
Bond Polytope under Vertex- and Edge-sums

Petr Kolman and Hans Raj Tiwary

Charles University, Faculty of Mathematics and Physics
Department of Applied Mathematics

Prague, Czech Republic
{kolman,hansraj}@kam.mff.cuni.cz

Abstract. A cut in a graph G is called a bond if both parts of the cut
induce connected subgraphs in G, and the bond polytope is the convex
hull of all bonds. Computing the maximum weight bond is an NP-hard
problem even for planar graphs. However the problem is solvable in lin-
ear time on (K5 \ e)-minor-free graphs, and in more general, on graphs
of bounded treewidth, essentially due to clique-sum decomposition into
simpler graphs.
We show how to obtain the bond polytope of graphs that are 1- and 2-
sum of graphs G1 and G2 from the bond polytopes of G1, G2. Using this
we show that the extension complexity of the bond polytope of (K5 \ e)-
minor-free graphs is linear. Prior to this work, a linear size description
of the bond polytope was known only for 3-connected planar (K5 \ e)-
minor-free graphs, essentially only for wheel graphs.
We also describe an elementary linear time algorithm for the Max-Bond
problem on (K5 \ e)-minor-free graphs. Prior to this work, a linear time
algorithm in this setting the hidden constant in the big-Oh notation was
huge due to the fact that the known algorithm uses the heavy machinery
of linear time algorithms for graphs of bounded treewidth, as a black
box.

1 Introduction

The Max-Cut problem is a fundamental problem in computer science and is one
of Karp’s original 21 NP-Complete problems [17]. Given a graph G = (V,E) the
problem asks for a subset S ⊆ V of vertices such that the number of edges with
exactly one endpoint in S is as large as possible. However, in some applications
such as image segmentation [24], forest planning and harvest scheduling [4],
and certain market zoning [13], one imposes an additional condition that both
components G[S] and G[V \S] be connected. This version of Max-Cut has been
studied by various authors [10,8,11,14,6,5] under different names, but following
Duarte et al. [9] and Chimani et al. [6] we will refer to this as the bond problem.

Formally, given a graph G = (V,E) a bond in G is (the set of edges in) a cut
(S, V \S) such that the induced subgraphs G[S] and G[V \S] are both connected.
The Max-Bond problem seeks to find a bond (S, V \ S) such that the number
of edges between S and V \ S is maximized. For each bond in a graph G, we
consider the characteristic vector of its edges; the convex hull of all such vectors

defines the bond polytope of G. For simplicity we do not distinguish between a
bond, the edges in a bond, and the characteristic vector of the edges in a bond
unless the meaning is not clear in the context of discussion.

In this paper we deal with the Max-Bond problem on (K5 \ e)-minor-free
graphs. For this class of graphs, Chaourar [5] gave a quadratic time algorithm
for finding a maximum bond. Chimani et al. [6] improved this result by giving a
linear time algorithm; the algorithm uses as a black box a linear time algorithm
of Duarte et al. [9] for the bond problem on bounded tree-width graphs, and this
black-box is used to get the maximum bond for the wheel graphs Wn. Chimani
et al. [6] also gave characterisation of the bond polytope for 3-connected planar
(K5\e)-minor-free graphs by giving a linear size set of linear inequalities defining
it; by a result of Wagner [25], this class of graphs contains only the wheel graphs
Wn, the triangle K3, and the triangular prism. The question of describing the
bond polytope for general (K5 \ e)-minor-free graphs was left open.

Our contributions are twofold:

1. We show how to obtain linear size descriptions of the bond polytope of
graphs that are k-sum, for k = 1, 2, of other graphs with known linear size
bond polytope. Using this result, we prove that the extension complexity of
the bond polytope is linear for arbitrary (K5 \ e)-minor-free graphs. This,
in a sense, is the best one can do because – as we note later – the actual
description of the bond polytope even for (K5 \ e)-minor-free graphs can be
exponential in the size of the graph. This answers an open question posed
by Chimani et al. [6].

2. We simplify the algorithmic result for the Max-Bond problem of Chimani et
al. [6] by giving a simple linear time algorithm for the wheel graph, removing
the need to use the tree-width machinery [10], which yields a linear time
algorithm for the Max-Bond problem for all (K5 \ e)-minor-free graphs.
Chimani et al. [6] mention the possibility of existence of algorithms simpler
than theirs so our algorithm can be seen as an answer to their question.

It should be noted that (K5 \ e)-minor-free graphs have bounded treewidth
and bonds can be represented by a formula in Monadic Second Order (MSO)
logic. So both a linear time algorithm as well as a linear size extended formu-
lation follow readily from meta results about bounded treewidth graphs: the
algorithmic results follow from the work of Courcelle [7] and are given explic-
itly by Duarte et al. [9], while the polyhedral results follow from the work of
Kolman et al. [18]. However, the magnitude of the constants in both cases is
enormous [19], in contrast to the constants in our results.

Other Related Results Cut polytope for clique-sums of size three was studied
by Barahona [2] who gave efficient algorithm and extended formulation for Cut
polytope of K5-minor-free graphs.

A closely related problem is the version of the Max-Cut in which only the S
part is required to be connected. This version of the Max-Cut problem is NP-
hard [14] as well. Schieber and Vahidi [22] gave an O(log log n)-approximation
improving an earlier O(log n)-approximation [14].

In contrast to the Max-Cut problem, there is no constant-factor approxima-
tion algorithm for Max-Bond unless P=NP [8]. On the positive side, both Max-
Bond and the version of Max-Cut with one side connected are fixed-parameter
tractable when parameterized by the size of the solution, the treewidth, and the
twin-cover number [8].

2 Preliminaries

Let G1 and G2 be two graphs and U1 ⊆ V (G1) and U2 ⊆ V (G2) two subsets of
vertices inducing a clique of the same size, say size k, for some k ≥ 1. A graph
G is a clique-sum of G1 and G2 if G is obtained from G1 and G2 by identifying
U1 and U2, and possibly removing some edges from the clique.

In this paper, we use the clique-sums for k = 1, 2. To distinguish between
the 2-sum that keeps the edge in the clique, and the 2-sum that removes it, we
denote the former operation by ⊕2 and the later by ⊕−2 . If we want to emphasize
that G1⊕1G2 is taken over a vertex v, we will denote it as G1⊕v G2. Similarly,
G1 ⊕e G2 or G1 ⊕−e G2 will be used to mean that the 2-sum of G1 and G2 is
taken over the edge e.

For a graph G = (V,E), a pair of vertices uv is called a non-edge if uv 6∈ E.
For an edge e ∈ E, by G \ e we denote the graph (V,E \ {e}), by G ∪ {e} the
graph (V,E∪e), and we use uv as an abbreviation of {u, v}. In the case of (edge)
weighted graphs, the weight of an edge uv is denoted w(u, v). For a subset S of
vertices, δ(S) is the set of edges between S and V \ S.

A graph H is a minor of a graph G if H can be obtained from G be a series
of vertex and edge deletions and edge contractions. A graph G is H-minor-free
if H is not a minor of G.

For n ≥ 3, a wheel graph Wn is a graph with a vertex set V = {0, 1, . . . , n−
1} ∪ {c}, for c 6∈ {0, 1, . . . , n− 1}, and an edge set E =

⋃n−2
i=0 {(i, i+ 1), (i, c)} ∪

{(n − 1, 0), (n − 1, c)}; the vertex c is called the hub of the wheel, the cycle
{0, 1, . . . , n − 1, 0} is the rim, and the edges of the form (i, c) are the spokes of
the wheel. For integers i < j, let [i, j] denote the set {i, i+ 1, . . . , j}.

Theorem 1 (Satz 7, Wagner [25]). Each maximal (K5 \ e)-minor-free graph
G can be decomposed as G = G1 ⊕1 · · · ⊕l−1 G` where each Gi is isomorphic to
a wheel graph, Prism, K2, K3, or K3,3, and each operation ⊕i is ⊕1 or ⊕2.

Theorem 2. Each (K5\e)-minor-free graph G can be decomposed in linear time
as G = G1 ⊕1 · · · ⊕l−1 G` where each Gi is isomorphic to a wheel graph, Prism,
K2, K3, or K3,3, and each operation ⊕i is ⊕1, ⊕2 or ⊕−2 .

The proof of Theorem 2 is in the Appendix.
Let P be a polytope in Rd. A polytope Q in Rd+r is called an extended

formulation of P if P is a projection of Q onto the first d coordinates. The size
of a polytope is defined to be the number of its facet-defining inequalities, and
the extension complexity of a polytope P , denoted by xc (P), is the size of its
smallest extended formulation.

Theorem 3 (Balas [1], Theorem 2.1). If P1, . . . , Pq are non-empty polytopes,
then

xc

(
conv

(q⋃
i=1

Pi

))
≤ q +

q∑
i=1

xc (Pi) .

Furthermore, such an extended formulation can be constructed from extended
formulations of the Pi’s in linear time.

Let P1 ⊆ Rd1+k and P2 ⊆ Rd2+k be two 0/1-polytopes with vertices vert(P1)
and vert(P2), respectively. The glued product P1 ×k P2 of P1 and P2, where the
gluing is done over the last k coordinates, is defined to be

P1 ×k P2 := conv

x
y
z

 ∈ {0, 1}d1+d2+k
∣∣∣∣∣∣
(
x
z

)
∈ vert(P1),

(
y
z

)
∈ vert(P2)

 .

We will use the following known result about glued products.

Lemma 4 (Gluing lemma [20,18]). Let P and Q be 0/1-polytopes and let
the k (glued) coordinates in P be labeled z1, . . . , zk, and the k (glued) coordinates
in Q be labeled w1, . . . , wk. Suppose that 1ᵀz 6 1 is valid for P and 1ᵀw 6 1 is
valid for Q. Then xc (P ×k Q) 6 xc (P) + xc (Q).

We conclude this section with a lemma about bonds of G1⊕−uvG2; analogous
claims about bonds of G1 ⊕uv G2 and G1 ⊕u G2 were observed earlier [5,6].

Lemma 5. Let G1, G2 be graphs, uv ∈ E(G1) ∩ E(G2) be an edge that appears
in both of them, and let G = G1 ⊕−uv G2. Then the following claims hold:

1. If G1 \ uv is connected but G2 \ uv is not, then F ⊆ E(G) is a bond of G if
and only if
– F is a bond of G1 \ uv, or
– F is a bond of G2 with u and v on the same side.

2. If both G1 \ uv and G2 \ uv are connected, then F ⊆ E(G) is a bond of G if
and only if
– F is a bond of G1 \ uv with u and v on the same side, or
– F is a bond of G2 \ uv with u and v on the same side, or
– F ∩E(Gi) is a bond of Gi \ uv with u and v on different sides, for both
i ∈ {1, 2}.

Proof. The two cases are illustrated in Figures 1a-1b. Case 1. We start with
the left to right implication. By the assumption, G2 \ uv has two connected
components, one containing the vertex u and the other containing the vertex v;
we denote them Hu and Hv. We distinguish two subcases: either i) F is a bond
of G with u and v on the same side, or ii) F is a bond of G with u and v on
different sides. In the first subcase, either F is a bond of G1 with u and v on the
same side, or F is a bond of G2 with u and v on the same side.

In the other subcase, F must be a bond of G1 \ uv with u and v on differ-
ent sides. Combining the two subcases completes the proof of the left-to-right
implication of Case 1.

G2G1
u

v v

u

⊕−
uv

G1 ⊕−
uv G2

v

u

(a) Case 1.

G2G1
u

v v

u

⊕−
uv

G1 ⊕−
uv G2

v

u

(b) Case 2.

Fig. 1: 2-sum

The right-to-left implication in Case 1 is obvious.
Case 2. As in the proof of Case 1, we distinguish several subcases. If F is a

bond of G with u and v on the same side, then one of the subgraphs G1 \ uv
and G2 \ uv is untouched by the bond F of G, and F is a bond of the other
part. If F is a bond of G with u and v on different sides, then the assumption
of connectivity of both G1 \ uv and G2 \ uv implies that F ∩E(Gi) is a bond of
Gi \ uv with u and v on different sides, for i = 1, 2.

The right-to-left implication in Case 2 is obvious. ut

3 Extension Complexity

Let G = (V,E) be a graph and let E′ ⊆
(
V
2

)
\ E be a subset of non-edges of

G. An Augmented Bond Polytope BOND (G,E′) is the convex hull of vectors
x ∈ R|E|+|E′| where xE is the characteristic vector of a bond F ⊆ E in G and
for every uv ∈ E′, xuv = 0 if u and v are on the same side of the bond F and
xuv = 1 uf u and v are on different sides of the bond F .

Lemma 6. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1 ∩ V2 =
{v}, and let E′1 ⊆

(
V1

2

)
\E1, E

′
2 ⊆

(
V2

2

)
\E2. Let BOND (G1, E

′
1), BOND (G2, E

′
2)

be their respective augmented bond polytopes. Suppose BOND (G1, E
′
1) = conv (B1)

and BOND (G2, E
′
2) = conv (B2). Then,

BOND (G1 ⊕v G2, E
′
1 ∪ E′2) = conv

(
B1 0
0 B2

)
where the right-hand side is a shorthand of conv ({(b,0)|b ∈ B1} ∪ {(0,b)|b ∈ B2}).

Proof. Notice that any cut in G1⊕vG2 either cuts G1 in two components placing
all of G2 in the component containing the common vertex v or it cuts G2 in two
components placing all of G1 in the component containing the common vertex
v. Therefore, any bond in G1⊕v G2 is either a bond in G1 extended with zeroes
at the coordinates xuw for uw ∈ E2 ∪E′2, or a bond in G2 extended with zeroes
at the coordinates xuw for uw ∈ E1 ∪ E′1. ut

It should be remarked that the above description of BOND (G1 ⊕v G2, E
′
1 ∪ E′2)

is the subdirect sum of BOND (G1, E
′
1) and BOND (G2, E

′
2) and thus it can have

a number of inequalities that is asymptotically the product of the number of in-
equalities describing the two multiplicands (cf. Lemma 15 in the Appendix). So,

in general, one cannot obtain a linear size description for (K5 \ e)-minor-free
graphs unless one is willing to consider extended formulations.

Lemma 7. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with E1 ∩E2 =
{e}, and let E′1 ⊆

(
V1

2

)
\E1, E

′
2 ⊆

(
V2

2

)
\E2. Let BOND (G1, E

′
1), BOND (G2, E

′
2)

be their respective augmented bond polytopes. Suppose BOND (G1, E
′
1) = conv (B1)

and BOND (G2, E
′
2) = conv (B2). Then, BOND (G1 ⊕e G2, E

′
1 ∪ E′2) is affinely

equivalent to

conv

{(
B0

1 0
0 B0

2

)
∪ (B1

1 ×B1
2)

}
,

where Bi
j = {b ∈ Bj | be = i} for i ∈ {0, 1} and j ∈ {1, 2} and × denotes the

Cartesian product.
Proof. Let e = {u, v}. Any bond in G = G1 ⊕e G2 either has u, v in the same
component or in different components. If u, v are in the same component, then
the bond is obtained either from a bond of G1 by putting G2 entirely in the
component containing u, v or from a bond of G2 by putting G1 entirely in the
component containing u, v. If u, v are in different components, then the bond
is obtained from a bond b1 of G1 and a bond b2 of G2 such that u, v are in
different components of both b1 and b2. ut

Theorem 8. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs and let

E′1 ⊆
(
V1

2

)
\ E1, E

′
2 ⊆

(
V2

2

)
\ E2. Let BOND (G1, E

′
1), BOND (G2, E

′
2) be their

respective augmented bond polytopes. Suppose BOND (G1, E
′
1) = conv (B1) and

BOND (G2, E
′
2) = conv (B2). Then,

xc
(
BOND

(
G1 ⊕k G2, E

′
1 ∪ E′2

))
6 xc

(
BOND

(
G1, E

′
1

))
+xc

(
BOND

(
G2, E

′
2

))
+O (1) ,

for k ∈ {1, 2}. Furthermore, given extended formulations for BOND (G1, E
′
1)

and BOND (G2, E
′
2), an extended formulation for BOND (G1 ⊕k G2, E

′
1 ∪ E′2)

can be constructed in linear time.

Proof. For k = 1, the result is an immediate corollary of Lemma 6 and Theo-
rem 3. For k = 2, let e be the edge along which the 2-sum is taken, and let d be
dimension of the affine hull of BOND (G1, E

′
1).

First, we assume that BOND (G1, E
′
1) is embedded in Rd+2. Call the ex-

tra two coordinates w, z and the embedded polytope PG1 . We assume that the
following property holds for each b ∈ vert (PG1

):

(b)e = 0 =⇒ (b)w = 0, (b)z = 1
(b)e = 1 =⇒ (b)w = 1, (b)z = 1

This can be achieved by taking the glued product of BOND (G1, E
′
1) with the seg-

ment S = conv ({(0, 0, 1), (1, 1, 1)}) glueing coordinate (x)e in BOND (G1, E
′
1)

with the first coordinate of the segment S. This results in an additive O (1) in-
crease in the extension complexity due to Lemma 4. Next we take the convex hull
of the union of the resulting polytope and the point (0, 1, 0) ∈ Rd+2 to obtain
P ′G1

, again resulting in an O (1) additive increase in the extension complexity

due to Theorem 3. We have xc
(
P ′G1

)
6 xc (BOND (G1, E

′
1)) +O (1) .

Similarly, we obtain P ′G2
from BOND (G2, E

′
2) by adding new coordinates

w, z first ensuring
(b)e = 0 =⇒ (b)w = 1, (b)z = 0
(b)e = 1 =⇒ (b)w = 1, (b)z = 1

for each b ∈ vert (PG2) , and then taking the convex hull of the union of the
resulting polytope with the point (0, 0, 1). By the same arguments as for P ′G1

we

have that xc
(
P ′G2

)
6 xc (BOND (G2, E

′
2)) +O (1) .

Finally, we take the glued-product of P ′G1
and P ′G2

where the gluing is done
over the z, w coordinates in P ′G1

with the z, w coordinates in P ′G2
. The resulting

polytope is an extended formulation of BOND (G1 ⊕2 G2, E
′
1 ∪ E′2) by Lemma 7,

and by Theorem 3, it has extension complexity at most xc
(
P ′G1

)
+ xc

(
P ′G2

)
+

O (1) which is xc (BOND (G1, E
′
1)) + xc (BOND (G2, E

′
2)) + O (1) . Note that

all the steps in the proof are efficiently constructive so the resulting extended
formulation can be constructed in linear time. ut

Lemma 9. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that u, v ∈
V1 ∩ V2 and {u, v} ∈ E1 ∩ E2. Let E′1 ⊆

(
V1

2

)
\ E1 and E′2 ⊆

(
V2

2

)
\ E2. Suppose

that u and v belong to the same connected component in G1 \ uv.

1. If G2 \ uv is disconnected, then

xc
(
BOND

(
G1 ⊕−uv G2, E

′
1 ∪ E′2 ∪ {uv}

))
6

xc (BOND (G1 \ uv,E′1 ∪ {uv})) + xc (BOND (G2, E
′
2)) +O (1) .

2. If G2 \ uv is connected, then

xc
(
BOND

(
G1 ⊕−uv G2, E

′
1 ∪ E′2 ∪ {u, v}

))
6

xc (BOND (G1 \ uv,E′1 ∪ {uv}))+xc (BOND (G2 \ uv,E′2 ∪ {uv}))+O (1) .

Furthermore, in each of these cases the resulting extended formulation can be
constructed in linear time given extended formulations for appropriate polytopes.

Proof. The claim of Part 1 follows immediately from the characterization in
Lemma 5 (Case 1) and Theorem 3. For Part 2, we note the characterization in
Lemma 5 (Case 2) and observe that the case is identical to that in Theorem 8
and hence an identical proof yields the result. ut

Lemma 10. Let G = (V,E) be a graph and let E′ ⊆
(
V
2

)
\ E such that G′ =

(V,E ∪E′) is a wheel graph. Then, xc (BOND (G,E′)) 6 O (|V |) . Furthermore,
such an extended formulation can be constructed in time O (|V |) .

Proof. We prove the lemma by induction on the number of vertices on the rim.
For any constant n we have a constant size graph and so it has a constant
number of bonds and the extension complexity of any augmented bond polytope
is a constant.

Suppose the claim holds for n. That is, for any subgraph of wheel Wn with
center c and rim vertices 0, . . . , n the complexity of the corresponding augmented
bond polytope (with the non-edges as augmented coordinates) is O (n) . Now
consider a subgraph Gn+1 of Wn+1 with a set of non-edges En+1.

Either there exists a rim-vertex with degree strictly less than three, or the
given graph is the wheel itself and there are no augmented coordinates and thus
the extension complexity of BOND

(
G,En+1

)
is linear and can be explicitly

described [6]. Similarly, either there exists a rim-vertex with degree strictly more
than one, or the given graph is a star and the augmented coordinates correspond
to the cycle 0, . . . , n + 1. The star has only a linear number of bonds - one for
each ray being cut off. So an extended formulation can be constructed in linear
time using Theorem 3 using each bond explicitly.

Therefore, without loss of generality we can assume that there is a rim vertex
that has degree exactly two. For simplicity we assume that this vertex is labeled
n + 1 even though for the construction of an extended formulation the actual
label of such a vertex can be directly used. We distinguish following cases:

1. edges {n, n+ 1}, {c, n+ 1} are present while the edge {0, n+ 1} is absent,
2. edges {0, n+ 1}, {c, n+ 1} are present while the edge {n, n+ 1} is absent,
3. edges {0, n+ 1}, {n, n+ 1} are present while the edge {c, n+ 1} is absent.

Cases 1 and 2 are identical except for vertex labeling so we will consider only
case 1. We construct a subgraph Gn of Wn as follows. We remove vertex n+ 1.
For each i ∈ {0, n}, we keep {c, i} as an edge in Gn if it was an edge in Gn+1,
otherwise we keep it as a non-edge in En. Similarly for {i, i+1}, for i ∈ {0, n−1}.
Finally, {0, n} ∈ En. By our inductive hypothesis the augmented bond polytope
BOND

(
Gn, En

)
has extension complexity O (n) .

Note that any bond in Gn+1 must have vertex n+1 in the same component as
either c or n. The only exception is the bond that has vertex n+1 as one compo-
nent and the rest of the graph in the other component. Since, every unexceptional
bond bond in Gn+1 corresponds to a bond in Gn and there are only finitely many
types of bonds – in how they appear at the vertices c, n, n + 1, and 0, we glue
extra coordinates onto BOND

(
Gn, En

)
encoding this. More specifically, con-

sider the glued product of BOND
(
Gn, En

)
over the coordinates xc,n, xc,0, x0,n

with polytope 3.1. Finally we add the single exceptional bond and the resulting
polytope is an extended formulation for BOND

(
Gn+1, En+1

)
.

Similarly for case 3, we obtain Gn by keeping edges/non-edges as they are in
Gn+1 over vertices c, 0, . . . , n and {0, n} ∈ E(Gn). Similar to previous case we
glue extra coordinates to extend bonds in Gn to bonds in Gn+1. We see that the
polytope needed for glueing is polytope 3.2.

xc,n x0,n xc,0 xn,n+1 xn+1,0 xc,n+1

0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 1 0
1 0 1 0 0 1
1 1 0 1 0 0
1 1 0 0 1 1

Polytope 3.1: Vertices

xc,n x0,n xc,0 xn,n+1 xn+1,0 xc,n+1

0 0 0 0 0 0
0 1 1 0 1 0
1 0 1 1 1 0
1 0 1 0 0 1
1 1 0 1 0 0
1 1 0 0 1 1

.

Polytope 3.2: Vertices

Finally we add the single exceptional bond and the resulting polytope is an
extended formulation for BOND

(
Gn+1, En+1

)
.

Therefore we see that xc
(
BOND

(
Gn+1, En+1

))
6 xc

(
BOND

(
Gn, En

))
+

O (1) . Furthermore, observe that a degree two vertex in a subgraph of wheel can
be found in linear time so the inductive step can be performed with a constant
overhead. This conludes the proof of the inductive step. ut

Theorem 11. Let G = (V,E) be a graph and let E′ ⊆
(
V
2

)
\ E such that G′ =

(V,E ∪ E′) does not contain (K5 \ e) as a minor. Then, xc (BOND (G,E′)) 6
O (|V |) . Furthermore, such an extended formulation can be constructed in time
O (|V |) .

Proof. If G is not connected then depending on whether it has two or more con-
nected components, there is either only the trivial bond or no bonds. Therefore
we may assume that G is connected. Now, by Theorem 2, G = G1⊕1 · · ·⊕`−1G`
where each Gi is isomorphic to a wheel graph, Prism, K2, K3, or K3,3, and each
operation ⊕i is ⊕1, ⊕2 or ⊕−2 . We prove the claim by induction on `.

If ` = 1 then G is either K2, K3, K3,3, prism and a wheel graph. If G is either
K2, K3, K3,3 or prism, then it has constant size and hence a constant number
of bonds. Thus, the augmented bond polytope BOND (G,E′) has constant size.
If G′ is a wheel, then applying Lemma 10 gives us the desired result.

The inductive step. Let G′ = G1 ⊕1 · · · ⊕`−2 G`−1. Then G = G′ ⊕`−1 G`.
If G = G′ ⊕1 G`, then Lemma 6 with Theorem 3 gives us the desired result.
If G = G′ ⊕e G`, then Theorem 8 gives us the desired result.
Finally, if G = G′ ⊕−e G`, then Lemma 9, Part 1 or Part 2 – depending on

how the end vertices of e are connected in G1 \e and G2 \e – gives us the desired
result. ut

Applying Theorem 11 to (K5 \ e)-minor-free graphs together with E′ = ∅ we
get the following result.

Theorem 12. Let G = (V,E) be a (K5\e)-minor-free graph. Then, xc (BOND (G)) 6
O (|V |) . Moreover, this extended formulation can be constructed in time O (|V |) .

4 The Algorithm

We use the same framework as Chimani et al. [6] did, based on the fact that
decomposition of G into 3-connected components can be constructed in linear
time due to the algorithm of Hopcroft and Tarjan [16]. The important key dif-
ference is that for the wheel graph, we describe a relatively simple linear time
algorithm whereas Chimani et al. rely on the algorithm for the construction of
maximum bonds on graphs of bounded treewidth [9]. The main idea of our al-
gorithm is simple - to mimic Kadane’s dynamic programming approach [3] for
the Maximum sum subarray problem in a slightly more complicated setting.

Theorem 13. The Max-Bond problem can be solved in time O(n) for the wheel
graph Wn.

Proof. Given a weighted wheel graph Wn, for notational simplicity, we also use
the following notation: for i = 0, 1, . . . , n − 2, ai = w(i, c), bi = w(i, i + 1), and
an−1 = w(n− 1, c) and bn−1 = w(n− 1, 0).

ccc

n− 1

c

2

1
0

bn−1

b1b1
b0

a2
a1a0

an−1

Given a bond (S, V \ S) of Wn, its two connected compo-
nents have a very special form: either one of them is the hub
vertex c and the other consists of all the vertices on the rim -
such a bond is called the trivial bond, or one of the connected
components is a path on the rim of length at most n− 2, de-
noted PS in the following, and the other component consists
of all the other vertices which is a fan graph.

Let F be the set of all non-trivial bonds in Wn. Consider the partition of F
into F1 ∪ F2 ∪ F3 defined bellow:

F1 = {S ∈ F | the path PS does not contain the edges (n− 1, 0) and (0, 1)}
F2 = {S ∈ F | the path PS does not contain the edges (0, 1) and (1, 2)}
F3 = {S ∈ F | the path PS contains the edge (0, 1)}

Thus, if we can find for each i, minS∈Fi

∑
e∈δ(S) w(e), in linear time, we can

solve the bond problem on the wheel graph in linear time. Also note that the
sets F1 and F2 are of the same type, just rotated; thus, it suffices to describe an
algorithm for finding the optimal bond from F1, and from F3.

Finding the optimal bond from F1. For each k ∈ {1, n − 1}, we define the
following quantities; for most of the quantities we introduce two names - a full
name, indicating its meaning, and an abbreviation:

BSF(k) = Best-So-Far(k) = max{bi−1 + bj +

j∑
l=i

al : i ∈ [1, k], j ∈ [i, k]}
BSFL(k) = Best-So-Far-ind-L(k) =

min
{
i ∈ [1, k] : BSF(k) = max{bi−1 + bj +

j∑
l=i

al : j ∈ [i, k]}
}

BSFR(k) = Best-So-Far-ind-R(k) =

min{j ∈ [BSFL(k), k] : BSF(k) = bBSFL(k)−1 + bj +

j∑
l=BSFL(k)

al}

SB(k) = Suffix-Best(k) = max{bi−1 + bk +

k∑
l=i

al : i ∈ [1, k]}

Suffix-Best-ind-L(k) = min{i ∈ [1, k] : SB(k) = bi−1 + bk +

k∑
l=i

al}

In words, Best-So-Far(k) is the cost of the maximum bond that cuts out a subpath
of {1, 2, . . . , k}, and the numbers Best-So-Far-ind-L(k) and Best-So-Far-ind-R(k)
are the indices i and j for which the maximum value Best-So-Far(k) is at-
tained; as there might be more such indices, we pick the smallest ones. Sim-
ilarly, Suffix-Best(k) is the cost of the maximum bond that cuts out a sub-
path of {1, 2, . . . , k} ending in k, and the number Suffix-Best-ind-L(k) is the

index of the vertex in which the subpath of the cost Suffix-Best(k) starts. Note
that Best-So-Far(n − 1) is the cost of the maximal bond from the set F1 and
that it consists of edges {{Best-So-Far-ind-L(n − 1) − 1,Best-So-Far-ind-L(n −
1)}, {Best-So-Far-ind-R(n−1), Best-So-Far-ind-R(n−1)+1}}∪

⋃BSFR(n−1)
l=BSFL(n−1){l, c}.

The quantities can be computed in linear time using dynamic programming
by Procedure Best-Bond-1.

Procedure 1 Best-Bond-1

1: Best-So-Far(1)← bn−1 + b1 + a1,Suffix-Best(1)← Best-So-Far(1)
2: Best-So-Far-ind-L(1)← 1, Best-So-Far-ind-R(1)← 1, Suffix-Best-ind-L(1)← 1
3: for j = 1, . . . , n− 2 do
4: New-Best-Candidate← Suffix-Best(j) + aj+1 − bj + bj+1

5: if Best-So-Far(j) ≥ New-Best-Candidate then
6: Best-So-Far(j + 1)← Best-So-Far(j)
7: Best-So-Far-ind-L(j + 1)← Best-So-Far-ind-L(j)
8: Best-So-Far-ind-R(j + 1)← Best-So-Far-ind-R(j)
9: else

10: Best-So-Far(j + 1)← New-Best-Candidate
11: Best-So-Far-ind-L(j + 1)← Suffix-Best-ind-L(j)
12: Best-So-Far-ind-R(j + 1)← j + 1

13: if Suffix-Best(j) < 0 then
14: Suffix-Best(j + 1)← aj+1 − bj + bj+1

15: Suffix-Best-ind-L(j + 1)← j + 1
16: else
17: Suffix-Best(j + 1)← Suffix-Best(j) + aj+1 − bj + bj+1

18: Suffix-Best-ind-L(j + 1)← Suffix-Best(j)

19: return(Best-So-Far(n− 1),Best-So-Far-ind-L(n− 1),Best-So-Far-ind-R(n− 1))

Finding the optimal bond from F3. For each k ∈ [1, n−2], we define the following
quantities:

Prefix-Best-Right(k) = max{bj +

j∑
l=1

al : j ∈ [1, k]}

Prefix-Best-Right-ind(k) = min{j ∈ [1, k] : Prefix-Best-Right(k) = bj +

j∑
l=1

al}

Prefix-Right(k) = bk +

k∑
l=1

al

and for each k ∈ [3, n], we define and then backwards calculate the following
ones:

Prefix-Best-Left(k) = max{bk−1 +

n−1∑
l=j

al + a0 : j ∈ [k, n]}

Prefix-Best-Left-ind(k) = min{j ∈ [k, n] : Prefix-Best-Left(k) = bj−1 +

n−1∑
l=j

al + a0}

Prefix-Left(k) = bk−1 +

n−1∑
l=k

al

Similarly as before, these quantities can be computed in linear time using dy-
namic programming (formal description in the Appendix). We observe two things:
for every bond F of type 3, there exists a vertex i ∈ {2, . . . , n − 1} such that i
does not belong to the path that is cut off by the bond S. If S is the optimal bond
of type 3 and i is the vertex not belonging to the path cut off by it, then the cost
of S equals Prefix-Best-Right(i)+Prefix-Best-Left(i). Thus, the cost of the optimal
bond of type 3 is max {Prefix-Best-Right(i) + Prefix-Best-Left(i) : i ∈ {2, . . . , n− 1}}.

To obtain the optimal bond, we compare the weights (costs) of the trivial
bond and the optimal bonds of types 1, 2, and 3, and pick as our solution the
best one. Note that the total running time is O (n) only. ut

Combining Theorem 13 with the algorithm of Chimani et al. [6] (cf. Theo-
rem 2 and Lemma 5), we obtain the following result.

Corollary 14. The Max-Bond problem can be solved for any (K5 \ e)-minor-
free graph in time O(n).

For the sake of completeness, a self-contained proof of the Corollary 14 is also
given in the Appendix.

5 Concluding Remarks

Our main result concerning k-sums for k = 1, 2 can be used in a natural way to
get explicit descriptions of the bond polytope of the resulting graph. Let G =
G1⊕1G2. Then Lemma 6 allows us to explicitly obtain the inequalities describing
BOND (G) since it is just a subdirect sum of the two polytopes BOND (G1)
and BOND (G2). We include a complete description of these inequalities in the
Appendix (Lemma 15). Unfortunately, the number of inequalities is not additive,
and this cannot be avoided unless one constructs extended formulations, as we
do.

One can also construct the inequalities describing BOND (G1 ⊕2 G2) by first
constructing the extended formulation in Theorem 8 and then projecting out
the extra coordinates that were added. Since there is only a constant number of
extra coordinates that need to be projected out, this can be done in polynomial
time. However, in general, one would have neither a linear size description nor
a linear (in output size) time construction.

Finally, for the 2-sum operation where the common edge is removed, we
believe that the extension complexity of BOND

(
G1 ⊕−2 G2

)
is not additive in

the extension complexities of BOND (G1) and BOND (G2) . This is because in
Lemma 9 we need the bond polytopes not of the summand graphs but of their
subgraphs.

References

1. E. Balas. Disjunctive programming: Properties of the convex hull of feasible points.
Discret. Appl. Math., 89(1-3):3–44, 1998.

2. F. Barahona and A. R. Mahjoub. On the cut polytope. Math. Program., 36(2):157–
173, 1986.

3. J. L. Bentley. Programming pearls: algorithm design techniques. Communications
of The ACM, 27:865–873, 1984.

4. R. Carvajal, M. Constantino, M. Goycoolea, J. P. Vielma, and A. Weintraub.
Imposing connectivity constraints in forest planning models. Oper. Res., 61(4):824–
836, 2013.

5. B. Chaourar. Connected max cut is polynomial for graphs without the excluded
minor K5 \ e. J. Comb. Optim., 40(4):869–875, 2020.

6. M. Chimani, M. Juhnke-Kubitzke, and A. Nover. On the bond polytope. Advances
in Geometry, 23(4):461–480, 2023.

7. B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Information and Computation, 85:12–75, 1990.

8. G. L. Duarte, H. Eto, T. Hanaka, Y. Kobayashi, Y. Kobayashi, D. Lokshtanov,
L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza. Computing the largest bond
and the maximum connected cut of a graph. Algorithmica, 83(5):1421–1458, 2021.

9. G. L. Duarte, D. Lokshtanov, L. L. C. Pedrosa, R. C. S. Schouery, and U. S. Souza.
Computing the Largest Bond of a Graph. In Proc. of 14th International Symposium
on Parameterized and Exact Computation (IPEC), volume 148 of LIPIcs, pages
12:1–12:15, 2019.

10. H. Eto, T. Hanaka, Y. Kobayashi, and Y. Kobayashi. Parameterized algorithms for
maximum cut with connectivity constraints. In Proc. of 14th International Sym-
posium on Parameterized and Exact Computation (IPEC), volume 148 of LIPIcs,
pages 13:1–13:15, 2019.

11. R. Gandhi, M. T. Hajiaghayi, G. Kortsarz, M. Purohit, and K. K. Sarpatwar. On
maximum leaf trees and connections to connected maximum cut problems. Inf.
Process. Lett., 129:31–34, 2018.

12. N. Garg and V. V. Vazirani. A polyhedron with all s-t cuts as vertices, and
adjacency of cuts. Math. Program., 70:17–25, 1995.

13. V. Grimm, T. Kleinert, F. Liers, M. Schmidt, and G. Zöttl. Optimal price zones
of electricity markets: a mixed-integer multilevel model and global solution ap-
proaches. Optim. Methods Softw., 34(2):406–436, 2019.

14. M. Hajiaghayi, G. Kortsarz, R. MacDavid, M. Purohit, and K. K. Sarpatwar. Ap-
proximation algorithms for connected maximum cut and related problems. Theor.
Comput. Sci., 814:74–85, 2020.

15. J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipu-
lation. Commun. ACM, 16(6):372–378, June 1973.

16. J. Hopcroft and R. Tarjan. Dividing a graph into triconnected components. SIAM
J. Comput., 2(3):135–158, 1973.

17. R. M. Karp. Reducibility among combinatorial problems. In Proc. of a symposium
on the Complexity of Computer Computations, pages 85–103, 1972.

18. P. Kolman, M. Koutecký, and H. R. Tiwary. Extension Complexity, MSO Logic,
and Treewidth. Discrete Mathematics & Theoretical Computer Science, vol. 22 no.
4, Oct. 2020.

19. A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Practical algorithms for
MSO model-checking on tree-decomposable graphs. Computer Science Review,
13-14:39–74, 2014.

20. F. Margot. Composition de polytopes combinatoires: une approche par projection.
PhD thesis, École polytechnique fédérale de Lausanne, 1994.

21. P. McMullen. Constructions for projectively unique polytopes. Discrete Mathe-
matics, 14(4):347–358, 1976.

22. B. Schieber and S. Vahidi. Approximating connected maximum cuts via local
search. In Proc. of 31st Annual European Symposium on Algorithms (ESA), volume
274 of LIPIcs, pages 93:1–93:17, 2023.

23. M. Skutella and A. Weber. On the dominant of the s-t-cut polytope: Vertices,
facets, and adjacency. Math. Program., 124(1-2):441–454, 2010.

24. S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based image segmenta-
tion with connectivity priors. In Proc. of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), 2008.

25. K. Wagner. Bemerkungen zu Hadwigers Vermutung. Mathematische Annalen,
141:433–452, 1960.

Appendix

Max-Bond on the wheel grpahs

Here we describe the second procedure used for solving the Max-Bond problem
on the wheel graphs Wn in the proof of Theorem 13.

Procedure 2 Best-Bond-3

1: Prefix-Best-Right(1)← b1 + a1,Prefix-Right(1)← Prefix-Best-Right(1)
2: Prefix-Best-Right-ind(1)← 1
3: for j = 1, . . . , n− 3 do
4: New-Best-Candidate← Prefix-Right(j) + aj+1 − bj + bj+1

5: if Prefix-Best-Right(j) ≥ New-Best-Candidate then
6: Prefix-Best-Right(j + 1)← Prefix-Best-Right(j)
7: Prefix-Best-Right-ind(j + 1)← Prefix-Best-Right-ind(j)
8: else
9: Prefix-Best-Right(j + 1)← New-Best-Candidate

10: Prefix-Best-Right-ind(j + 1)← j + 1

11: Prefix-Right(j + 1)← Prefix-Right(j) + aj+1 − bj + bj+1

12: Prefix-Best-Left(n)← bn−1 + a0,Prefix-Left(n)← Prefix-Best-Left(n)
13: Prefix-Best-Left-ind(n)← n
14: for j = n, . . . , 3 do
15: New-Best-Candidate← Prefix-Left(j) + aj−1 − bj−1 + bj−2

16: if Prefix-Best-Left(j) ≥ New-Best-Candidate then
17: Prefix-Best-Left(j − 1)← Prefix-Best-Left(j)
18: Prefix-Best-Left-ind(j − 1)← Prefix-Best-Left-ind(j)
19: else
20: Prefix-Best-Left(j − 1)← New-Best-Candidate
21: Prefix-Best-Left-ind(j − 1)← j − 1

22: Prefix-Left(j − 1)← Prefix-Left(j) + aj−1 − bj−1 + bj−2

23: Best-Solution← Prefix-Best-Right(2) + Prefix-Best-Left(2)
24: for j = 3, . . . , n− 1 do
25: New-Best-Candidate← Prefix-Best-Right(j) + Prefix-Best-Left(j)
26: if Best-Solution < New-Best-Candidate then
27: Best-Solution← New-Best-Candidate
28: return(Best-Solution)

Proof of Theorem 2

Proof of Theorem 2. We start by finding a decomposition of the (K5 \ e)-minor-
free graph G into a tree of 2-connected components; this can be done in linear
time by a depth-first search algorithm [15]. The components are attached to each
other at shared vertices and G corresponds to 1-sums of these components.

Consider now a 2-connected component H of G. By a linear time algorithm
of Hopcroft and Tarjan [16] we construct a decomposition of H into a tree T of

3-connected components. Informally, the nodes of T are 3-connected subgraphs
of H and if two nodes share an edge in T then the corresponding subgraphs in
H share two vertices. By induction on the number of vertices in T we show that
H is obtained from a wheel graph, Prism, K2, K3, and K3,3 by the operations
⊕2 and ⊕−2 .

If T has only a single vertex, then H is a 3-connected (K5 \ e)-minor-free
graph; the only such graphs are a wheel graph, Prism, K2, K3, or K3,3 (cf. [6])
which completes the proof of the base case.

For the inductive step, assume that T has at least two vertices, and let t be
an arbitrary leaf of T . Let H1 = (V1, E1) be the subgraph of H corresponding
to T \ t, H2 = (V2, E2) be the subgraph of H corresponding to t, and let u and
v be the two vertices in V1 ∩ V2. We distinguish two cases.

If uv ∈ E1, then H = H1 ⊕uv H2. Therefore, by our inductive hypothesis,
H1 = G1⊕1 · · · ⊕`−2G`−1 where for each i, Gi is a wheel graph, Prism, K2, K3,
or K3,3, and ⊕i is either ⊕1,⊕2, or ⊕−2 . Since G = H1 ⊕2 H2, and H2 is one of
the graphs in our list, the proof is completed.

If uv /∈ E, then H = H ′1 ⊕−uv H ′2 where H ′i = Hi ∪ {uv} for i = 1, 2. Observe
that both H ′1 and H ′2 are (K5 \e)-minor-free graphs. To see this, assume without
loss of generality that H ′1 contains a K5 \ e minor. As H ′2 is a connected graph,
u and v are connected by a path in H ′2 and so H contains a K5 \e minor as well,
which is a contradiction to the fact that G is (K5 \ e)-minor-free.

Therefore, by our inductive hypothesis, H ′1 = G1 ⊕1 · · · ⊕`−2 G`−1 where for
each i, Gi is a wheel graph, Prism, K2, K3, or K3,3, and ⊕i is either ⊕1,⊕2,
or ⊕−2 . Since H ′2 is a 3-connected (K5 \ e)-minor-free graph, it is either a wheel
graph, Prism, K2, K3, or K3,3. Finally, as G = H ′1⊕−2 H ′2, the proof is completed.

ut

Lemma 15. Let P1 = conv (V1) = {x |A1x 6 0,Bx 6 1} and P2 = conv (V2) =
{y | A2y 6 0,Cy 6 1} be polytopes. Then,

conv

(
V1 0
0 V2

)
=

{(
x
y

) ∣∣∣∣ A1x 6 0,A2y 6 0
bᵀx + cᵀy 6 1 ∀b ∈ B,∀c ∈ C

}
. (1)

Proof. Let P and P ′, resp., denote the polytopes on the left and right, resp.,
sides of the equality (1). We start by showing that P ⊆ P ′. Consider (x,y)ᵀ ∈ P .
Then x =

∑
u∈V1

λuu, y =
∑

v∈V2
λvv for some nonnegative coefficients λz,

z ∈ V1 ∪V2, such that
∑

u∈V1
λu +

∑
v∈V2

λv = 1. As for each u ∈ V1 and
b ∈ B we have A1u 6 0 and bᵀu 6 1, and analogously, for each v ∈ V2

and c ∈ C we have A2v 6 0 and cᵀv 6 1, it holds A1x 6 0, A2y 6 0 and
bᵀx + cᵀy 6 1. Thus, P ⊆ P ′.

Consider now (x,y)ᵀ ∈ P ′. If for some b ∈ B, bᵀx ≥ 0, then for every c ∈ C,
cᵀy ≤ 1, that is, Cy 6 1; similarly, if for some c ∈ C, cᵀy ≥ 0, then for every
b ∈ B, bᵀy ≤ 1, that is, Bx 6 1. Thus, to prove that P ′ ⊆ P , it suffice to
show that for some b ∈ B, bᵀx ≥ 0 and for some c ∈ C, cᵀy ≥ 0; note that the
inequalities A1x 6 0 and A2y 6 0 are always satisfied for our x and y.

Assume, for a contradiction, that for every b ∈ B, bᵀx < 0. Then not
only x ∈ P1, but for every non-negative λ, also λx ∈ P1. However, this is a

contradiction with the fact that P1 a polytope. Thus, there exists b ∈ B such
that bᵀx ≥ 0. By the same arguments, there exists c ∈ C such that cᵀy ≥ 0.
This completes the proof of the lemma. ut

(The above operation is called a subdirect sum and the inequalities follow
from Proposition 2.3 in [21].)

The linear time algorithm

For the sake of completeness we provide a complete description of the linear time
algorithm, building on the presentation of Chimani et al. [6]. Let MAXB(G)
denote the size of the maximum bond in G, and given two vertices u, v from G,
let MAXBuv(G) (MAXBuv (G), resp.) denote the size of the maximum bond of
G in which the vertices u, v are on the same side (on the opposite sides, resp.)
of the bond.

We start by observing that given an algorithm for MAXB(G) running in
time p(|G|), for every edge uv ∈ E(G) we can construct MAXBuv(G) in time
p(|G|), and the same holds for MAXBuv (G); in the first case we let the algorithm
construct MAXB(G′) where G′ is the graph obtained from G by changing the
weight of the edge uv to w(uv) =

∑
e∈E w(e), and in the second case to w(uv) =

−
∑
e∈E w(e).

We proceed with a technical lemma.

Lemma 16. Let G1, G2 be 2-connected graphs, uv ∈ E(G1)∩E(G2) be an edge
that appears in both of them. Then

MAXB(G1 ⊕−uv G2) = max{MAXBuv(G1 \ uv),MAXB(G′2)}
MAXB(G1 ⊕uv G2) = max{MAXBuv(G1),MAXB(Ḡ2)}

where G′2 and Ḡ2, resp., is the graph obtained from G2 by changing the weight
of the edge uv to w(uv) = MAXBuv (G1 \uv) and to w(uv) = MAXBuv (G1), resp.

Proof. Let G = G1 ⊕−uv G2 and let F be a maximum bond in G. By Lemma 5,
Case 2,

a) F is a bond of G1 \ uv with u and v on the same side, or
b) F is a bond of G2 \ uv with u and v on the same side, or
c) F ∩ E(Gi) is a bond of Gi \ uv with u and v on different sides, for both

i ∈ {1, 2}.

In case a), MAXB(G) = MAXBuv(G1\uv) ≥ MAXB(G′2). In case b), MAXB(G) =
MAXBuv(G2 \uv) = MAXB(G′2) ≥ MAXBuv(G1 \uv). In case c), MAXB(G) =
MAXBuv (G1 \uv)+MAXBuv (G2 \uv) = MAXB(G′2) ≥ MAXBuv(G1 \uv). Thus,
in all three cases, we have the desired equality

MAXB(G1 ⊕−uv G2) = max{MAXBuv(G1 \ uv),MAXB(G′2)} .

If G = G1 ⊕uv G2, we proceed in a similar way, using the fact (cf. [5,6]) that
F is a bond in G if and only if

a) F is a bond of G1 with u and v on the same side, or
b) F is a bond of G2 with u and v on the same side, or
c) F ∩E(Gi) is a bond of Gi with u and v on different sides, for both i ∈ {1, 2}.

ut

Proof of Corollary 14. First we prove the claim for 2-connected graphs. For a
2-connected (K5\e)-minor-free graph G = (V,E), by Theorem 2, we construct in
linear time its decomposition G = G1⊕1 · · ·⊕l−1G` where each Gi is isomorphic
to a wheel graph, Prism, K3, or K3,3, and each operation ⊕i is ⊕2 or ⊕−2 .

By induction on l we show the following: there exists a constant c > 0 such
that given a decomposition of G into G = G1 ⊕1 · · · ⊕l−1 G` where each Gi is
isomorphic to a wheel graph, Prism, K3, or K3,3, and each operation ⊕i is ⊕2

or ⊕−2 , it is possible to compute MAXB(G) in time at most 2 · c ·
∑l
i=1 |V (Gi)|.

Since,
∑l
i=1 |V (Gi)| = |V (G)|+2(`−1) and ` 6 |V (G)| we have

∑l
i=1 |V (Gi)| 6

3 · |V (G)| − 2 and hence the upper bound on the running time will follow.
If l = 1, then G is a wheel graph Wn, Prism, K3 or K3,3; as each of them,

except for Wn, is a constant size graph, and for the wheel graph Wn, MAXB(Wn)
can be computed in linear time by Theorem 13, we conclude, considering our
initial observation of this section, that there exists a constant c > 0 such that
for any G of the graphs listed in the previous sentence and any uv ∈ E(G), both
MAXBuv(G) and MAXBuv (G) can be computed in time at most c · |V (G)|.

If ` ≥ 2, let H = G2⊕2 · · · ⊕l−1G`. We distinguish two cases: ⊕1 = ⊕−uv and
⊕1 = ⊕uv. In the first case, let H ′ be the graph obtained from H by changing the
weight of the edge uv to w(uv) = MAXBuv (G1 \ uv); note that H ′ has the same
decomposition as H, they differ only in the weight of the edge uv. Thus, by the
inductive assumption, we can compute MAXB(H ′) in time 2 · c ·

∑l
i=2 |V (Gi)|,

and MAXBuv(G1) and MAXBuv (G1) in time c · |V (G1)|. By Lemma 16,

MAXB(G) = MAXB(G1 ⊕−uv H) = max{MAXBuv(G1 \ uv),MAXB(H ′)} ,

therefore we can compute MAXB(G) from MAXBuv(G1 \ uv) and MAXB(H ′)
in time O (1). Note that the time to construct H ′ given H, uv and MAXBuv (G1),
is O (1). Thus, exploiting the inductive assumption, we can compute MAXB(G)

in time c · |V (G1)| + 2 · c ·
∑l
i=2 |V (Gi)| + O (1) ≤ 2 · c ·

∑l
i=1 |V (Gi)| which

completes the proof of the inductive step in the first case.
If⊕1 = ⊕uv, we proceed analogously, exploiting the other equality of Lemma 16.
Finally, if the graph is not 2-connected, we compute in linear time a decom-

position of G into 2-connected components [16], construct the maximum bond
for each of them in linear time, and output the largest of them; the total running
time will be O (|V (G)|) +

∑
H∈C O (|V (H)|) = O (|V (G)|) where C is the set of

2-connected components of G. ut

	Bond Polytope under Vertex- and Edge-sums

