Approximating Spanning Tree Congestion on Graphs with Polylog Degree

Petr Kolman

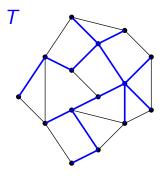
Department of Applied Mathematics Faculty of Mathematics and Physics Charles University, Prague

IWOCA 2024

Preliminaries

Definitions

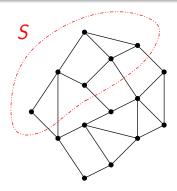
- spanning tree of G = (V, E): subgraph of G that is a tree containing all vertices of G
- *cut* of G = (V, E): partition of V into two subsets S and $V \setminus S$
- *cut size*: $|E(S, V \setminus S)|$ = number of edges between *S* and $V \setminus S$



Preliminaries

Definitions

- spanning tree of G = (V, E): subgraph of G that is a tree containing all vertices of G
- *cut* of G = (V, E): partition of V into two subsets S and $V \setminus S$
- *cut size*: $|E(S, V \setminus S)|$ = number of edges between *S* and $V \setminus S$

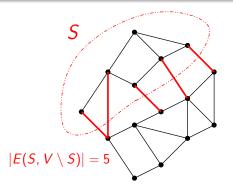


.

Preliminaries

Definitions

- *spanning tree* of *G* = (*V*, *E*): *subgraph* of *G* that is a *tree* containing *all vertices* of *G*
- *cut* of G = (V, E): partition of V into two subsets S and $V \setminus S$
- *cut size*: $|E(S, V \setminus S)|$ = number of edges between S and $V \setminus S$



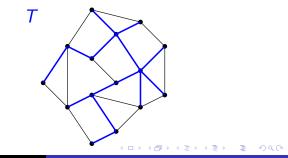
Cuts Induced by a Spanning Tree

given a spanning tree *T* of *G* and an edge *e* ∈ *T*, the removal of *e* defines a cut in *G* - let *c_T(e)* denote its size

• congestion of span. tree T of G: $C(G, T) = \max_{e \in T} c_T(e)$

Spanning Tree Congestion

 spanning tree congestion of G: STC(G) = min_{T∈T} C(G, T) where T is the set of all spanning trees of G



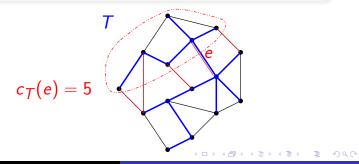
Cuts Induced by a Spanning Tree

given a spanning tree *T* of *G* and an edge *e* ∈ *T*, the removal of *e* defines a cut in *G* - let *c_T(e)* denote its size

• congestion of span. tree T of G: $C(G, T) = \max_{e \in T} c_T(e)$

Spanning Tree Congestion

 spanning tree congestion of G: STC(G) = min_{T∈T} C(G, T) where T is the set of all spanning trees of G

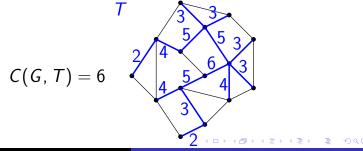


Cuts Induced by a Spanning Tree

- given a spanning tree *T* of *G* and an edge *e* ∈ *T*, the removal of *e* defines a cut in *G* let *c_T(e)* denote its size
- congestion of span. tree T of G: $C(G, T) = \max_{e \in T} c_T(e)$

Spanning Tree Congestion

• spanning tree congestion of G: $STC(G) = \min_{T \in T} C(G, T)$ where T is the set of all spanning trees of G

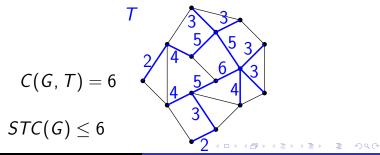


Cuts Induced by a Spanning Tree

- given a spanning tree *T* of *G* and an edge *e* ∈ *T*, the removal of *e* defines a cut in *G* let *c_T(e)* denote its size
- congestion of span. tree T of G: $C(G, T) = \max_{e \in T} c_T(e)$

Spanning Tree Congestion

 spanning tree congestion of G: STC(G) = min_{T∈T} C(G, T) where T is the set of all spanning trees of G

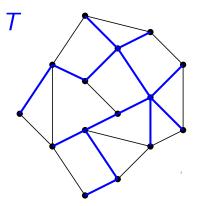


Spanning Tree Congestion - Alternative View

Simulating *G* by its Spanning Tree *T*

given a spanning tree *T* of *G*, for every edge *uv* ∈ *E*(*G*) there is a unique path *p_{uv}* in *T* between *u* and *v*

• Observe: for every $e \in E(T)$, $c_T(e) = |\{uv \in E(G) \mid p_{uv} \ni e\}|$.



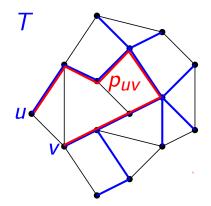
.

Spanning Tree Congestion - Alternative View

Simulating *G* by its Spanning Tree *T*

given a spanning tree *T* of *G*, for every edge *uv* ∈ *E*(*G*) there is a unique path *p_{uv}* in *T* between *u* and *v*

• Observe: for every $e \in E(T)$, $c_T(e) = |\{uv \in E(G) \mid p_{uv} \ni e\}|$.

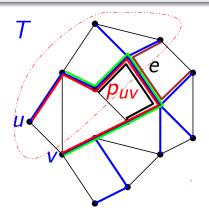


.

Spanning Tree Congestion - Alternative View

Simulating *G* by its Spanning Tree *T*

- given a spanning tree *T* of *G*, for every edge *uv* ∈ *E*(*G*) there is a unique path *p_{uv}* in *T* between *u* and *v*
- Observe: for every $e \in E(T)$, $c_T(e) = |\{uv \in E(G) \mid p_{uv} \ni e\}|$.



Spanning Tree Congestion - Problems

Spanning Tree Congestion

- given G, compute STC(G) and find the corresponding tree
- k STC: given G and $k \in \mathbb{N}$, is $\text{STC}(G) \le k$?

.

Selected Known Results

- 1987 Simonson: problem first studied, under different name
- 2004 Ostrovskii: STC name, graph-theoretic results
- 2010 Otachi et al., Löwenstein: NP-hard, even for planar graphs
- 2010 Otachi et al.: for $k \le 3$, k STC in P, n/2-approximation
- 2010 Okamoto et al.: exact O(2ⁿ)-time algorithm
- 2012 Bodlaender et al.: NP-hard even for graphs with all but one degrees bounded by O(1)
 8 - STC NP-hard, no *c*-approximation, for *c* < 9/8
 k - STC FPT w.r.t. *k* and max degree
- 2023 Luu and Chrobak: 5 STC NP-hard, no *c*-approximation, for *c* < 6/5, unless P=NP

Note

• $\Omega(n)$ gap between lower and upper bounds on approximability

Selected Known Results

- 1987 Simonson: problem first studied, under different name
- 2004 Ostrovskii: STC name, graph-theoretic results
- 2010 Otachi et al., Löwenstein: NP-hard, even for planar graphs
- 2010 Otachi et al.: for $k \le 3$, k STC in P, n/2-approximation
- 2010 Okamoto et al.: exact O(2ⁿ)-time algorithm
- 2012 Bodlaender et al.: NP-hard even for graphs with all but one degrees bounded by O(1)
 8 - STC NP-hard, no *c*-approximation, for c < 9/8
 - k STC FPT w.r.t. k and max degree
- 2023 Luu and Chrobak: 5 STC NP-hard, no *c*-approximation, for c < 6/5, unless P=NP

Note

Ω(n) gap between lower and upper bounds on approximability

Challenging Question

• Is there an *o*(*n*)-approximation?

Our Result

• *o*(*n*)-approximation for graphs with polylog degree

A B F A B F

Bisection of G = (V, E)

- a partition of *V* into *S* and $V \setminus S$ such that |S| = n/2
- width of bisection: size of the corresponding cut |E(S, V \ S)|
- minimum bisection of G: bisection of minimum width b(G)

Theorem (Räcke, 2008)

There is an $O(\log n)$ -approximation for minimum bisection.

Lemma (Folklore)

For every tree *T* of maximum degree Δ , there exists a bisection of width at most $\Delta \log n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Key ingredients of our algorithm are two new STC lower bounds.

Lemma (Bisection Bound) For every graph G = (V, E) with n vertices and max degree Δ , $STC(G) \ge \frac{b(G)}{\Delta \log n}$.

Lemma (Subgraph Bound)

For every every graph G = (V, E) and every connected $S \subseteq V$,

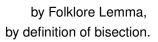
$$STC(G) \geq rac{STC(G[S])}{|E(S,V\setminus S)|}$$
 .

・四・・ヨ・・ヨ・

Proof of Bisection Bound

Let T be the optimal spanning tree and $(S, V \setminus S)$ its minimum bisection. Then,

 $|E_{\mathcal{T}}(S, V \setminus S)| \le \Delta \log n$ $|E_{G}(S, V \setminus S)| \ge b(G)$



For each $uv \in E_G(S, V \setminus S)$, the path p_{uv} uses at least one edge $e \in E_T(S, V \setminus S)$.

Thus, by Pigeonhole Principle, for at least one edge $e \in E_T(S, V \setminus S)$,

 $rac{b(G)}{\Delta \log n} \leq c_{\mathcal{T}}(e) \leq C(G, \mathcal{T}) = \operatorname{STC}(G)$. \Box

Proof of Bisection Bound

Let T be the optimal spanning tree and $(S, V \setminus S)$ its minimum bisection. Then,

 $|E_{\mathsf{T}}(S, V \setminus S)| \leq \Delta \log n$ $|E_{G}(S, V \setminus S)| \geq b(G)$

by Folklore Lemma, by definition of bisection.

For each $uv \in E_G(S, V \setminus S)$, the path p_{uv} uses at least one edge $e \in E_T(S, V \setminus S)$.

Thus, by Pigeonhole Principle, for at least one edge $e \in E_T(S, V \setminus S)$,

 $rac{b(G)}{\log n} \leq c_{\mathcal{T}}(e) \leq C(G,\mathcal{T}) = \operatorname{STC}(G)$. \Box

Proof of Bisection Bound

Let T be the optimal spanning tree and $(S, V \setminus S)$ its minimum bisection. Then,

 $|E_{\mathsf{T}}(S, V \setminus S)| \leq \Delta \log n$ $|E_{G}(S, V \setminus S)| \geq b(G)$ Т

by Folklore Lemma, by definition of bisection.

For each $uv \in E_G(S, V \setminus S)$, the path p_{uv} uses at least one edge $e \in E_T(S, V \setminus S)$.

Thus, by Pigeonhole Principle, for at least one edge $e \in E_T(S, V \setminus S)$,

$$rac{b(G)}{\Delta \log n} \leq c_T(e) \leq C(G, T) = \operatorname{STC}(G)$$
.

Key ingredients of our algorithm are two new STC lower bounds.

Lemma (Subgraph Bound)

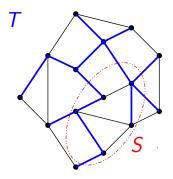
For every every graph G = (V, E) and every connected $S \subseteq V$,

$$STC(G) \geq rac{STC(G[S])}{|E(S,V\setminus S)|}$$
 .

個 と く ヨ と く ヨ と

Plan: Given the optimal spanning tree T of G and $S \subseteq V$, construct a spanning tree T' of G[S] such that

$$\mathcal{C}(G[S], T') \leq \left(1 + rac{|\mathcal{E}(S, V \setminus S)|}{2}\right) \cdot \operatorname{STC}(G)$$
.

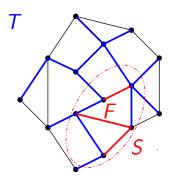


- F edges $uv \in E$ such that $u, v \in S$ and $p_{uv} \cap (V \setminus S) \neq \emptyset$
- Note: for every uv ∈ F, p_{uv} uses at least 2 edges from E_T(S, V \ S)
- $\Rightarrow |2|F| \leq |E_{\mathcal{T}}(S, V \setminus S)| \cdot \operatorname{STC}(G)$
- Let *T'* be any extension of *T*[*S*] into a spanning tree of *G*[*S*].
- Then $c(G[S], T') \leq STC(G) + |F|$.
- As $|E_T(S, V \setminus S)| \le |E_G(S, V \setminus S)|$, we are done.

• • • • • • • • • • • •

Plan: Given the optimal spanning tree T of G and $S \subseteq V$, construct a spanning tree T' of G[S] such that

$$C(G[S], T') \leq \left(1 + rac{|E(S, V \setminus S)|}{2}\right) \cdot \operatorname{STC}(G)$$
.

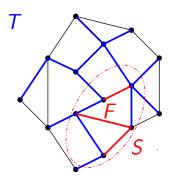


- F edges $uv \in E$ such that $u, v \in S$ and $p_{uv} \cap (V \setminus S) \neq \emptyset$
- Note: for every uv ∈ F, p_{uv} uses at least 2 edges from E_T(S, V \ S)
- $\Rightarrow |2|F| \leq |E_{\mathcal{T}}(S, V \setminus S)| \cdot \mathsf{STC}(G)$
- Let *T'* be any extension of *T*[*S*] into a spanning tree of *G*[*S*].
- Then $c(G[S], T') \leq STC(G) + |F|$.
- As $|E_T(S, V \setminus S)| \le |E_G(S, V \setminus S)|$, we are done.

< D > < P > < E > <</pre>

Plan: Given the optimal spanning tree T of G and $S \subseteq V$, construct a spanning tree T' of G[S] such that

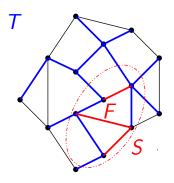
$$C(G[S], T') \leq \left(1 + rac{|E(S, V \setminus S)|}{2}\right) \cdot \operatorname{STC}(G)$$
.



- F edges $uv \in E$ such that $u, v \in S$ and $p_{uv} \cap (V \setminus S) \neq \emptyset$
- Note: for every uv ∈ F, p_{uv} uses at least 2 edges from E_T(S, V \ S)
- $\Rightarrow |2|F| \leq |E_T(S, V \setminus S)| \cdot \mathsf{STC}(G)$
- Let *T'* be any extension of *T*[*S*] into a spanning tree of *G*[*S*].
- Then $c(G[S], T') \leq STC(G) + |F|$.
- As $|E_T(S, V \setminus S)| \le |E_G(S, V \setminus S)|$, we are done.

Plan: Given the optimal spanning tree T of G and $S \subseteq V$, construct a spanning tree T' of G[S] such that

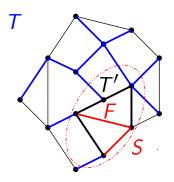
$$C(G[S], T') \leq \left(1 + rac{|E(S, V \setminus S)|}{2}\right) \cdot \operatorname{STC}(G)$$
.



- F edges $uv \in E$ such that $u, v \in S$ and $p_{uv} \cap (V \setminus S) \neq \emptyset$
- Note: for every uv ∈ F, p_{uv} uses at least 2 edges from E_T(S, V \ S)
- $\Rightarrow |2|F| \leq |E_T(S, V \setminus S)| \cdot \text{STC}(G)$
- Let *T'* be any extension of *T*[*S*] into a spanning tree of *G*[*S*].
- Then $c(G[S], T') \leq STC(G) + |F|$.
- As $|E_T(S, V \setminus S)| \le |E_G(S, V \setminus S)|$, we are done.

Plan: Given the optimal spanning tree T of G and $S \subseteq V$, construct a spanning tree T' of G[S] such that

$$C(G[S], T') \leq \left(1 + rac{|E(S, V \setminus S)|}{2}\right) \cdot \operatorname{STC}(G)$$
.



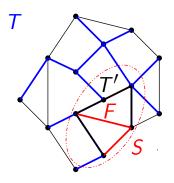
- F edges $uv \in E$ such that $u, v \in S$ and $p_{uv} \cap (V \setminus S) \neq \emptyset$
- Note: for every uv ∈ F, p_{uv} uses at least 2 edges from E_T(S, V \ S)

$$\Rightarrow ||F| \leq |E_T(S, V \setminus S)| \cdot \mathsf{STC}(G)|$$

- Let *T'* be any extension of *T*[*S*] into a spanning tree of *G*[*S*].
- Then $c(G[S], T') \leq STC(G) + |F|$.
- As $|E_T(S, V \setminus S)| \le |E_G(S, V \setminus S)|$, we are done.

Plan: Given the optimal spanning tree T of G and $S \subseteq V$, construct a spanning tree T' of G[S] such that

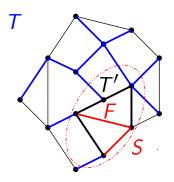
$$C(G[S], T') \leq \left(1 + rac{|E(S, V \setminus S)|}{2}\right) \cdot \operatorname{STC}(G)$$
.



- F edges $uv \in E$ such that $u, v \in S$ and $p_{uv} \cap (V \setminus S) \neq \emptyset$
- Note: for every uv ∈ F, p_{uv} uses at least 2 edges from E_T(S, V \ S)
- $\Rightarrow |2|F| \leq |E_T(S, V \setminus S)| \cdot STC(G)$
 - Let *T'* be any extension of *T*[*S*] into a spanning tree of *G*[*S*].
- Then $c(G[S], T') \leq STC(G) + |F|$.
- As $|E_T(S, V \setminus S)| \le |E_G(S, V \setminus S)|$, we are done.

Plan: Given the optimal spanning tree T of G and $S \subseteq V$, construct a spanning tree T' of G[S] such that

$$C(G[S], T') \leq \left(1 + rac{|E(S, V \setminus S)|}{2}\right) \cdot \operatorname{STC}(G)$$
.



- F edges $uv \in E$ such that $u, v \in S$ and $p_{uv} \cap (V \setminus S) \neq \emptyset$
- Note: for every uv ∈ F, p_{uv} uses at least 2 edges from E_T(S, V \ S)
- $\Rightarrow |2|F| \leq |E_T(S, V \setminus S)| \cdot STC(G)$
 - Let *T'* be any extension of *T*[*S*] into a spanning tree of *G*[*S*].
 - Then $c(G[S], T') \leq STC(G) + |F|$.
 - As $|E_T(S, V \setminus S)| \le |E_G(S, V \setminus S)|$, we are done.

Ideas

- Recursively bisect the graph until each part is *small*.
- Either some of the bisections is *large*: then, by above lemmas, we have a strong lower bound, and any spanning tree is a good solution;
- Or all bisections are *small*: then the recursive decomposition yields a good solution, as the overall congestion is small (calculation needed);
- Note: The meaning of *large* depends on the recursion level increases exponentially with the recursion level.

Approximation Algorithm

initial parameters H = G, $s = \frac{n}{2^{k-1}}$, $\sigma = 1$ where $k = \lceil \sqrt{\log n} \rceil + 1$

CONSTRUCTST(H, s, δ)

1: construct an approximate bisection $(S, V(H) \setminus S)$ of H

2:
$$F \leftarrow E(S, V(H) \setminus S); b \leftarrow |F|$$

- 3: if $b/\sigma \ge n^{1/k}$ or $|V(H)| \le s$ then
- 4: return any spanning tree of H
- 5: end if
- 6: for each connected component C of $H \setminus F$ do
- 7: $T_C \leftarrow \text{CONSTRUCTST}(C, s, \sigma + b)$
- 8: end for
- 9: arbitrarily connect all the spanning trees T_C by edges from F to form a spanning tree T of H

10: return T

Theorem

CONSTRUCTST is an $\tilde{\mathcal{O}}(n^{1-1/k})$ -approximation algorithm.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Three STC Questions

- Is it possible to extend CONSTRUCTST for unbounded degrees?
- Is 4-STC solvable in polynomial time, or is it NP-complete?
- Is STC problem NP-hard for graphs with all degrees bounded by a constant? The known NP-hardness proofs require at least one vertex of unbounded degree.

Minimum Connected c-Cut

Given a graph G = (V, E) and $c \in \mathbb{N}$, find a subset $S \subseteq V$ such that:

 $\bigcirc |S| = c,$

- the subgraph G[S] is connected,
- the cut size $|E(S, V \setminus S)|$ is the smallest among all subsets satisfying the other properties.

Let $f(G, c) = \min_{S \subset V} \{ |E(S, V \setminus S)| : |S| = c \text{ and } G[S] \text{ connected} \}.$

Lemma (Law, Ostrowskii, 2010)

$$STC(G) \ge \min \left\{ f(G,c) \mid \left\lceil \frac{n-1}{\Delta} \right\rceil \le c \le \frac{n}{2} \right\}$$

If only any two of the three properties are required, then the problem is solvable, or at least reasonably approximable, in polynomial time.

Open Problem

Design an approximation for the minimum connected c-cut.

Thank you!

A (10) A (10)

크