edges
(among all possible k-systems). Towards contradiction, assume that there ex-
ists a critical edge (u,v) € Q. Let S be the set of all vertices reachable from v by
an “augmenting” path of a special kind. The paths are allowed to use two types
of edges: (i) in forward direction, edges not used by @, and (ii) in backward
direction, edges used by @) but only if they are not critical. Formally, the set
S consists of all vertices reachable from v in a graph G = (V', E, UE_) where
E. =FE —Qand E. = {(y,2)|(z,y) € Q and (z,y) is not a critical edge}.
Obviously, s’ and ¢’ are not in S as no edges incident to them are in E, UFE .

We claim that u is not in S. Assume, towards contradiction, that v € S. Since
(u,v) € E, by definition of S there is a cycle C in G containing (u,v). Add to
Q) all edges in CNE; and remove all edges (z,y) € @ such that (y,z) € C. The
flow conservation is preserved, thus thus the new set is a k-system. However,
the number of critical edges increased: none was removed and at least one,



namely (u,v) was added. This is a contradiction with the choice of ) and we
conclude that u & S.

Finally, we get a contradiction by observing that the amount of flow f flowing
into the set S is larger that the amount of flow f flowing out of S. Since
st € S, Q enters S exactly the same number of times as it leaves S. By
definition of F |, @) enters S along edges with flow F/k. Therefore the flow
into S along edges from () is at least as large as the flow from S along edges
from Q. There is also a flow of size F//k going into S along the edge (u,v) & Q.
By definition of £, there is no outgoing flow from S along edges not in Q.
Thus, the flow going into S is strictly larger (by at least F'/k) than the flow
out of S, a contradiction. We conclude that () contains all critical edges. O

From Lemma 3.1 we almost immediately get the characterization of multiroute
flows in terms of classical flows.

Theorem 3.2 A flow without cycles is k-balanced if and only if it is a k-flow.
Proof. Every k-flow is k-balanced by definition.

Given a k-balanced flow f, let @) be the k-system that uses all critical edges,
obtained by Lemma 3.1. Let ¢ be the minimal flow on edges from () and let
cg be the maximal flow on edges in E—@Q. In our flow f, we subtract the value
min{cq, F'/k —cg} from each edge in ). We observe that the remaining flow is
balanced again. Since either the number of edges used by the remaining flow
decreases or the number of critical edges increases, eventually we distribute all
the original flow into k-systems. More precisely, let I be the number of all edges
in f plus the number of non-critical edges in f. In each iteration, I decreases
by at least one, so in O(m) iterations we find a complete decomposition in
k-systems. 0O

Theorem 3.3 (Duality of k-flows and k-cuts) The size of the mazimal
k-flow in G is equal the size of the minimal k-cut in G.

Proof. The nontrivial part of the theorem is to find in G a cut with k-size
equal the maximal k-flow. Let f be the maximal k-flow in GG, F' be its size and
let G' be the network where all capacities larger than F'/k are decreased to
F/k. Observe that f fits in G'. Moreover, the maximal flow in G’ has size F'
(larger flow would imply there is also a larger k-flow in G). Let C' = {ey,-- -, ¢/}
be edges in a minimal cut in G’, ordered nonincreasingly by their original
capacities in G, and let j be the maximal index such that ¢; > F/k. Then
ksl

T izl G = F. Considering Lemma 2.1 we conclude that C' is a cut of

k-size F', and thus a minimal k-cut in G. O



Finally, let us comment on the algorithmic issue. The duality in Theorem 3.3
implies that a regular flow algorithm can be used to find a k-flow of a given
size if it exists: knowing there is a k-flow of size F', it is sufficient to restrict
the capacity on each edge e to min{c(e), F'/k} and then run the regular flow
algorithm. Moreover, the Lemma 2.1 implies that for networks with integral
capacities, the value of a cut is a rational number z/y < kU with y < k,
where U is the maximal capacity of an edge. This implies that the maximal
k-flow can be found by binary search, using O(log kU) runs of maximum flow
algorithms, as Kishimoto [8] and Aggarwal and Orlin [1] did.

Open problems

A lot of attention has been paid to max-flow min-cut theorems for multicom-
modity flows in the last ten years (cf. an excellent survey by Shmoys [11]).
This immediately raises the question: Is there an analogous max k-flow min
k-cut theorem for multicommodity multiroute flows? Though there is a clear
relation between single commodity (classical) flows and multiroute flows, the
above question is unanswered so far and the methods used to prove the min-cut
max-flow theorems for classical multicommodity flows do not seem to apply
easily to multiroute multicommodity flows.
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