Noname manuscript No.
(will be inserted by the editor)

Bond Polytope under Vertex- and Edge-sums

Petr Kolman - Hans Raj Tiwary

Abstract A cut in a graph G is called a bond if both parts of the cut induce
connected subgraphs in G, and the bond polytope is the convex hull of all bonds.
Computing the maximum weight bond is an NP-hard problem even for planar
graphs. However, the problem is solvable in linear time on (K3 \ €)-minor-free
graphs, and in more general, on graphs of bounded treewidth, essentially due
to clique-sum decomposition into simpler graphs.

We show how to obtain the bond polytope of graphs that are 1- or 2-sum of
graphs GG1 and G5 from the bond polytopes of G, G5. Using this we show that
the extension complexity of the bond polytope of (K5 \ e)-minor-free graphs
is linear. Prior to this work, a linear size description of the bond polytope was
known only for 3-connected planar (K75 \ e)-minor-free graphs, essentially only
for wheel graphs.

We also describe an elementary linear time algorithm for the MAX-BOND
problem on (K3 \ e)-minor-free graphs. Prior to this work, a linear time algo-
rithm in this setting was known. However, the hidden constant in the big-Oh
notation was large because the algorithm relies on the heavy machinery of
linear time algorithms for graphs of bounded treewidth, used as a black box.

Keywords Maxcut with connectivity constraints - K5 \ e-minor-free graphs -
Maxbond - Bond polytope - Extended formulations

1 Introduction

The MAX-CuUT problem is a fundamental problem in computer science and
is one of Karp’s original 21 NP-Complete problems [17]. Given a graph G =
(V, E) the problem asks for a subset S C V of vertices such that the number

Partially supported by grant 24-10306S of GA CR.

P. Kolman - H. R. Tiwary
Charles University, Faculty of Mathematics and Physics, Department of Applied Mathemat-
ics, Prague, Czech Republic, E-mail: {kolman,hansraj}@kam.mff.cuni.cz



of edges with exactly one endpoint in S is as large as possible. However, in
some applications such as image segmentation [24], forest planning and har-
vest scheduling [5], and certain market zoning [13], one imposes an additional
condition that both components G[S]| and G[V \ S| be connected. This version
of MAX-CUT has been studied by various authors [11,9,12,14,7,6] under dif-
ferent names, but following Duarte et al. [10] and Chimani et al. [7] we will
refer to this as the bond problem.

Formally, given a graph G = (V, E) a bond in G is a cut (S,V \ S) such
that the induced subgraphs G[S]| and G[V \ S] are both connected; S and
V'\ S are two sides of the bond. Note that bonds of a connected graph G are
the minimal edge cuts of G. The MAX-BOND problem seeks to find a bond
(S,V'\ S) such that the number of edges between S and V' \ S is maximized.
For each bond in a graph G, we consider the characteristic vector of its edges;
for simplicity, we do not distinguish between a bond, the edges in a bond, and
the characteristic vector of the edges in a bond unless the meaning is not clear
in the context of the discussion.

For a graph G its bonds are circuits of the co-graphic matroid of G [21].
Co-graphic matroids form an essential ingredient in the decomposition result
for regular matroids by Seymour [23]. Regular matroids are known to have
polynomial extension complexity [1].

In this paper, we deal with the MAX-BOND problem on (K3 \ e)-minor-free
graphs. A linear time algorithm for bounded-treewidth graphs was given by
Duerte et al. [10]. More specifically, for (K5 \ e)-minor-free graphs, Chaourar [6]
gave a quadratic time algorithm. Chimani et al. [7] improved this result by
giving a linear time algorithm; the algorithm uses as the black box a linear time
algorithm of Duarte et al. [10] for the bond problem on bounded tree-width
graphs, and this black-box is used to get the maximum bond for the wheel
graphs W, in combination with a divide-and-conquer like strategy. Chimani et
al. [7] also gave a characterisation of the bond polytope for 3-connected planar
(K5 \ e)-minor-free graphs by giving a linear size set of linear inequalities
defining it; by a result of Wagner [25], this class of graphs contains only the
wheel graphs W,,, the triangle K3, and the triangular prism. The question of
describing the bond polytope for general (K35 \ e)-minor-free graphs was left
open.

Our contributions are twofold:

1. We show how to obtain linear size descriptions of the bond polytope of
graphs that are k-sum, for £ = 1, 2, of other graphs with known linear size
bond polytope. Using this result, we prove that the extension complexity of
the bond polytope is linear for arbitrary (K5 \ e)-minor-free graphs. This,
in a sense, is the best one can do because — as we note later (Lemma 4 and
the subsequent remark) — the actual description of the bond polytope even
for (K5 \ e)-minor-free graphs can be exponential in the size of the graph.
This answers an open question posed by Chimani et al. [7].

2. We simplify the algorithmic result for the MAX-BOND problem of Chimani
et al. [7] by giving a simple linear time algorithm for the wheel graph,



removing the need to use the tree-width machinery [11], which yields a
linear time algorithm for the MAX-BOND problem for all (K5 e)-minor-free
graphs. Chimani et al. [7] mention the possibility of existence of algorithms
simpler than theirs so our algorithm can be seen as an answer to their
question.

It should be noted that (K5 \ e)-minor-free graphs have bounded treewidth
and bonds can be represented by a formula in Monadic Second Order (MSO)
logic. So both a linear time algorithm as well as a linear size extended formu-
lation follow readily from meta results about bounded treewidth graphs: the
algorithmic results follow from the work of Courcelle [8] and are given explic-
itly by Duarte et al. [10], while the polyhedral results follow from the work of
Kolman et al. [18]. However, the magnitude of the constants in both cases is
enormous [19], in contrast to the constants in our results.

Other Related Results The cut polytope for clique-sums of size three was stud-
ied by Barahona [3] who gave an efficient algorithm and extended formulation
for the cut polytope of K5-minor-free graphs.

A closely related problem is the version of the MAX-CUT in which only
the S part is required to be connected. This version of the MAX-CUT prob-
lem is NP-hard [14] as well. Schieber and Vahidi [22] gave an O(loglogn)-
approximation improving an earlier O(logn)-approximation [14].

In contrast to the MAX-CUT problem, there is no constant-factor approx-
imation algorithm for MAX-BOND unless P=NP [9]. On the positive side,
both MAX-BOND and the version of MAX-CuT with one side connected are
fixed-parameter tractable when parameterized by the size of the solution, the
treewidth, and the twin-cover number [9].

2 Preliminaries

Let G and G4 be two graphs and U; C V(G1) and Uy C V(G3) two subsets
of vertices inducing a clique of the same size, say size k, for some £ > 1. A
graph G is a clique-sum of G; and G» if G is obtained from G; and Gy by
identifying U; and Us, and possibly removing some edges from the clique.

In this paper, we use the clique-sums for k = 1, 2. To distinguish between
the 2-sum that keeps the edge in the clique, and the 2-sum that removes
it, we denote the former operation by @2 and the later by @, . If we want to
emphasize that G1 @1 G2 is taken over a vertex v, we will denote it as G1 B, Go.
Similarly, G; @, G2 or G &_ G5 will be used to mean that the 2-sum of G
and (5 is taken over the edge e.

For a graph G = (V, E), a pair of vertices uv is called a non-edge if uv ¢ E.
For an edge e € E, by G \ e we denote the graph (V, E \ {e}), and for e ¢ E,
by G U {e} we denote the graph (V, E'Ue), and we use uv as an abbreviation
of {u,v}. In the case of (edge) weighted graphs, the weight of an edge wv is
denoted w(u,v). For a subset S of vertices, §(S) is the set of edges between S
and V'\ S.



A graph H is a minor of a graph G if H can be obtained from G by a series
of vertex and edge deletions and edge contractions. A graph G is H-minor-free
if H is not a minor of G.

For n > 3, a wheel graph W, is a graph with a vertex set V' ={0,1,...,n—
1}U{c}, forc € {0,1,...,n—1}, and an edge set F = U?:_OQ {i,i+1},{i,c}}U
{{n — 1,0},{n — 1,c}}; the vertex c is called the hub of the wheel, the cycle
0,1,...,n— 1,0 is the rim, and the edges of the form {i,c} are the spokes of
the wheel. For integers i < j, let [¢, j] denote the set {i,i+1,...,7}.

The Prism graph is the cartesian product of a K3 with a single edge.

Theorem 1 (Satz 7, Wagner [25]) Fach mazimal (K5 \e)-minor-free graph
G can be decomposed as G = G1 @' --- @1 Gy where each G; is isomorphic
to a wheel graph, Prism, Ko, K3, or K33, and each operation D" is D1 or Da.

Theorem 2 FEach (K5 \ e)-minor-free graph G can be decomposed in linear
time as G = G1 ®' --- @1 Gy where each G; is isomorphic to a wheel graph,
Prism, Ko, K3, or K33, and each operation &° is &1, @2 or &, .

Proof of Theorem 2. We start by finding a decomposition of the (K5 \ e)-
minor-free graph G into a tree of 2-connected components; this can be done
in linear time by a depth-first search algorithm [15]. The components are
attached to each other at shared vertices and G corresponds to 1-sums of
these components.

Consider now a 2-connected component H of G. By a linear time algorithm
of Hopcroft and Tarjan [16] we construct a decomposition of H into a tree T" of
3-connected components. Informally, the nodes of T" are 3-connected subgraphs
of H and if two nodes share an edge in T' then the corresponding subgraphs in
H share two vertices. By induction on the number of vertices in 7' we show that
H is obtained from a wheel graph, Prism, K7, K3, and K3 3 by the operations
@2 and @2_ .

If T has only a single vertex, then H is a 3-connected (K3 \ e)-minor-free
graph; the only such graphs are a wheel graph, Prism, Ky, K3, or K33 (cf. [7])
which completes the proof of the base case.

For the inductive step, assume that 7" has at least two vertices, and let £ be
an arbitrary leaf of T'. Let Hy = (V3, E1) be the subgraph of H corresponding
to T'\t, Hy = (Va, E3) be the subgraph of H corresponding to ¢, and let v and
v be the two vertices in V7 N V5. We distinguish two cases.

If wv € Ey, then H = Hy @&,, Hs. Therefore, by our inductive hypothesis,
H, =G, @' - @2 Gy_, where for each i, G; is a wheel graph, Prism, K>,
K3, or K33, and @’ is either ®;, @9, or @, . Since G = H; ®y Hy, and Hj is
one of the graphs in our list, the proof is completed.

If ww ¢ E, then H = H{ &, H; where H] = H; U {uv} for i = 1,2.
Observe that both H{ and H) are (K3 \ e)-minor-free graphs. To see this,
assume without loss of generality that H{ contains a K5 \ e minor. As HJ is
a connected graph, u and v are connected by a path in H) and so H contains
a K5 \ e minor as well, which is a contradiction to the fact that G is (K5 \ e)-
minor-free.



Therefore, by our inductive hypothesis, H| = G1 @' --- &2 G,_; where
for each i, G; is a wheel graph, Prism, K3, K3, or K33, and @° is either
@1, B2, or B, . Since H) is a 3-connected (K5 \ e)-minor-free graph, it is either
a wheel graph, Prism, Ky, K3, or K3 3. Finally, as G = H| &, H), the proof
is completed. O

Let P be a polytope in R%. A polytope @ in R4+ is called an extended
formulation of P if P is a projection of () onto the first d coordinates. The
size of a polytope is defined to be the number of its facet-defining inequalities,
and the extension complerity of a polytope P, denoted by xc (P), is the size
of its smallest extended formulation.

Theorem 3 (Balas [2], Theorem 2.1) If Py,..., P, are non-empty poly-

topes, then
q q
XC (conv <U P,L)) <q+ ZXC (P;) .
i=1 i=1

Furthermore, such an extended formulation can be constructed from extended
formulations of the P;’s in linear time.

Let P, C R%#** and P, € R%** be two 0/1-polytopes with vertices
vert(P;) and vert(Ps), respectively. The glued product Py Xj P of P; and
P5, where the gluing is done over the last k coordinates, is defined to be

X
PyxpPyi=conv{ [y ] € {0, 1}0+d=tk (’Z‘) € vert(P)), (‘Z) € vert(P)
Z

We will use the following known result about glued products.

Lemma 1 (Gluing lemma [20,18]) Let P and Q be 0/1-polytopes and let
the k (glued) coordinates in P be labeled x1,...,xk, and the k (glued) coor-

dinates in @ be labeled vy, ..., yr. Suppose that 17x < 1 is valid for P and
17y < 1 is valid for Q. Then xc (P X Q) < xc (P) +xc(Q).

We conclude this section with a lemma about bonds of G1 &, Gs, G1 Py Go
and G @, G2; the claims about bonds of G &, G2 and G By, G2 were
observed earlier [6,7], the claim about bonds of G; @, G2 is new. For a
connected graph G = (V, F) and vertices u,v € V, let C(G) denote the set
of all bonds of G, C,,(G) denote the set of bonds of G with v and v on
different sides of the cut, and Cg(G) the set of bonds of G with w and v
on the same side; if uv € E, we also write just C.(G) and Cz(G) instead of
Cuv(G) and Cgr(G). For two sets C; and Cy of subsets of edges of a graph G,
let C; WCy = {C1UCy | Cy € Cq, Cy € Ca} denote all pairwise unions of the
subsets in C; and Cs.

Lemma 2 Let Gy = (V4, E1),Gy = (Va, E3) be connected graphs.
1. If VinNVa = {u}, then

C(G1 By, Gg) =C(G1)UC(Gy) .



2. If Vi NVo ={u,v} and Ey N Ey = {uv}, then for e = uwv
C(G1 ®e G2) = Cs(G1) UCs(G2) U (Ce(G1) WC(Ga)) -

3. If VinVy =A{u,v}, By N Ey = {uv}, Gy \ wv is connected and Gy \ uv is
not, then for e = uv

C(G1 @7 Go) = C(Gy \ €) UCs(Go) .

4. If Vi nVo = {u,v}, E1 N Ey = {uv}, and both Gy \ uwv and G2 \ uv are
connected, then for e = uv

C(G1 @7 Go) = Ce(G1) UCo(Ga) U (Cun(G1 \ €) ¥ Cop(Ga \ €)) .

Proof The four cases are illustrated in Figures la-1d. For each of them, we
show that the left-hand side is a subset of the right-hand side, and vice versa.

Gl u u GQ
O Q ¢ @@@
v v

Gl S G2
) Case 1. ) Case 2.
G U U U G() U
Gl Duw GQ Gl DSuw GQ
(c) Case 3. (d) Case 4.

Fig. 1: {1,2}-sum of graphs G; and G4

Case 1. Consider F' € C(Gy @, G2). As both sides of the bond F' are
connected, either F' C E; or F' C FE»; in the former case, F' € C(G1), in the
later case, F' € C(G3). On the other hand, if F' € C(G1) or F € C(G3), then
the removal of F' from Gy &, G2 separates it into two connected parts, that
is, I' is a bond of it.

Case 2. Consider first F' € Cz(G1 @, G2). As both sides of the bond F' are
connected and u and v are on the same side of it, we conclude that either
F € C:(Gy) or F € Cs(Ga). If F € C.(G1 @ G2), then u and v are on different
sides of the bond F'. Thus, F'N E; must be a bond of G; and F N Es a bond of
G3. On the other hand, if F' € Cs(G;) or F € Cs(G3) or F € Co(G1) WC.(Ga),
then F'is a bond of G; . Gs.

Case 3. Consider first F' € Ci(G1 @, G2). As G\ e is disconnected by
our assumption, either F' € Ci(G1 \ ) or F € Co(Go). If F € Cyupy (G @7 G2),
again exploiting the assumption that G5 \ e is disconnected, we conclude that



F € Cuy(Gih \ €). Combining the two subcases yields that C(Gy @&, G2) C
C(Gl \ 6) U Cé(GQ).

For the opposite inclusion in Case 3, note that each of the two connected
components of Gs \ e shares exactly one vertex with Gy \ e. Thus, every bond
of G1 \ e is a bond of G; &_ G4, and also every bond F' € Cz(G>) is a bond of
G1 D, Go (Cf Fig. 1(3), that is, C(Gl \6) U Cé(GQ) - C(Gl D, GQ)

Case 4. For the “C” inclusion we again distinguish two subcases.

If FF € Cw(G1 @, Ga), then one of the subgraphs G; \ e and Gs \ e is
untouched by F', and F'is a bond of the other subgraph with u and v on the
same side; note that Ci(G; \ e) C Cs(G;), for i =1, 2.

If F € Cuyp(G1 @, G3), then the assumption of connectivity of G; \ e implies
that F'N F; is a bond of G; \ e with v and v on different sides, for ¢ = 1, 2.
Thus, C(Gl D, GQ) - Cé(Gl) U Cé(GQ) U (CUU<G1 \6) Q<J Cuv(Gz \ 6))

For the opposite inclusion in Case 4, assume first that F' € Cz(G1). As G2\ e
is connected and shares with GG; the vertices u and v only, (G &, G2) \ F has
the same number of connected components as G \ F, namely two, so F' is a
bond of G1 @, G2. The same argument applies if F' € Cz(G2).

Assume now that F; € Cp,,(G; \ e), for i = 1,2, and F = Fy U F5. Let Hy,
denote the component of (G; \ e) \ F; containing v and H;, the component
containing v, for i« = 1,2. Then (G; &. G3) \ F consists of two connected
components, Hq, &, Hs, and Hy, &, Hs,, meaning that F' is a bond of the
graph. O

3 The Subdirect Sum of Polytopes

In the following we will use matrices and sets of (row) vectors simultaneously
with the following interpretation. A matrix B will sometimes be viewed as a
set of vectors where each row of B is a member of the set. Conversely, a set
of row vectors {bq,...,b,,} will be, when convenient, viewed as a matrix B
with m rows where the i-th row is b,.

Lemma 3 Let P, = conv (V) = {x| A1x < 0,Bx <1} and P, = conv (V3) =
{y | A2y < 0,Cy < 1} be polytopes. Then,

V1 0 . X A1X<0,A2y<0 (1)
“lo v, T y bx +cy <1 VbeB,Vce C |’

where the left-hand side is a shorthand of conv ({(v,0)|v € V1} U {(0,v)|v € Vao}).

Proof Let P and P’, resp., denote the polytopes on the left and right, resp.,
sides of the equality (1). We start by showing that P C P’. Consider (;) € P.
Then xT = 3 v, Aut, YT = >y, AvV for some nonnegative coefficients
Az, 2 € V1 U Vs, such that Zuevl Au + ZVGVQ Av = 1. As for each u € V;
and b € B we have A;uT < 0 and buT < 1, and analogously, for each v € V,
and ¢ € C we have AovT < 0 and cvT < 1, we have A1x < 0, Asy <0 and

bx +cy < 1. Thus, P C P'.



Consider now (;‘) € P'. If for some b € B, bx > 0, then for every ¢ € C,
cy < 1, that is, Cy < 1; similarly, if for some ¢ € C, cy > 0, then for every
b € B, by < 1, that is, Bx < 1. Thus, to prove that P’ C P, it suffices to
show that for some b € B, bx > 0 and for some ¢ € C, cy > 0; note that the
inequalities A1x < 0 and Asy < 0 are always satisfied for our x and y.

Assume, for a contradiction, that for every b € B, bx < 0. Then not
only x € P;, but for every non-negative A, also Ax € P;. However, this is a
contradiction with the fact that P; a polytope. Thus, there exists b € B such
that bx > 0. By the same arguments, there exists ¢ € C such that cy > 0.
This completes the proof of the lemma. O

The above operation is called a subdirect sum of P, and P, and if the
inequalities for P; and P, in Lemma 3 are facet-defining then so are the in-
equalities of the subdirect sum.

4 The Bond Polytope

Let G = (V, E) be a graph, and let E' C (‘2/) \ E be a subset of non-edges of
G. An Augmented Bond Polytope BOND (G, E’) is the convex hull of vectors
x € RIEHIET where X 18 the characteristic vector of a bond ' C E in G
and for every uv € E’, x,,,, = 0 if u and v are on the same side of the bond
F and x,, = 1 if u and v are on different sides of the bond F. We consider
the augmented bond polytope due to the fact that when looking at the 2-sum
operation @,,, the bond polytope without uv as an augmented coordinate does
not behave well. In particular, an extended formulation for the bond polytope
of the resulting graph can only be recursively constructed if the behaviour of
vertices u, v in each of the bond of constituent graphs is stored.

4.1 Description of the Bond Polytope under k-sums ¢ and @9

Lemma 4 Let Gy = (V1,E1) and Gy = (Va, E3) be two graphs with Vi N
Vo = {v}, and let E; C () \ E1,Ey C (*2) \ E2. Let BOND (Gy, E}),
and BOND (Gs, E}) be their respective augmented bond polytopes. Suppose
BOND (G, E{) = conv (B1) and BOND (Gs, Ej) = conv (Bs). Then,

BOND (G; &, Go, E} U E5) = conv B, 01
0 B,

Proof Notice (cf. Lemma 2, Case 1) that any cut in G; @, G either cuts G
in two components placing all of G5 in the component containing the common
vertex v or it cuts G5 in two components placing all of G; in the component
containing the common vertex v. Therefore, any bond in G; &, G5 is either a
bond in G extended with zeroes at the coordinates x,,, for uw € Ey U F), or
a bond in G5 extended with zeroes at the coordinates x,,, for uw € E1 U Ej.
O



Note that the above description of BOND (G &, G2, £} U EY) is the subdi-
rect sum of BOND (G1, E]) and BOND (Gs, E)) and thus it can have a number
of inequalities that is asymptotically the product of the number of inequalities
describing the two multiplicands (cf. Lemma 3). Taking F{ = FE} = () we get
the same statement for BOND (G; &1 Gs) .

More concretely, take any graph G with k vertices such that BOND (G)
has at least ¢ (d, resp.) facet-defining inequalities with right hand side 0 (1,
resp.). Set Gop = G and let G; be obtained by taking a 1-sum of G;_; and
G (over an arbitrarily chosen vertex). Then G,, has (kK — 1)n + 1 vertices but
BOND (G),) has at least ecn+d"™ facet-defining inequalities due to Lemma 3 and
the subsequent comments. Since BOND (K4) has 4 facet-defining inequalities
with right hand side 1 and 12 facet-defining inequalities with right hand side
0 [7], taking G to be K, we even get (K5 \ e)-minor-free graphs with 3n + 1
vertices whose bonds have 12n + 4" facets, for arbitrary n.

Therefore, in general, one cannot obtain a linear size description for (K5\e)-
minor-free graphs unless one is willing to consider extended formulations.

Lemma 5 Let Gy = (V4,Eq) and Go = (Va, E2) be two graphs with Eq N
Ey = {e}, and let B} C () \ E1,Ey € (*?) \ Eo. Let BOND (G4, E}),
and BOND (Gs, Eb) be their respective augmented bond polytopes. Suppose
BOND (G4, E{) = conv (B1) and BOND (Gs, E)) = conv (B2). Then,

0
BOND (G; &, Go, E] U E}) = conv { (1?)1 P(:g) U (B7 x BY) } ,

where By = {b € B; | b, =i} fori e {0,1} and j € {1,2} and x denotes the
Cartesian product.

Proof Let e = {u,v}. Any bond in G = G @, G either has u,v in the same
component or in different components. If u, v are in the same component, then
the bond is obtained either from a bond of G; by putting G2 entirely in the
component containing u, v or from a bond of G5 by putting GG; entirely in the
component containing wu,v. If u,v are in different components, then the bond
is obtained from a bond by of G; and a bond by of (G5 such that u,v are in
different components of both b; and by (cf. Lemma 2, Case 2). O

4.2 Extension Complexity of Bond Polytope under k-sums @1, @2 and @B,

Theorem 4 Let G; = (Vi,FE1) and Gy = (Va, Es) be two graphs and let
E; C (V) \ E1, By C (2) \ Bs. Let BOND (G1, E}), BOND (G2, Ej) be their
respective augmented bond polytopes. Then,

xc (BOND (G @y, G2, B U E})) < xc (BOND (Gy, E/)) + xc (BOND (Ga, Eb)) + O (1),

for k € {1,2}. Furthermore, given extended formulations for BOND (Gy, EY)
and BOND (Gs, Eb), an extended formulation for BOND (G @ Go, E] U EY)
can be constructed in linear time.



Proof For k = 1, the result is an immediate corollary of Lemma 4 and Theo-
rem 3. For k£ = 2, let e be the edge along which the 2-sum is taken, and let d
be the dimension of BOND (G1, EY).

First, we assume that BOND (G, EY) is embedded in R?*2. Call the extra
two coordinates w, z and the embedded polytope Pg,. We assume that the
following property holds for each b € vert (Pg, ):

(b)e
(b)e

This can be achieved by taking the glued product of BOND (Gy, F{) with
the line segment S = conv ({(0,0,1),(1,0,0)}), glueing coordinate (x). in
BOND (G4, E{) with the first coordinate of the segment S. This results in an
additive O (1) increase in the extension complexity due to Lemma 1. Next,
we take the convex hull of the union of the resulting polytope and the point
(0,1,0) € RY*2 to obtain P , again resulting in an O (1) additive increase in

0 = (b)y=0,(b),=1
1 = (b)y,=0,(b),=0

the extension complexity due to Theorem 3. Altogether, we have xc (Pc’;l) <
xc (BOND (Gy, E7)) + O (1).

Similarly, we obtain P(, from BOND (G, ;) by adding new coordinates
w, z first ensuring

for each b € vert (Pg,), and then taking the convex hull of the union of the
resulting polytope with the point (0,0,1). By the same arguments as for P,
we have that xc (P, ) < xc(BOND (G2, E5)) +O(1).

Finally, we take the glued-product of Pg and Pg;, where the gluing is
done over the z,w coordinates in Pg with the z,w coordinates in Pf, . The
resulting polytope is an extended formulation of BOND (G &2 Go, E] U EY)
by Lemma 5, and by Lemma 1, it has extension complexity at most xc (Pc’;l) +
XC (PéQ) + O (1) which is xc (BOND (G4, E7)) +xc (BOND (G2, ES)) + O (1).
Note that all the steps in the proof are efficiently constructive so the resulting
extended formulation can be constructed in linear time. O

Lemma 6 Let Gy = (V1,E1) and Gy = (Va, Es) be two graphs such that
{u,v} =ViNVy and {uv} = E; N Ey. Let B C (‘;1) \ By and E} C (‘;2) \ Es.
Suppose that v and v belong to the same connected component in G1 \ uv.

1. If Go \ wv is disconnected, then
xc (BOND (G; @, G2, By U E5 U {uv})) <
xc (BOND (G \ wv, E] U{uv})) + xc (BOND (Gs, ES)) + O (1).
2. If Go \ wv is connected, then

xc (BOND (G; @, G2, E1 U E5 U {uv})) <
xc (BOND (G \ uv, Ef U {uv}))+xc (BOND (G2 \ uv, B, U {uv}))+0O (1).
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Furthermore, in each of these cases the resulting extended formulation can
be constructed in linear time given extended formulations for the appropriate
polytopes.

Proof The claim of Part 1 follows immediately from the characterization in
Lemma 2 (Case 3) and Theorem 3. For Part 2, we note the characterization in
Lemma 2 (Case 4) and observe that the case is analogous to that in Theorem 4
and hence an analogous proof yields the result. O

4.3 Extension Complexity of the Bond Polytope for (K5 \ e)-minor-free Graphs

Lemma 7 Let G = (V,E) be a graph and let E' C (‘2/) \ E such that G’ =
(V, EUE") is a wheel graph. Then, xc (BOND (G, E")) = O (|V]) . Furthermore,

such an extended formulation can be constructed in time O (V).

Proof We prove the lemma by induction on the number of vertices on the rim.
For any constant n we have a constant size graph and so it has a constant num-
ber of bonds and the extension complexity of any augmented bond polytope
is a constant.

Suppose the claim holds for n. That is, for any subgraph of a wheel W,, with
center ¢ and rim vertices 0, . . ., n the extension complexity of the corresponding
augmented bond polytope (with the non-edges as augmented coordinates) is
O (n) . Now consider a subgraph G,, ;1 of W, ;1 with a set of non-edges E,, 1.

Either there exists a rim-vertex with a degree strictly less than three, or the
given graph is the wheel itself and there are no augmented coordinates and thus
the extension complexity of BOND (G,EnH) is linear and can be explicitly
described [7]. Similarly, either there exists a rim-vertex with a degree strictly
more than one, or the given graph is a star and the augmented coordinates
correspond to the cycle 0,...,n + 1. The star has only a linear number of
bonds - one for each ray being cut off. So an extended formulation can be
constructed in linear time by Theorem 3, using each bond explicitly.

Therefore, without loss of generality, we can assume that there is a rim
vertex that has a degree exactly two. For simplicity, we assume that this vertex
is labelled n + 1 even though for the construction of an extended formulation
the actual label of such a vertex can be directly used. We distinguish the
following cases:

1. edges {n,n+ 1},{c,n+ 1} are present while the edge {0,n + 1} is absent,
2. edges {0,n+ 1}, {c,n + 1} are present while the edge {n,n + 1} is absent,
3. edges {0,n+ 1}, {n,n + 1} are present while the edge {c,n + 1} is absent.

Cases 1 and 2 are identical except for vertex labeling so we will consider only
case 1. We construct a subgraph G,, of W, as follows. We remove vertex n+ 1.
For each i € {0,n}, we keep {c,i} as an edge in G,, if it was an edge in
G i1, otherwise we keep it as a non-edge in E,,. Similarly for {i,i + 1}, for
i € {0,n—1}. Finally, {0,n} € E,,. By our inductive hypothesis the augmented
bond polytope BOND (Gn,En) has extension complexity O (n).
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Note that any bond in G,,11 must have vertex n + 1 in the same compo-
nent as either ¢ or n. The only exception is the bond that has vertex n + 1
as one component and the rest of the graph in the other component. Since,
every unexceptional bond in G, corresponds to a bond in G,, and there
are only finitely many types of bonds — in how they appear at the vertices
c,n,n + 1, and 0, we glue extra coordinates onto BOND (Gn,En) encoding
this. More specifically, consider the glued product of BOND (Gn, En> over the
coordinates ¢ n, T¢,0, o,n With Polytope 4.1.

LTen Lon Le,0 Tn,nt+1 Tnt1,0 mcm—{—l\

0 0 O 0 0 0
0 1 1 0 1 0
1 0 1 1 1 0
1 0 1 0 0 1
1 1 0 1 0 0
1 1 0 0 1 1

Polytope 4.1: Vertices
Finally, we add the single exceptional bond and the resulting polytope is an
extended formulation for BOND (Gn+1,En+1).
Similarly for case 3, we obtain G,, by keeping edges/non-edges as they are in
G411 over vertices ¢, 0,...,n and {0,n} € E(G,,). Similar to the previous case
we glue extra coordinates to extend bonds in G, to bonds in G,,+1. We see
that the polytope needed for glueing is Polytope 4.2.

Len Lon Le,0 Tnnt+l Tnt1,0 Lent1

0 0 O 0 0 0
0 1 1 0 1 0
1 0 1 1 1 0
1 0 1 0 0 1
1 1 0 1 0 0
1 1 0 0 1 1

Polytope 4.2: Vertices
Finally, we add the single exceptional bond and the resulting polytope is an
extended formulation for BOND (Gn+1,En+1).
Thus, we see that xc (BOND (Gn+laEn+1)> < xe (BOND (Gn,En)) +0(1).
Furthermore, observe that a degree two vertex in a subgraph of a wheel can
be found in linear time so the inductive step can be performed with a constant
overhead. This concludes the proof of the inductive step. O

Theorem 5 Let G = (V, E) be a graph and let E' C (‘2/) \ E be such that
the graph G' = (V,E U E') does not contain (K5 \ €) as a minor. Then,
xc (BOND (G, E")) = O(|V|) . Furthermore, such an extended formulation can
be constructed in time O (|V|) .

Proof 1f G is not connected then depending on whether it has two or more con-
nected components, there is either only the trivial bond or no bonds. Therefore
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we may assume that G is connected. Now, by Theorem 2, G = G1 @' - @1 Gy
where each G; is isomorphic to a wheel graph, Prism, Ky, K3, or K33, and
each operation @ is @1, @2 or B, . We prove the claim by induction on /.

If ¢ = 1 then G is either Ko, K3, K3 3, Prism or a wheel graph. If G is either
K,, K3, K3 3 or Prism, then it has constant size and hence a constant number
of bonds. Thus, the augmented bond polytope BOND (G, E’) has constant
size. If G is a wheel, then applying Lemma 7 gives us the desired result.

For the inductive step, let G’ = G1 @' --- @ 2Gy_1. Then G = G' &1 Gy.
If G = G' &1 Gy, then Lemma 4 with Theorem 3 gives us the desired result.
If G = G' ®. Gy, then Theorem 4 gives us the desired result. Finally, if G =
G'@®_ Gy, then Lemma 6, Part 1 or Part 2 — depending on how the end vertices
of e are connected in G \ e and G5 \ e — gives us the desired result; note that
xc (BOND (G, EU{e})) > xc(BOND (G, E)). O

Applying Theorem 5 to (K5 \ €)-minor-free graphs together with £/ = ()
we get the following result.

Theorem 6 Let G = (V, E) be a (K5 \ e)-minor-free graph. Then,
xc (BOND (G)) = O (|V]) .

Moreover, this extended formulation can be constructed in time O (|V]).

5 Linear Time Algorithm for (K5 \ e)-minor-free Graphs

To solve the MAX-BOND problem on (K5 \ e)-minor-free graphs, we use the
same framework as Chimani et al. [7] did, based on the fact that decomposition
of a graph into 3-connected components can be constructed in linear time due
to the algorithm of Hopcroft and Tarjan [16]. The important key difference is
that for the wheel graph, we describe a relatively simple linear time algorithm
whereas Chimani et al. rely on the algorithm for the construction of maximum
bonds on graphs of bounded treewidth [10]. The main idea of our algorithm
is simple - to mimic Kadane’s dynamic programming approach [4] for the
Maximum sum subarray problem in a slightly more complicated setting.

Theorem 7 The weighted MAX-BOND problem can be solved in time O(n)
for the wheel graph W,.

Proof Given a weighted wheel graph W,,, for notational simplicity, we also use
the following notation: for i = 0,1,...,n—2, a; = w(i,c), b; = w(i,i+ 1), and
ap—1 =w(n—1,c) and b,—1 = w(n — 1,0).

Given a bond (S,V '\ S) of W, its two connected components have a very
special form: either one of them is the hub vertex ¢ and the other consists of
all the vertices on the rim - such a bond is called the trivial bond, or one of the
connected components is a path on at most n — 1 vertices of the rim, denoted
Ps in the following, and the other component consists of all the other vertices
which is a fan graph.
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Fig. 2: The wheel graph W,

Let F be the set of all non-trivial bonds in W,,. Consider the partition of
F into F1 U Fy U F3 defined below; we refer to bonds in F; as bonds of type 1:

F1 ={S € F | the path Pg does not contain the edges {n — 1,0} and {0,1}}
Fo ={S € F | the path Pg does not contain the edges {0,1} and {1,2}}

F3 ={S € F | the path Pg contains the edge {0,1}}

If we can find for each ¢ € {1,2,3}, minser, > .c55) w(e), in linear time,
we can solve the bond problem on the wheel graph in linear time. Also note

that the sets F; and F5 are of the same kind, just rotated; thus, it suffices to
describe an algorithm for finding the optimal bond from F7, and from Fj.

5.1 Finding the optimal bond from F;
For each k € {1,n — 1}, we define the following quantities; for most of the

quantities we introduce two names - a full name, indicating its meaning, and
an abbreviation:

J
BSF(k) = Best-So-Far(k) = max{b;,_1 + b; + Zal 1€ [1,k|,j €i,k]}

BSFL(k) = Best-So-Far-ind-L(k) = =i ;
min{i € [1,k] : BSF(k) = max{b;,_1 + b; + Zal L jelik)})
BSFR(k) = Best-So-Far-ind-R(k) = =i ;
min{j € [BSFL(k),k] : BSF(k) =bgsrLwy—1 +b;+ > a}
k I=BSFL(k)

SB(k) = Suffix-Best(k) = max{b;_1 + by + Zal s i€ [l k]}
I=i

k
SBL(k) = Suffix-Best-ind-L(k) = min{i € [1,k] : SB(k) =bi—1 +bx + > a}
=1

In words, Best-So-Far(k) is the cost of the maximum bond that cuts out a sub-
path of {1,2,... k}, and Best-So-Far-ind-L(k) and Best-So-Far-ind-R(k) are
the indices ¢ and j for which the maximum value Best-So-Far(k) is attained;
as there might be more such indices, we pick the smallest ones. Similarly,
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Suffix-Best(k) is the cost of the maximum bond that cuts out a subpath of
{1,2,...,k} ending in k, and the number Suffix-Best-ind-L(k) is the index of
the vertex in which the subpath of the cost Suffix-Best(k) starts. Note that
Best-So-Far(n — 1) is the cost of the maximal bond from the set F; and
that it consists of edges {{Best-So-Far-ind-L(n — 1) — 1, Best-So-Far-ind-L(n —
1)}, {Best-So-Far-ind-R(n—1), Best-So-Far-ind-R(n—1)+1} JUU,“getr 1) {1 }-

The quantities can be computed in linear time using dynamic programming
by Procedure BEST-BOND-1. The correctness of the procedure is ensured by

Procedure 1 BEsT-BOND-1

1: Best-So-Far(1) < bg + b1 + a1, Suffix-Best(1) < Best-So-Far(1)

2: Best-So-Far-ind-L(1) <— 1, Best-So-Far-ind-R(1) <— 1, Suffix-Best-ind-L(1) < 1
3: forj=1,...,n—2do

4 New-Best-Candidate <— Suffix-Best(j) + aj+1 — b; + bj41

5: if Best-So-Far(j) > New-Best-Candidate then

6: Best-So-Far(j + 1) < Best-So-Far(j)
7.
8

Best-So-Far-ind-L(j + 1) < Best-So-Far-ind-L(})
Best-So-Far-ind-R(j + 1) < Best-So-Far-ind-R(j)

9: else

10: Best-So-Far(j 4+ 1) <— New-Best-Candidate

11: Best-So-Far-ind-L(j + 1) < Suffix-Best-ind-L(j)

12: Best-So-Far-ind-R(j + 1) «+ 7+ 1

13: if Suffix-Best(j) < 0 then

14: Suffix—Best(j + 1) —aj41 — bj —+ bj_|_1

15: Suffix-Best-ind-L(j + 1) +— j + 1

16: else

17: SuffiX—BeSt(j + 1) — Suffix—Best(j) +aj+1 — bj + bj+1
18: Suffix-Best-ind-L(j + 1) +— Suffix-Best-ind-L(5)

19: return(Best-So-Far(n — 1), Best-So-Far-ind-L(n — 1), Best-So-Far-ind-R(n — 1))

the following Claim.

Claim For every k = 1,...,n—1, the values computed by the Procedure BEST-
BOND-1 are the correct values for BSF(k), BSFL(k), BSFR(k),SB(k), SBL(k).

Proof The proof is by induction on k. For £ = 1, there is only one possibility
for the bond that corresponds to a subpath of {1}, namely the bond S = {1}.
Thus, the correct values of the quantities are BSF(1) = SB(1) = by + b1 +
a1, BSFL(1) = BSFR(1) = SBL(1) = 1 which is exactly what the procedure
computes in steps 1 and 2.

Inductive step. We assume that the procedure correctly computed all the
values up to the index k& and we want to prove that the values with index k41
are computed correctly as well. We start with the values BSF, BSFL, BSFR.
Let (S,V \ S) be the lexicographically smallest maximum bond, where S =
{i,...,7} C€{1,...,k+1}. Then we have that either j < k, or j = k+1. In the
first case, BSF(k + 1) = BSF(k), BSFL(k + 1) = BSFL(k), and BSFR(k + 1) =
BSFR(k), and the procedure computes these values in steps 6-8. In the second
case, BSF(k 4+ 1) = SB(k) + ar41 — br + b1, BSFL(k + 1) = Suffix-Best(k),
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BSFR(k + 1) = k+ 1, and the procedure computes these values in steps 4 and
10-12.

Consider now the values SB and SBL. We distinguish two cases: SB(k) < 0,
and SB(k) > 0. In the first case, the maximum bond of the desired form
consists of the vertex k + 1 only, and the correct values are SB(k + 1) =
ak+1— bk +brs1 and SBL(k+1) = k+1 which is what the procedure computes
in steps 13-15. In the other case, the maximum bond is of the form § =
{SBL(k),...,k 4+ 1} and of cost SBL(k) + ag+1 — bx + kr+1; the procedure
computes these values in steps 17-18. O

5.2 Finding the optimal bond from Fj3

For each k € [1,n — 2], we define the following quantities:

J
Prefix-Best-Right(k) = max{b; + Zal s j el k]}
=1 J
Prefix-Best-Right-ind(k) = min{j € [1, k] : Prefix-Best-Right(k) = b; + Zal}
=1

k
Prefix-Right(k) = by, + Z a
=1

and for each k € [3,n], we define and then backwards calculate the following
ones:

n—1
Prefix-Best-Left(k) = max{bs_1 + Y _a;+ao : j € [k,n]}
l=j n—1
Prefix-Best-Left-ind(k) = min{j € [k, n| : Prefix-Best-Left(k) = b;_1 + Z a; +ap}
n—1 l=j

Prefix-Left(k) = by_1 + > _a

Similarly as before, these quantities can be computed in linear time using
dynamic programming by Procedure BEST-BOND-3.

We observe two things: for every bond S of type 3, there exists a vertex
i € {2,...,n— 1} such that i does not belong to the path that is cut off by the
bond S. If S is the optimal bond of type 3 and i is the vertex not belonging
to the path cut off by it, then the cost of S equals Prefix-Best-Right(i) +
Prefix-Best-Left(i). Thus, the cost of the optimal bond of type 3 is

max {Prefix-Best-Right(i) + Prefix-Best-Left(i) : 1 € {2,...,n — 1}} .
To obtain the optimal bond, we compare the weights (costs) of the trivial

bond and the optimal bonds of types 1, 2, and 3, and pick as our solution the
best one. Note that the total running time is O (n). O
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Procedure 2 BEST-BOND-3

1: Prefix-Best-Right(1) < b1 + a1, Prefix-Right(1) +— Prefix-Best-Right(1)

2: Prefix-Best-Right-ind(1) < 1

3: forj=1,...,n—3 do

New-Best-Candidate <— Prefix-Right(j) + aj+1 — b; + bj41

if Prefix-Best-Right(j) > New-Best-Candidate then
Prefix-Best-Right(j + 1) < Prefix-Best-Right(j)
Prefix-Best-Right-ind(j 4+ 1) < Prefix-Best-Right-ind(j)

else
Prefix-Best-Right(j + 1) <— New-Best-Candidate
Prefix-Best-Right-ind(j + 1) «+ j + 1

11: Prefix-Right(j + 1) < Prefix-Right(j) + aj+1 — bj + bj1+1

12: Prefix-Best-Left(n) < bp—1 + ao, Prefix-Left(n) < Prefix-Best-Left(n)

13: Prefix-Best-Left-ind(n) < n

14: for j =mn,...,3 do

15: New-Best-Candidate < Prefix-Left(j) + a;_1 —bj—1 + b2

16: if Prefix-Best-Left(j) > New-Best-Candidate then

17: Prefix-Best-Left(j — 1) < Prefix-Best-Left(j)

18: Prefix-Best-Left-ind(j — 1) < Prefix-Best-Left-ind(j)
19: else

20: Prefix-Best-Left(j — 1) < New-Best-Candidate

21: Prefix-Best-Left-ind(j — 1) « j — 1

22: Prefix-Left(j — 1) < Prefix-Left(j) +a;—1 —bj—1 +bj—2

23: Best-Solution «— Prefix-Best-Right(2) + Prefix-Best-Left(2)

24: for j=3,...,n—1do

25: New-Best-Candidate < Prefix-Best-Right(j) + Prefix-Best-Left(j)
26: if Best-Solution < New-Best-Candidate then

27: Best-Solution <— New-Best-Candidate

28: return(Best-Solution)

Combining Theorem 7 with the algorithm of Chimani et al. [7] (cf. Theo-
rem 2 and Lemma 2), yields the linear time algorithm for (K5 \ e)-minor-free
graphs (Corollary 1). For the sake of completeness, below we provide a com-
plete description of the algorithm, building on the presentation of Chimani et
al. [7]. Let MAXB(G) denote the size of the maximum bond in G, and given
two vertices u, v from G, let MAXB""(G) (MAXB, (G), resp.) denote the size
of the maximum bond of G in which the vertices u, v are on the same side (on
the opposite sides, resp.) of the bond.

We start by observing that given an algorithm for MAXB(G) running
in time p(|G|), for every edge uv € FE(G) we can construct MAXB"Y(G) in
time p(|G|), and the same holds for MAXB} (G); in the first case we let the
algorithm construct MAXB(G’) where G’ is the graph obtained from G by
changing the weight of the edge uv to w(uv) = > . w(e), and in the second

case to w(uwv) = — > pw(e).

We proceed with a technical lemma.
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Lemma 8 Let Gy = (V1, E1) and Go = (Va, E3) be 2-connected graphs such
that {u,v} = Vi NVa and {uv} = E1 N Es. Then

MAXB(G; &5, Go) = max{MAXB"“(G; \ uwv), MAXB(G})}
MAXB(Gl Duw Gz) = maX{MAXB“”(Gl), MAXB(GQ)}

where GYy and G, resp., is the graph obtained from Go by changing the weight
of the edge uwv to w(uv) = MAXB} (G \ uv) and to w(uv) = MAXB;(G1),

resp.

Proof Let G = G1 @, G2 and let F' be a maximum bond in G. By Lemma 2,
Cases 3 and 4,

a) F'is a bond of G; \ wv with u and v on the same side, or

b) F'is a bond of G5 \ uv with u and v on the same side, or

c¢) FNE(G;) is a bond of G; \ uwv with v and v on different sides, for both
ie{1,2}.

Thus, in case a), MAXB(G) = MAXB"’(G1 \ uv) > MAXB(GY). In case b),
MAXB(G) = MAXB" (G, \ wv) = MAXB(GS) > MAXB"(G, \ wv). In
case ¢), MAXB(G) = MAXB; (G; \ wv) + MAXB; (G \ uv) = MAXB(GS) >
MAXB"(G1 \ uv). In all three cases, we have the desired equality

MAXB(G) ®7, Go) = max{MAXB" (G; \ uv), MAXB(GS)} .

If G = G1 ®yy G2, we proceed in a similar way, using the fact that by
Lemma 2, Case 2, F' is a bond in G if and only if

a) F'is a bond of G; with u and v on the same side, or

b) F'is a bond of G5 with u and v on the same side, or

c¢) FNE(G,;) is abond of G; with u and v on different sides, for both i € {1,2}.
O

Corollary 1 The MAX-BOND problem can be solved for any (K5 \ e)-minor-
free graph in time O(n).

Proof First, we prove the claim for 2-connected graphs. For a 2-connected
(K5 \ e)-minor-free graph G = (V, F), by Theorem 2, we construct in linear
time its decomposition G = G; @' - - - ®'~! G4 where each G; is isomorphic to
a wheel graph, Prism, K3, or K33, and each operation &' is @9 or @ .

By induction on [ we show the following: there exists a constant ¢ > 0
such that given a decomposition of G into G = G; @' --- @'~ G, where each
G; is isomorphic to a wheel graph, Prism, K3, or K33, and each operation
@ is Do or @5, it is possible to compute MAXB(G) in time at most 2 - ¢ -
i [V(Ga)l. Since, S5, [V(G)| = [V(G)] +2(¢ — 1) and £ < [V(G)] we
have 22:1 IV(G;)| < 3:]V(G)| —2 and hence the upper bound on the running
time will follow.

It | = 1, then G is a wheel graph W, Prism, K3 or K3 3; as each of
them, except for W,,, is a constant size graph, and for the wheel graph W,,,
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MAXB(W,,) can be computed in linear time by Theorem 7, we conclude,
considering our initial observation of this section, that there exists a constant
¢ > 0 such that for any G of the graphs listed in the previous sentence and
any uwv € E(G), computing MAXB"Y(G) and MAXB (G) takes at most time
c-|V(Q)|.

If £ >2 let H= Gy @?-- &~ Gy. We distinguish two cases: &' = @,
and ®! = @,,. In the first case, let H’ be the graph obtained from H by
changing the weight of the edge uv to w(uv) = MAXB, (G \ uv); note that
H’ has the same decomposition as H, they differ only in the weight of the edge
wv. Thus, by the inductive assumption, we can compute MAXB(H') in time
2-c- 2222 \V(G;)], and MAXB"Y(G1) and MAXB,/(G1) in time ¢ - |V (G1)|.
By Lemma 8,

MAXB(G) = MAXB(G; @, H) = max{MAXB"(G; \ uwv), MAXB(H')} ,

therefore we can compute MAXB(G) from MAXB"Y(G1 \ uwv) and MAXB(H')
in time O (1). Note that the time to construct H’ given H, uv and MAXB} (G1),
is O (1). Thus, exploiting the inductive assumption, we can compute MAXB(G)
in time ¢- [V(G1)|+2-¢- S, V(G| +0 (1) <2-¢- ', |[V(Gy)| which
completes the proof of the inductive step in the first case.

If ® = @y, we proceed analogously, exploiting the other equality of
Lemma 8.

Finally, if the graph is not 2-connected, we compute in linear time a de-
composition of G into 2-connected components [16], construct the maximum
bond for each of them in linear time, and output the largest of them; the total
running time will be O (|V(G)|) 4+ > e O ([V(H)|) = O (|V(G)|) where C is

the set of 2-connected components of G. O

6 Concluding Remarks

Our main result concerning k-sums for £ = 1,2 can be used in a natural way
to get explicit descriptions of the bond polytope of the resulting graph. Let
G = G1 ®1 G3. Then Lemma 3 and Lemma 4 allow us to explicitly obtain
the inequalities describing BOND (G) since it is just a subdirect sum of the
two polytopes BOND (G;) and BOND (G3). Unfortunately, the number of
inequalities is not additive and this cannot be avoided unless one constructs
extended formulations, as we do.

One can also construct the inequalities describing BOND (G @2 G2) first
by constructing the extended formulation in Theorem 4 and then projecting
out the additional coordinates that were added. Since there is only a con-
stant number of extra coordinates that need to be projected out, this can be
done in polynomial time. However, since projecting out a single coordinate
may asymptotically square the number of inequalities, generally speaking one
would have neither a linear size description nor a linear (in output size) time
construction. We leave it as an open problem whether one can describe the
bond polytope under 2-sums explicitly.
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Question: 1 Let G = G1®.Go be obtained by a 2-sum of Gy and Go. What is
the description of BOND (G) (possibly in terms of the inequalities describing
BOND (G;) and BOND (G,))?

Finally, for the 2-sum operation where the common edge is removed, we
believe that the extension complexity of BOND (G1 @5 Gg) is not additive in
the extension complexities of BOND (G;) and BOND (G3) . This is because in
Lemma 6 we need the bond polytopes not of the summand graphs but of their
subgraphs. We leave this as another open problem.

Question: 2 Let G = G1 &_, Go be obtained by a 2-sum of G1 and G2 and
removing the common edge e. What is the description of BOND (G) (possibly
in terms of the inequalities describing BOND (G1) and BOND (Gs))?
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