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Abstract

In the spanning-tree congestion problem (STC), given a graph G, the objective is to compute
a spanning tree of G for which the maximum edge congestion is minimized. While STC is
known to be NP-hard, even for some restricted graph classes, several key questions regarding
its computational complexity remain open, and we address some of these in our paper. (i) For
graphs of maximum degree A, it is known that STC is NP-hard when A > 8. We provide a
complete resolution of this variant, by showing that STC remains NP-hard for each degree bound
A > 3. (ii) In the decision version of STC, given an integer K, the goal is to determine whether
the congestion of G is at most K. We prove that this variant is polynomial-time solvable for
K-edge-connected graphs.

1 Introduction

Constructing spanning trees for graphs under specific constraints is a well-studied problem in graph
theory and algorithmics. In this paper, we focus on the spanning-tree congestion problem (STC),
that arises naturally in some network design and routing problems. The problem can be viewed as
a special case of the graph sparsification problem where a graph G is embedded into its spanning
tree T by mapping each edge (z,y) of G to the unique z-to-y path in 7. The congestion of an
edge e € T is defined as the number of edges of G whose corresponding path in T traverses e, and
the congestion of T is the maximum congestion of its edges. In the STC problem, we are given a
graph G and the objective is to compute a spanning tree with minimum congestion. This minimum
congestion value is referred to as the spanning-tree congestion of G and denoted by stc(G).

The concept of spanning-tree congestion was introduced under different names in the late
1990s [1, 30, 28, 13], and in 2003 formalized by Ostrovskii [25], who established some key prop-
erties. The problem has been extensively studied since then, and numerous results regarding its
graph-theoretic properties and computational complexity have been reported in the literature. Be-
low we review briefly those that are most relevant to our work.
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STC is NP-hard, with the first NP-hardness proof given by Lowenstein [22] in 2010. It remains
NP-hard for planar graphs 27|, chain graphs and split graphs [24]. On the other hand, STC is
polynomial-time solvable for a wide variety of special graph classes, including complete k-partite
graphs, two-dimensional tori [17], outerplanar graphs [3], two-dimensional Hamming graphs [16],
co-chain graphs [11], and interval graphs [21].

In the decision version of STC, in addition to a graph GG we are also given an integer K, and
the goal is to determine if stc(G) < K. A natural variant of STC, when the congestion parameter
K is a fixed constant (rather than given as input) is denoted K-STC. The K-STC problem was
shown to be NP-complete for K > 5 by Luu and Chrobak [23], building on earlier results for larger
constants [27, 2|. On the other hand, K-STC is solvable in linear time for K < 3 [27]. The complexity
status of 4-STC remains an intriguing open problem. For graphs of radius 2, K-STC is NP-complete
for K > 6 [23], and its complexity is open for K = 4,5. For any constant K, K-STC is linear-
time solvable for bounded-degree graphs, bounded-treewidth graphs, apex-minor-free graphs [2],
and chordal graphs [26].

Kolman [14] observed that the existing NPP-hardness proofs used graphs of unbounded degree,
and raised the question about the complexity of STC for graphs of constant degree. For constant-
degree graphs, it has only been known that K-STC is linear-time solvable if the congestion bound
K is also constant [2]. Recently, Lampis et al. [18] reported progress on this problem, by proving
that, for any constant A > 8, STC is NP-hard for graphs with maximum degree A, leaving open
the complexity of STC for degree bounds between 3 and 7.

Our contributions. Addressing the problem left open by Lampis et al. [18], we prove (see Sec-
tion 3) the following theorem:

Theorem 1.1. Problem STC is NP-hard for graphs of mazximum degree at most 3.

Naturally, this theorem is true for all degree bounds A > 3, and it remains true for 3-regular
graphs. (Vertices of degree 1 or 2 can be removed from the graph, without affecting its maximum
congestion value.) This result fully resolves the status of STC for bounded-degree graphs.

We also study the K-STC problem for K-edge-connected graphs (see Section 5), proving the
following theorem:

Theorem 1.2. There is an O(m)—time algorithm that, given a K-edge-connected graph G, deter-
mines whether stc(G) = K.

Above, m is the number of edges, and the O(m) time bound is actually independent of K. Our
solution is based on the so-called cactus representation of K-cuts in K-edge-connected graphs that
was developed by Dinic et al. [6] (see also [9]). We further refine this characterization for graphs
with congestion K, to obtain additional properties that lead to a fast algorithm. Besides its own
interest, this result sheds new light on the complexity of 4-STC, showing that its difficulty is related
to the presence of cuts of size less than 4 in the graph.

Other related work. General bounds for the spanning-tree congestion value have been well
studied. For graphs with n vertices and m edges it is known that the congestion is at most O(y/mn)
and that there are graphs where this value is (y/mn) [5]. Since the congestion of an n-clique is
n— 1, this implies that, somewhat counter-intuitively, the congestion value is not monotone: adding
edges can actually decrease the congestion, and quite substantially so.

This non-monotonicity is particularly challenging in the context of approximations. Indeed,
very little is known about the approximability of STC. While the upper bound of n/2 on the
approximation ratio is trivial (achieved by any spanning tree [26]), the best known lower bound



is only 1.2, implied directly by the NP-completess of 5-STC [23]. In a recent work, Kolman [15]
developed an algorithm with approximation ratio O(A), where A is the maximum vertex degree.
Yet the general problem remains open; in particular it is not known if it is possible to achieve ratio
O(n?), for some 6 < 1.

The spanning-tree congestion is related to the tree spanner problem which seeks a spanning
tree with minimum stretch factor. The two problems are in fact equivalent in the case of planar
graphs: the spanning-tree congestion of a planar graph is equal to the minimum stretch factor of
its dual plus one [8, 27| (cf. [4, 8, 7| and the references therein for further discussion). It is worth
mentioning here that the complexity status of the tree 3-spanner problem has remained open since
its introduction in 2014 [4].

The STC problem can be relaxed by dropping the restriction that the tree to be computed is a
spanning tree of the graph. In this version, the tree must include all vertices, but its edges do not
need to be present in the underlying graph. This variant arises in the context of multi-commodity
tree-based routing [29, 13|, and appears to be computationally easier that STC, as it admits an
O(logn) approximation.

Readers interested in learning more about the STC problem are referred to the survey by
Otachi [26] that covers the state-of-the-art as of 2020, and to the recent paper by Lampis et al. [18]
that has additional information about some recent work, in particular about the parametrized com-
plexity of STC.

2 Preliminaries

Throughout the paper, by G = (V, E) we denote an undirected graph with vertex set V' and edge
set E. For a vertex u, by E, we denote the set of edges incident with w and by N, or N(u) we
denote the set of u’s neighbors. We extend this notation naturally to sets of vertices. For a set of
edges E' C E, V(E') denotes the set of all vertices incident with some edge of E’.

Recall that a connected graph G = (V, E) is said to be K -edge-connected if it remains connected
even after removing K — 1 edges. For any subset X ¢ {0, V'} of vertices, by X (or 0X) we denote
the set of edges between X and X = V'\ X, and we call it a cut. We refer to X and X as the shores
of cut 9X. If |0X| = K, we say that 90X is a K-cut, and if | X| =1 or | X| = 1 then we call cut X
trivial.

If T is a spanning tree of G and e is an edge of T', removing e from T disconnects 7" into two
connected components. Given a vertex x of T, we denote the component containing = by T,
and the component not containing = by 7, ® (we interpret these as sets of vertices of G). The cut
OT* = 9T, ® = 9T, is called the cut induced by e. (So T,"® and T, ® are its two shores.) Its
cardinality [0Te| is called the congestion of e in T and is denoted by cngq r(e), or cngr(e) if G
is understood from context. The congestion of tree T, denoted cng(G,T), is the maximum edge
congestion in 7. The minimum value of cng(G,T) over all spanning trees T of G is called the
spanning-tree congestion of G and is denoted stc(G). It is easy to see that this definition, expressed
in terms of induced cuts, is equivalent to the definition given at the beginning of Section 1.

3 NP-Hardness for Degree-3 Graphs

In this section we prove Theorem 1.1. Our proof is via a polynomial-time reduction from an NP-
complete version of SAT (defined below), mapping a boolean expression ¢ into a graph G and integer
K, such that stc(G) < K if and only if ¢ is satisfiable. G consists of multiple gadget subgraphs,
some corresponding to variables and some to clauses, as well as one additional root gadget, with



appropriate connections in and between these gadgets. Some gadgets are constructed from smaller
sub-gadgets. The most basic gadget is called a double-weight gadget, and it allows us to use edges that
are assigned two weight values, with appropriate interpretation. Using double-weighted edges, we
construct a more complex flower gadget that will be used as the root gadget and as the gadgets for
some clauses. The restriction to degree 3 makes these constructions quite intricate. A considerably
simpler proof for graphs of degree at most 4 can be found in Appendix A.

Problem (M2P1N)-SAT. This is an NP-complete restriction of SAT [23|, whose instance is a
boolean expression in conjunctive normal form with the following properties:
(i) each clause contains either three positive literals (3P-clause), or two positive literals (2P-clause),
or two negative literals (2N-clause), and
(ii) each variable appears exactly three times, exactly once in each type of clause, and any two
clauses share at most one variable.

We use the following conventions: letter ¢ is an instance of (M2P1N)-SAT, boolean variables are
denoted with Latin letters z, y, z, while for clauses we use Greek letters k, o, 8, v and w. Typically,
«, B and v denote a 2N-clause, 3P-clause and 2P-clause, respectively, x is a clause of any type, and
7 is a positive clause. For a variable x, by the 2N-clause of x we mean the unique 2N-clause that
contains the negative literal of x. Similarly, the 2P- and 3P-clauses of x are the unique 2P- and
3P-clauses, respectively, that contain the positive literal of x.

Double weights. In the graph we construct from an instance of (M2P1N)-SAT we will need the
notion of double-weighted edges, introduced by Luu and Chrobak [23|. Consider a pair of weight
functions wy,wy : E — {1,..., M}, where M is a positive integer whose value is polynomial in n.
Given a spanning tree T and an edge e = (u,v) € T, we define the weighted congestion of e to be

cnggr(e) = wale) + Ze'eem\{e} wi(e) .

The definitions of cng(G, T) and stc(G) extend naturally to double-weighted graphs. We also define
the weighted degree of v to be degq(v) = 3, e W1(u, v). (Note that it depends only on weight
function wy.) As long as the meaning is clear from context, we will often drop the word weighted
and write simply congestion or degree, while we mean the weighted versions of these terms.

When wi(e) = wa(e) = 1, we say that e is unweighted. For a double-weighted edge e with
(a,b) = (wi(e), wa(e)), we write its weight as a:b.

We will only use weight functions such that wi(e) < wa(e) for each e € E, so one can think of
w1 as the light weight function and wo as the heavy weight function. An important intuition is that
the edges in T' contribute their heavy weight to their induced cuts, while other edges contribute
their light weight to the cuts they belong to. This is why using double-weight edges gives us more
control over the structure of trees with optimal congestion, thus greatly simplifying the construction
of our target graph.

An edge e = (u,v) with wi(e) = wa(e) can be replaced by wi(e) edge-disjoint paths from u to
v without affecting the congestion or vertex degrees. As shown by Luu and Chrobak [23], this idea
can be extended to unequal double weights: in a graph G, an edge with weight a:b (under some mild
assumptions) can be replaced by an appropriate double-weight gadget, so that the resulting graph G’
has the property that stc(G) < K if and only if stc(G') < K. In their construction, the maximum
degree of G’ becomes large if b is large. Lampis et al. [18] provide a low-degree double-weight gadget,
but it is not sufficient for our purpose (because it contains vertices of degree 4).

The construction of our degree-3 double-weight gadget W(a,b), where a,b represent a double
weight a: b, is given in Appendix B. There, we also prove (see Lemma B.1) that for a < b and
b—a < K —2,W(a,b) has the following property: if the maximum degree in G is A > 3 and G’ is



the graph obtained from G by replacing an edge with weight a:b by a copy of W(a,b) then (i) the
naximum degree in G’ is also A and (ii) ste(G) < K if and only if ste(G') < K.

Flowers. One can think of our construction as having an intermediate implicit step, where variables
and clauses are mapped into vertices of an auxiliary graph G* that also contains a high-degree root
vertex. To obtain the final graph G, the high-degree vertices are replaced by other appropriate
gadgets. One gadget is called a flower, and it will be used to replace 2N-clause vertices and the
root vertex of G*. One other (unnamed) gadget, with a slightly different functionality, will be used
as the variable gadget.

An (-terminal flower gadget with integrality K, denoted F (¢, K), is the following graph:

e It has 3¢ vertices ci1,...,¢cp, di,...,dy, and t1,...,ts, that we call the core, dummy, and
terminal vertices, respectively. Vertex cq is special and is designated as the center of the
flower.

e For each i € [{]!, it has the following edges (indexing is cyclic, so £ +1 = 1): (i) (ci, i),
(t;,d;) and (t;,d;+1), all with weight 1, (ii) (¢4, d;) with weight 1: K — 1 for ¢ # 1 and weight
1 fori¢=1.

Figure 1: A 4-terminal flower F(4, K), and its congestion-5 spanning tree marked with thick (green) lines.

Figure 1 shows F(4, K). Notice that the core and dummy vertices have degree 3, while the
terminal vertices have degree 2 (these will be used to attach the flower to the rest of the graph via
edges with unit wi-weights). F(¢, K) has O({) vertices and edges, and it has a spanning tree with
congestion ¢+ 1 given by edges (¢, ¢it1), (ti,d;), (ti,diy1), for i € [¢ — 1], and (tg,dp), (d1,c1).

Expanding on the intuition outlined earlier, to simulate a high-degree vertex, a flower should
ideally have the property that a spanning tree with congestion K can visit it only once in the sense
that the flower lies wholly inside one shore of any cut induced by any non-flower edge in this tree.
As this is difficult to achieve using degree-3 vertices, we instead require only the core to lie on
one shore of such cuts. To make up for this relaxation, the flower has the property that disjoint
paths touching the gadget’s terminals can be extended to disjoint paths touching the core. This
disjoint-paths property will be crucial in the proof.

Let G be a double-weighted graph, and U C V a set of vertices that induces a flower subgraph
F =F({ K) = (U, F) such that the cut OU consists of exactly ¢ edges, each connected to a different
terminal in F. The intuition above is formalized below.

Observation 3.1. For any spanning tree T of G with cngo(T) < K and an edge e € T'\ F', all the
core vertices of F belong to the same shore of the cut 0T,.

!By [£] we denote the set {1,2,...,¢}.



Proof. Observe first that 7" contains no edges between core and dummy vertices of F except (dy, c1):
if (d;,c;) € T for some i # 1, then the cut induced by (d;, ¢;) would have congestion K + 1 (because
(di, ¢;) itself contributes K — 1, and there are two edge-disjoint paths from ¢; to d; within F not
containing (d;, ¢;)), contradicting the assumption that cng,(7") < K. Thus, T contains all but one
edge from the core ¢; — ¢o — ... — ¢y — ¢1, which implies the observation. O

Note that in the flower F(¢, K), the ¢ length-2 paths t; — d; — ¢; are disjoint. Thus, given a
collection of edge-disjoint paths {P;};.; in GG indexed by I C [¢], where each path P; starts at some
u; in V — U, ends at terminal t; of F and does not contain any other vertex of F, we can easily
extend it to a collection {P] }ier of edge-disjoint paths with each P! starting at u; and ending at c;.

The reduction. Given an instance ¢ of (M2P1N)-SAT, we convert it into a double-weighted graph
G with maximum degree 3, and a constant K such that:

(%) the boolean expression ¢ is satisfiable if and only if stc(G) < K.

The weights in G will be bounded by a polynomial function of the size of ¢; thus, per Lemma B.1
and the construction of the double-weight gadget W(a,b) in Appendix B, this reduction will be
sufficient to establish Theorem 1.1.

Let K > 6 be a positive integer to be specified later, and let n,m, m; and mso, resp., be the
number of variables, clauses, 2N-clauses and 2P-clauses of ¢, resp. We construct a double-weighted
graph G = (V, E; w1, ws) as follows (cf. Fig. 2):

e Create a copy R of F(2m; + mg + n, K), that we call the root or root-gadget: it has one

terminal ¢%, per each variable x, one terminal t?z per each 2P-clause ~, and two terminals
t%’l and t?f per each 2N-clause «. (How exactly we assign terminals to clauses/variables is
irrelevant.)

e For each positive clause 7, create a vertex w. For every 2N-clause «, create a flower H, =
F(4,K), called the a-gadget or clause-gadget, and denote its terminals by t?%t?’%ti,tﬁ,
where z and y are the variables in a. (How we assign labels to terminals is irrelevant).

e For each variable z, create a length-4 cycle 22N — 2P — 2R — 3P — 22N with unweighted edges,
called a variable-gadget or x-gadget. (The order of vertex labels in this cycle is important.)
Then add a root-variable edge (a;R,t%) with weight 1: K — 5, and clause-variable unweighted
edges (t2,22N), (B,23F), (v,2°F), where a, 3,7 are the 2N-clause, 3P-clause, and 2P-clause
of x, respectively.

e For each 2P-clause v, add one root-clause edge (7, t%) with weight 1: K —1. For each 2N-clause

«, add two root-clause edges (tg’l,t%’l) and (t§’2,t%’2), each of weight 1: K — 1.

HDEO OO

Figure 2: The structure of G.




By inspection, all vertices in this construction have degree 3, and wy(e) = 1 for all e € E. The
number of edges |E| in G is independent of K, so we can set K = 2|E|. Our double-weighted STC
instance G is now fully specified.

Any edge belonging to a variable, clause, or root gadget is called an internal edge, while every
other edge is external. We identify flowers by the corresponding clause (or root); for example by
core of clause v we mean the core of H,. (Similar terminology applies to flower terminals and
centers.) For the sake of uniformity, we also refer to positive-clause vertices as centers. In the proof
it will be convenient to occasionally work in the auxiliary multi-graph G* given by contracting all
internal edges of G, with each flower and variable gadget contracted to a single vertex, for which
we use the same notation as the gadget itself. We extend this convention to the edges in G*: for
example a root-clause edge (tzxz’l,t%l) in G between a terminal of clause « and a terminal of the
root is represented by edge (o, R) in G* between R and «.

Correctness. We now need to prove that our construction is correct, namely that it satisfies the
condition (x). We prove the two implications in () separately.

(=) Given a satisfying assignment for ¢, we convert it into a spanning tree 7" for G as follows: (1)
for each gadget, add a spanning-tree of unweighted edges for this gadget to T' (one always exists for
flowers and 4-cycles), (2) add all root-variable edges, (3) for each clause s, pick any (exactly one)
variable x whose assignment satisfies x and add the clause-variable edge from x to x to T

It is easy to see that 7' is a spanning tree for G. Furthermore, we can obtain a spanning tree T*
for G* by contracting the internal edges in GG, and every clause is a leaf in T*. We now show that
cngg r(e) < K foralle € T.

When e € T is unweighted, we trivially have cngg r(e) < |E| < K. Otherwise e = (v,t%) € T
is an external root-variable edge, in which case the vertices for any given gadget will be together on
one shore of the cut induced by e, implying cngg r(e) = enggs p« (2, R). Thus, it suffices to deal
with congestion in G*.

Let a, 8,7 be the 2N-clause, 3P-clause, and 2P-clause containing x respectively. One shore of the
cut induced by (z, R) is given either by (i) {z}, (ii) {r,z} for k € {«, 5,7}, or (iii) {z, 5,7}. In case
(i), enggs (7, R) = K —5+degg(7) —1 < K —2. In case (ii), cngge p«(7,R) = K—5+3+2 < K,
since k is incident to at most 3 edges in the cut and z is incident to 2 edges besides (R, x). In case
(iii), cngge 7+ (2, R) = K —=5+2+2+1 = K, since both positive clauses are incident to 2 cut edges
while z is incident to 1 besides (R, ).

(<) Given a spanning tree T for G with cng(G,T) < K, our goal is to construct a satisfying
assignment for ¢. Ideally, T" would have a form similar to the spanning tree described in the
= direction, but this may not be the case. Nevertheless, T" has enough structure to define a
variable assignment.

First, we give a suitable definition of connection between clause-gadgets and variable-gadgets
that will be used to define our boolean assignment. For a clause k containing variable x, a traversal
from K to x is a path in T that starts from the center of £ and contains exactly two external edges:
the first being the clause-variable edge from k to = (the entering edge), and the second being any
other external edge adjacent to the z-gadget (the exiting edge). We say that T traverses x from k
when such a path exists. Intuitively, a traversal from k to x is a natural way to lift the edge (k, x)
from G* to a path in G. We emphasize that a traversal begins at the centers of flowers, as opposed
to terminals or dummy nodes; this becomes relevant later in Claim 3.3.

The following lemma is sufficient to construct an assignment for ¢:

Lemma 3.2. Tree T has the following properties: (a) T does not contain any root-clause edges. (b)
If T traverses x from a negative clause, then T does not traverse x from any positive clause.



Assuming the lemma above holds, we define our satisfying assignment as follows: for each
variable z, make it false if T traverses it from a negative clause, otherwise make it true. Lemma 3.2(a)
implies that 7" includes for each clause k a traversal from x to some variable x appearing in it. (In
particular, a traversal appears as a prefix of the path in 7" from &’s center to the center of the root.)
x is false when « is negative by definition of the assignment, and x is true when k is positive by
Lemma 3.2(b). Therefore all clauses are satisfied.

Proof. First we prove Lemma 3.2(a). Suppose for contradiction that 7" contains some root-clause
edge e from a two-literal clause x. If kK = « is a 2N-clause, then e = (tzyz’j,t%d), for j € {1,2},
and there are two edge-disjoint paths (neither containing e) from R to t%’j : for each variable x
of a, walk from « to the z-gadget, and then to the root. (By the structure of flowers, discussed
earlier, we can ensure that these two paths are indeed edge-disjoint.) This implies that cngGyT(e) >
wo(e)+2=K —1+2= K +1, contradicting cng(7) < K. A similar reasoning applies when x is
a 2P-clause.

Next we prove Lemma 3.2(b). Let = be a variable and «, 3,7 be the 2N-clause, 3P-clause, and
2P-clause of z, respectively. Assume for contradiction that T' traverses x from « and at least one
positive clause  or v. We show that this assumption implies that cng,(7') > K. First we prove
the following claim.

Claim 3.3. For some clause w € {B3,~}, the path in T from the center of o to m contains exactly
two external edges, the first being the clause-variable edge (ti,xm) from « to x, and the second
being the clause-variable edge (7,562P) or (ﬁ,xsp) from x to m.

To justify Claim 3.3, let P be a traversal from « to z. If the exiting edge of P is (aczp, 7) (resp.
(w3p,ﬁ)), then P is simply the path in T from the center of « to 7 (resp. ), and the claim is
satisfied for 7 = 7 (resp. B). Otherwise, the exiting edge of P is (:UR, t%), which of course implies
that 22N and z® are both in P. Now let = € {B,7} be a clause where T traverses x from 7, and
let P’ be a corresponding traversal. Then in P’, the entering edge must be succeeded by an edge
containing v € {$2N, xR}, due to the way variable gadgets are labeled. This implies that P and P’
overlap. The path from a’s center to 7 is then given by joining the sub-path in P from the center
of a to v, followed by the sub-path in P’ from v to 7. Claim 3.3 then follows.

Continuing the proof of Lemma 3.2(b), let 7 € {3,7} be a clause satisfying Claim 3.3. By
Lemma 3.2(a), the path in 7" from the center of a to the center of the root must contain some
root-variable edge; suppose e = (yR,t%) is the first such edge on this path. Clearly, the center

4R . . .
of the root lies on the shore T, ¥ of the cut 0T,, while the center of « lies on the opposite shore
R
T.7". On the other hand, the path described in Claim 3.3 does not contain any root-variable edges,
R
implying that 7 and 22N also lie on shore T.7Y" . In conjunction with Observation 3.1, we obtain:

Corollary 3.4. The core of the root is on the shore Te_yn, while 2°N, 7w, and the core of o are on
R
the shore TV .

We now show that cngp(e) > K. The definition of (M2P1N)-SAT implies that there are four
distinct variables z1, 22, 23, 24, none equal to x, such that z; € «a, 29,23 € 5, and z4 € ~. This in
turn implies that there are 7 edge-disjoint paths crossing 07,.. In particular, each path begins at
either 22N, 7, or a core vertex of a, then ends at a core vertex of the root. As explained in the
discussion of flower gadgets, it is sufficient to specify terminals as path endpoints. Three of these
paths are

R,1 a,l R,2 a,2 21 2N 2P R 21
ta —tR, ta _tR’ ta — 21 — 2 —* _tR



The choice of the four remaining paths depends on whether m# = 3 or . If m = 3, these paths are

:E2N—:c3P—xR—t9,%7 B—Z§P—z§—t§§,
B— 238 —2f — 13, N — 2 —y 11
If m = ~, these paths are
2N P Ry S
v—zip—zf—t%, :L‘2N—:E3P—B—zgp—z§—t§§.

At most one of these paths contains e, implying cngG?T(e) > K —-5+46 = K + 1, contradicting
eng(G,T) < K. This completes the proof of Lemma 3.2. O

4 Cactus Representation and Spanning-Tree Congestion

In this section, laying the groundwork for our algorithm in Section 5, we analyze the structure
of K-edge-connected graphs whose spanning-tree congestion is K. We start, in Section 4.1, by
reviewing the properties of K-edge-connected graphs, captured by so-called cactus representation.
Then, in Section 4.2, we focus on the special case of graphs with congestion K, and we prove that
this congestion assumption implies additional structural properties of such graphs, that will lead to
an efficient algorithm.

Throughout this section we assume that G = (V, E) is a given K-edge-connected graph with
n = |V|] vertices and m = | E| edges.

4.1 Cactus Representation

Two cuts X and 9Y are called nested if one of the four pair-wise shore intersections X Y, XNY,
XNY and X NY is empty. If all four intersections are non-empty then we say that cuts X and
AY cross. A family of cuts is called laminar if any two cuts in it are nested. By dy X we denote
the subset of cut 0X consisting of edges whose both endpoints are in Y.

Theorem 4.1. [6]. Let G be a K-edge-connected (multi-)graph.
(a) If K is odd, then G has no crossing K-cuts. That is, the family of K-cuts is laminar.
(b) If K is even, then any two crossing K-cuts 0X, dY in G satisfy |0y X| = |0y X| = |0y X| =
|0y X| = K/2. There are no edges between X NY and X NY, and between X NY and X NY.

This theorem can be refined to produce an even more informative representation of K-cuts,
in terms of so-called cactus graphs. For cactus graphs, we will use terminology of nodes and links
(instead of vertices and edges). A connected multigraph is called a cactus graph if every link belongs
to exactly one cycle. (Equivalently, it is a 2-edge-connected graph whose biconnected components
are cycles.) Cactus cycles of length 2 are called trivial. A degree-2 node of a cactus is called an
external node, and any other node is called an internal node. From the definition, it follows that
each cactus has at least one external node. If all its cycles are trivial, the cactus forms a tree whose
adjacent nodes are connected by two parallel links and the external nodes are its leaves.

Theorem 4.2. [6]. Let G = (V,E) be a K-edge-connected graph. Then there is a cactus graph
Cq = (U, F) and an associated mapping ¢ : V — U with the following properties:
(a) For each set X CV, 0X is a K-cut if and only if X = ¢~ 1(Q) for some Q C U such that 0Q
is a 2-cut of €g.
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Figure 3: A 4-edge-connected multigraph and all its 4-cuts. Parallel lines represent double parallel edges.
Each vertex v; is identified by its index i. For X = {uv4, vs, vg, v7,vs} and Y = {vy,v2,v3,v4,v5,v6, v7}, cuts
0X, Y cross.

(b) If K is odd, then all cycles in €g are trivial; that is, € is a tree with adjacent nodes connected
by two parallel links.

The pair €g, ¢ is called a cactus representation of G (see Figures 3 and 4). A cactus represen-
tation of G of size O(n) can be computed in near-linear time O(m) [12].

Figure 4: A cactus representation of the graph from Figure 3. The numbers represent indices of vertices in
G that are mapped by ¢ to the corresponding node in €5. Note that the pre-image of a node in €z could
be empty.

Basic K-cuts. Per Theorem 4.2, each K-cut of G is represented by a 2-cut of €g. Each 2-cut of
€ consists of two links that belong to the same cycle. Thus, a cycle of length £ in €4 represents
(g) K-cuts of G. Two K-cuts cross in G if and only if they are represented by two crossing 2-cuts
of €¢; that is, the four links in these two 2-cuts belong to the same cycle and alternate in the order
around this cycle.

A shore of any K-cut represented by two non-adjacent links of this cycle can be obtained as a
union of shores of K-cuts represented by pairs of its consecutive links. For our purpose it is sufficient
for us to focus on this subset of £ cuts represented by such link pairs. This motivates the following
definition.

A K-cut 0X in G is called a basic K-cut if it is represented by a pair of links of € that share
a node. If this shared node is b, we say that 0X is a basic K-cut associated with b. Note that
K-cuts represented by two parallel links are also basic and are associated with both endpoints of
these links.

From now on, as a rule, when talking about a cut 0X associated with b, we will represent it by
X = ¢~ HQ) for the shore @ in the 2-cut of € that does not contain b.

For each node b € €g of degree 2d, the links incident with b form d disjoint pairs with each
pair on the same cycle of €g. All the basic K-cuts associated with b are then given by these pairs.
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Representing them by 071, ..., 0Z4 as described above, all the sets Z1, ..., Z4 form a disjoint
partition of the set V '\ ¢~1(b).

Basic K-cuts form a laminar family. In fact, Theorem 4.1 implies even the following two stronger
properties that will be crucial for our algorithm.

Observation 4.3. (a) A basic K-cut does not cross any other K-cut (even a non-basic one).
(b) Let 0Zy, ..., 0Zq be all basic K-cuts associated with b € €g. Then for any K-cut 0Y, there
exists j for which either’ Y C Z; or'’Y C Z;.

4.2 Cactus Representation for Graphs with Congestion K

We now assume that stc(G) < K, and we show that this assumption implies additional properties
of G’s cactus representation. These properties will play a critical role in our algorithm.

By T we denote a spanning tree of G with cngG(T) < K. Note that by the assumption about
K-edge-connectivity, |E,| > K for each vertex u, and stc(G) = K. So each edge e of T induces
a K-cut, i.e., we have \8T | = K. In particular, every leaf u of T has degree exactly K in G and

E, = 0{u} is a (trivial) K-cut.

Observation 4.4. For every node b € €g, we have |¢~1(b)| < 1.

Proof. Suppose that ¢~!(b) contains two distinct vertices  and v. Then none of the K -cuts repre-
sented by € separates u from v. On the other hand, any edge on the u-to-v path in T induces a
K-cut separating v and v, a contradiction. O

By Observation 4.4, each node b of €4 can be classified into one of the two categories: either
#~1(b) = 0, in which case we refer to b as a Type-0 node, or |¢~1(b)| = 1, in which case we call it
a Type-1 node. This is refined further in the observation below that follows directly from the fact
that if deg(u) = K then E, = 0{u} is a trivial K-cut and ¢(u) is a Type-1 external node of €.

Observation 4.5. Every node b € €g is of one of the following three types:
(i) an external Type-1 node with b = ¢(u) for a vertex u of degree exactly K,
(ii) an internal Type-1 node with b = ¢(u) for a vertex u of degree strictly greater than K, or
(iii) an internal Type-0 node.

Basic K-cuts associated with cactus nodes. A key property of T that we use in our algorithm
is that for any basic K-cut 90X, all edges in T N X share an endpoint w. Lemmas 4.6 and 4.7
below show an even stronger property, namely for any node b, for all basic cuts associated with b,
this common endpoint will be the same; furthermore for Type-1 node b, we have ¢(w) = b, i.e., we
have only this single choice for the common endpoint w. See Figure 5 for an illustration.

Lemma 4.6. Let b be a Type-1 node and w € V' such that ¢(w) =b. Let 071, ..., 0Z4 be all basic
K -cuts associated with b. Then T N ngl 0Z; C E,.

Proof. It is sufficient to prove that for any i # ¢, there is no edge in T connecting Z; and Z;. For
a contradiction, assume that u € Z;, v € Zy, and (u,v) € T. Now consider the first edge e on the
path from w to w in the spanning tree T. Edge e induces a K-cut 9Y = dT, with has both u and
v in the same shore and w in the other shore. Thus for any j, none of the shores of Y can be
contained in some set Z;. This contradicts Observation 4.3. O

Lemma 4.7. Let b be a Type-0 node, and let 07, ..., 0Zq be all basic K-culs associated with b.
Then there exists j and w € Z; such that T'N U;izl 0Z; C Ey.
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Figure 5: On the left, an illustration of Lemma 4.6. On the right, an illustration of Lemma 4.7. In both
examples K = 8 and d = 4. Edges in T that cross the basic K-cuts 0Z; are green (dark) and thick, non-tree
edges are brown (light) and thin.

Proof. Suppose _towards contradiction, that the claim in the lemma is false. That is, there are edges
(u,v), (v, v') € TN UZ 1 0Z; with all endpoints u,v,u’,v" distinct. Consider the unique path in T
from {u, v} to {u/,v'} that does not include edges (u, v) and (u/,v"). Let e be any edge on this path
and let Y = 9T, be the K-cut induced by e. Then 9Y separates {u,v} from {u’,v'}. However, u
and v are in two different sets Z;; the same holds for «/ and v'. Thus for any 7, none of the shores
of 9Y can be contained in some set Z;. This contradicts Observation 4.3. O

The corollary below will play a key role in our algorithm, and it follows directly from Lemmas 4.6
and 4.7, as each basic cut is associated with some node b.

Corollary 4.8. For any basic K-cut 0Z of G, all edges in T NOZ have a common endpoint.

Basic K-cuts of cactus cycles. Assume now that K is even, and let C =ag—a1—...—ay_1 —aop
be a non-trivial cycle in €g, so £ > 3. We index C' cyclically, i.e., a; = a; (mod ¢) for all integers i.
For each i, the two consecutive links (a;—1,a;) and (a;, a;+1) of C form a 2-cut 0Q; of €, where
the shore @); is chosen so that a; € @);. Let 0Z; be the basic K-cut in G represented by the 2-cut
0Q;, with Z; = ¢~ 1(Q;). The sets Z, ..., Zy_1 form a partition of V, that is Z; N Zy = () for i # &
and Uf;é Z; = V. By Theorems 4.1 and 4.2, for any i, there are exactly K/2 edges between Z; and
Zis1, 1e., |0Z; N0Z;11| = K/2; we call this set 0Z; N 0Z; 41 of K/2 edges a half-K-cut. 1t follows
that 0Z; N 0Zy = 0 if a; and a; are not consecutive on C, i.e., whenever i — ' ¢ {1,—1} (mod ¢).

Next, in the lemma below, we show that T traverses the cuts represented by C in a very restricted
way: for some index g, the edges of T form a length-(¢ — 1) path that traverses consecutive half- K-
cuts from Zy to Zg4¢p—1 = Zy—1, and the only other edges of T in the cuts of C are between Wyt
and Z,; and between wy_o and Z, 1. In particular, T has no edges in the half-cut 0Z,_1 N 0Z,.
(See Figure 6.)

Lemma 4.9. There is an index g and vertices wg, Wgy1,...,Wgyrr—1 = Wy_1, with w; € Z; for
1= g9+ {— 1, such that the edge set TN Ué_1 0Z; has the following form:
(i) T NoZ N0Zip1 = {(wi, wir1)} fori=g+1,...,9+€—3,
(11) (wg,wg+1) € TﬂaZ Nnoz gr1 © Ewg+1; (wg 2, Wg— 1) € TﬁaZg 1 ﬂaZg 9 C E
(iii) TNAZ,NIZy1 = 0.

5, and

Proof. First observe that if T contains two edges in adjacent half-K-cuts, say e;_1 € N 0Z;_1N0Z;
and e; € TNOZ; NIZ;+1, then, by Corollary 4.8, they have a common endpoint w;. Further, since
Zi-1NZiy1 =0 (and £ > 3), we must have w; € Z;.
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Figure 6: An illustration of Lemma 4.9, for K =8, £ =6 and g = 4.

It is not possible for each half-K-cut 07; N 0Z; 41 to have an edge from f, because then, by the
observation from the previous paragraph, these edges would form a cycle. Choose one g for which
TN 0ZyN0Zy—1 = 0. So (iii) is already true. Since T is spanning, all other half-K-cuts intersect
T. Choose one edge from TNoZ N 0Z;11 for each i # g — 1. Using the observation from the first
paragraph, these chosen edges form a path wy, ..., wg4¢—1 with w; € Z; fori =g,...,g+{—1, and
this path satisfies properties (i) and (ii). O

5 A Linear-Time Algorithm

In this section we prove Theorem 1.2, by developing an O(m)—time algorithm that, given a K-edge-
connected graph G, determines whether stc(G) = K. We start by sketching the basic ideas leading
to our algorithm.

A natural attempt to design an algorithm would be to exploit the tree-like structure of cactus
graphs, applying the dynamic programming strategy to recursively compute some congestion-related
information for the K-cuts of G. The first challenge one encouters is that in general (for even values
of K), the K-cuts do not form a laminar structure.

This is where the concept of basic K-cuts, introduced in Section 4.1, is helpful. The family of
basic K-cuts is laminar. More specifically, we will choose an arbitrary degree-K vertex r in G,
called the root of G (see Section 5.1.) We can then identify each basic K-cut 0Z by the shore Z
that does not contain r. The subset relation between these shores defines a tree structure on the
basic K-cuts. The algorithm can then process the basic K-cuts bottom-up in this order.

What information such an algorithm would need to maintain for each basic K-cut 047 A naive
approach would be to somehow keep track of all “candidate crossing-edge sets” A C 9Z, namely
the sets A for which there is a spanning tree T" of G with congestion K such that T NodZ = A.
This raises two issues. One, the resulting algorithm’s running time would be exponential in K.
Two, obviously, the algorithm does not yet know T when 87 is considered. What’s worse, even
the congestion of tree edges that are wholly inside shore Z cannot be uniquely determined based
only on the subgraph induced by Z. (It may be possible to address the latter issue by storing
appropriate information about the tree topology inside Z, but at the price of further increasing the
time complexity.)

The characterization of K-edge-connected graphs with congestion K, developed in Section 4,
suggests an alternative approach. The key property is Corollary 4.8, which says that if T is a
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spanning tree with congestion K then for each basic K-cut 07, all edges in TNZ have a common
endpoint. Instead of focussing on tree edges crossing 0Z, we can instead attempt to recursively
compute these common endpoints. This is not quite possible, for the same reason as above: we
cannot determine if a vertex is such a common endpoint, for some congestion-K spanning tree,
without knowing the whole graph G. Generally, the analysis in Section 4, while it provides crucial
ideas, is not sufficient in itself to derive a dynamic-programming algorithm because it is expressed
in terms of global properties of G. For this, we need a definition of “candidate common endpoints”
that is based only on the information from the already processed subgraph.

To address this, in Section 5.1 we establish analogs of the properties in Section 4 expressed in
terms of the rooted versions of €5 and GG. One key observation is this: for any vertex w and for any
spanning tree 1" such that T'N0Z C E,, the congestion of T’s edges within the subgraph induced
by Z U {w} depends only on this subgraph. If all these congestion values are K, we call T' safe,
and we call w a hub for Z. (We also require, for technical reasons, that w has at least one edge
crossing 0Z.) If w is a hub for 0Z, it only means that the information from the subgraph Z U {w}
is not sufficient to eliminate w as a possible common endpoint of the edges from 9Z that belong to
some congestion-K spanning tree of G. (Later, when processing some ancestor K-cut of Z, it may
turn out that such a tree does not exist for w.) We prove that the set of hubs of 07, denoted H (2),
can be determined from the hub sets of 0Z’s children, thus establishing a recurrence relation that
drives the dynamic programming algorithm (see Section 5.2).

While it may not be obvious, computing all hub sets H (Z) is sufficient to determine whether
the congestion of G is K. (That is, for any w € H(Z) we do not need to keep track of which tree
edges from w cross 07, circumventing the issue we mentioned earlier.) The reason is this: once
(and if) we reach the root r, the condition on r being a hub for its cut 0Z (with Z = V' \ {r}) is
equivalent to G having a spanning tree with congestion K.

5.1 Rooting G and its Cactus Graph

Throughout this sub-section (Section 5.1) we will assume that G is a K-edge-connected graph and
that |¢(b)| < 1 for every node b € €, so that Observation 4.5 can be applied. We fix an arbitrary
degree-K vertex r € V as the root of G. By convention, from now on, each K-cut 0X will be
represented by the shore X that does not contain r. This naturally imposes a tree-like structure on
basic K-cuts, where a basic K-cut 0X is a descendant of a basic K-cut 9Y if X C Y. A descendant
0X is called a child of Y (making JY a parent of 0X) if there is no basic K-cut 0Z such that
X € Z C Y. Since the family of basic K-cuts is laminar by Observation 4.3, every cut except
O(V \ {r}) has a unique parent. (So the descendant relation is indeed a tree.)
To reflect this ordering of basic K-cuts in G’s cactus representation, we root €5 at the node
@(r). In our algorithm we will need a few more related concepts:
e A node a of € is said to be below a node b if b is on every path from a to ¢(r).
e A node a is called the head of the cycle C in €4, and denoted ac, if a € C' and all the other
nodes of C are below ac.
e For a node a # ¢(r), by Q* we denote the set of nodes consisting of a and all nodes below a.
Also, let W% = ¢~1(Q%) be the set of vertices of G represented by Q?.
e For a cycle C in Cg, we let Q¢ = UbGC\ac Q". That is, Q° consists of all nodes that are

below ac, excluding ac itself. Also, let W& = ¢=1(QY).
The cactus structure implies that each cycle has a unique head, so the definition above is valid.
Furthermore, each node except for ¢(r) belongs to a unique cycle, which could be trivial or not,
where it is a non-head node. On the other hand, a node can be a head of several cycles.
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The following observation, that follows directly from the definitions, summarizes the properties
of the basic K-cuts and their ordering, and the corresponding properties of €.

Observation 5.1. The basic K-cuts of G satisfy the following properties:

(a) The family of basic K-cuts of G consists exactly of all K-cuts OW?® and OWC, for nodes
b # ¢(r) and non-trivial cycles C' in €g. Further, this representation is unique; that is all
K-cuts OW? and OWC, for nodes b # ¢(r) and non-trivial cycles OWC in g, are different.

(b) If C is a trivial cycle of € then OWC = OW?, where b is the node on C different from ac.

(¢) Fornodes a and b of €¢ distinct from ¢(r), a is below node b if and only if OW® is a descendant
of OW?.

(d) For a non-trivial cycle C of €g, the parent of OWC is OWC, and the children of OWC are
the K-cuts OW? for b€ C\ {ac}. Further, W¢ = Usecn fac) we.

(e) For a node b # ¢(r) of €q, if C is the unique cycle where b is a non-head node, the parent
of OW? is either W, if C is trivial, or W, if C is non-trivial. The children of W are
all K-cuts WC, for cycles C for which ac = b. (Note that, by (b), for trivial cycles C
these children also have the form W, where a is the node on C other than b.) Further,

Wb = d)_l(b) U UC’:b:ac WC'

Finally, note that ¢(r) is an external node of €¢, as r has degree K in G. It follows that there
is a unique cycle C with ac = ¢(r). Thus the K-cut 9(V \ {r}) is equal to W¢. In particular, if C
is trivial, this K-cut is W, for the node b in C other than ¢(r).

5.1.1 Safe Trees and Hubs

Through the rest of this section, by a tree in G we will mean a tree that is a subgraph of G. To
simplify notation we will sometimes treat trees in G as sets of vertices and for such a tree T we will
write 0T to mean OV (T').

We now define the concepts of safe trees and hubs, mentioned earlier in the beginning of Section 5.
Roughly, a tree in G is considered safe if it cannot be eliminated as a possible subtree of T (a
spanning tree with congestion K') based only on the subgraph of G it spans. These trees are used
as partial solutions constructed (implicitly) in the algorithm. As the algorithm proceeds, it may
expand a safe tree, but only by connecting its root to a vertex in the new, larger safe tree. A safe
tree can get discarded, if we discover that it cannot be expanded to a larger safe tree.

To formally define safe trees, we need to extend some concepts from Section 2, defined for
spanning trees, to arbitrary trees in G. If T is any tree in G and e = (u,v) € T is an edge of T,
removing e from 7" disconnects T" into two connected components. As before, given a vertex w of
T, we denote the component not containing w by 7.,*. As usual, by 07." we denote the set of
edges between this component and the rest of the graph.

For any tree T' in G and any vertex w in T, (T, w) denotes the rooted version of T', with w
designated as its root. Such a rooted tree (T,w) is called safe if for each edge e of T" we have
|0T ™| = K. The concept of a safe tree is a natural generalization of the notion of a spanning tree
with congestion K, in the following sense:

Observation 5.2. Let T be a spanning tree in G and w any vertex. Then (T, w) is safe if and only
if eng(G,T) < K.

The lemma below generalizes Corollary 4.8 to an arbitrary safe tree.

Lemma 5.3. Let 0Z be a basic K-cut and (T, w) a safe tree in G with TNOZ # (. Then all edges
of T'NOZ have a common endpoint.

15



Proof. For a contradiction, suppose that f and f’ are two edges in T'N dZ such that all four of
their endpoints are distinct. Consider a path connecting these edges in T' and any edge e on this
path in-between f and f’. Then the cut 9T, " is a K-cut, by the definition of a safe tree. However,
T. " contains exactly one of the edges f and f’ with its both endpoints, while the endpoints of the
other edge are outside of 7. It follows that the cuts 0Z and 0T_, " are crossing, as each of the
four endpoints is in a different shore intersection. Since Z is a basic K-cut, this is a contradiction
with Observation 4.3.

From the above paragraph, any pair of edges in T'N dZ must share an endpoint. We still need
to argue that all edges in T'N 0Z must share a common endpoint. Indeed, this is trivial when
[TNoZ| € {1,2}. When |[T'N0Z| > 3, fix any three edges in T'N 0Z, and observe that they must
share a common endpoint, say w, because otherwise they would form a 3-cycle. Any other edge in
T NOZ, to share an endpoint with each of these three edges, must have w as an endpoint. O

We are now ready to define hubs. Let 0Z be a basic cut in G. A node w € V(90Z7) is called
a hub for Z, if there exists a spanning tree T of the subgraph of G induced by Z U {w} such that
(T,w) is a safe tree in G. We call this T a witness tree for w and 0Z. If w € Z, then w is called an

in-hub for Z, otherwise w is an out-hub for Z. By H(Z) we denote the set of all hubs for Z.

5.1.2 Constructing the Hub Sets for Basic K-Cuts

We now develop the properties of hubs for basic K-cuts OW? that are analogous to Lemmas 4.6
and 4.7, but are formulated in terms of safe trees instead of the congestion-K spanning tree T.

The following observations follow directly from the definitions. They show that the safety
property of trees is preserved under some operations, like taking sub-trees or combining disjoint
trees with a common root.

Observation 5.4. Let (T, w) be a safe tree, u a vertex of T, and e the first edge on the path in T
from u to w. Then (T, ", u) is also a safe tree.

Observation 5.5. Let (T, w) and (T, w) be two edge-disjoint safe trees with a common root w.
Then (T UT',w) is a safe tree.

Observation 5.6. Let (T,v) be a rooted tree in G satisfying |0T| = K, and let (u,v) € 0T. Then
(T U{(u,v)},u) is a safe tree if and only if (T,v) is a safe tree.

_ Let Z = WP be a basic K-cut, for some node b of €5. We now describe how the set of hubs
H(Z) can be computed from the sets of hubs for the children of cut 9Z. We break it into three
cases: when b is an external node, when it is an internal node of Type 1, and when it is an internal
node of Type 0.

The case when b is an external node (so it has no children) is simple. Recall that each external
node is a Type-1 node with a degree K vertex in its preimage. The set W? then contains this single
vertex and represents a trivial K-cut.

Lemma 5.7. Let b # ¢(r) be an external node of €g (necessarily of Type-1) with d~1(b) = {v}.
Then H(W?) = {v} U N(v).

Proof. The witness tree for v is the trivial tree with v as a single vertex. For any w € N(v), the
witness tree is the tree with a single edge (v,w). There are no other vertices in V(9W?), so the
lemma follows. u
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If b is an internal node, of any type, we will denote the children of W by Z1,...,Z;. These
children are determined as detailed in Observation 5.1(e). As also explained in Observation 5.1(e),
the set W? is a disjoint union of all sets Z;, plus a singleton ¢—1(b) if b is of Type-1. This, together
with Observation 4.3, implies the following key property:

Observation 5.8. Let b be an internal node of €g, and denote by Zi,...,Z; the children of its
corresponding K-cut W°. If 0X is a K-cut (not necessarily basic) such that X C W then X C Z;
for some 1.

Now we examine the case when b is an internal node of Type-1. We show that the only possible
in-hub for W? is the vertex v with ¢(v) = b, and that for v to be a hub it must be an out-hub for
each Z;. The only possible out-hubs are neighbors of v outside W?, providing that v is an in-hub
itself. Formally, we have the following lemma.

Lemma 5.9. Let b be a Type-1 internal node of €, and let v be the (unique) vertex of G satisfying
d(v) =b. Let Zy,...,Z; be the children of Wb. Then v € V(OW®) N(N._, V(0Z;) and

YU @\W?) ifve N, H(Z)

0 otherwise

() - { )
Proof. The first condition, namely that v has edges crossing K-cut 9W? and all K-cuts 07;, follows
directly from Lemma 4.6.

In the rest of the proof we show that Equation (1) is true. The argument is by considering three
types of vertices: vertices in |Ji_; Z;, vertex v (the only vertex in W\ |J!_, Z;), and vertices in
V \ W?. The theorem will follow from the three claims established below.

Claim 5.10. H(W?) n (U!_, Z) = 0.

To prove this claim, suppose that w € H (Wb) N U§:1 Z;, and let T be its safe tree. Consider an
edge e on the path from w to v in 7. By the definition of a safe tree, 0X = 0T, " is a K-cut. But
X C V(T) = W?" and, since v € X, we also have X ¢ U§:1 Z;, contradicting Observation 5.8.

Claim 5.11. v € HW?) iff v e 'L, H(Z).

We start with the (<) implication. Assume that v € (_, H(Z;). For all i = 1,...,t, consider
the witness tree for v and Z;. By Observation 5.6 their union is a safe tree rooted at v and thus it
is a witness tree for v and W?°. Together with v € V(OW?) this implies that v is an in-hub for W?.

To prove the (=) implication, suppose that v € H (W?) and let T be its safe tree. We will show
that v is an out-hub for each Z;. Indeed, for any edge e = (v, u.) from v in T', u, € Z; for some j
and V(T, ) C Z;, as 0T, ¥ is a K-cut not containing the whole W?.

Now consider an arbitrary but fixed 7, and the tree T” consisting of all edges e from v to Z; in T'
plus a union of all corresponding trees 7. Y. This T” spans Z; U {v}. For each e = (v,ue),ue € Z;,
by Observations 5.4 and Observation 5.6, both (7,7, u.) and (7.V U {e},v) are safe trees. Now T”
is the union of all these trees and thus Observation 5.5 implies that 7" is a witness tree for v and
0Z; and that w = v is an out-hub for Z;.

Claim 5.12. Let w € V \ W°. Then w € HW?) iff v € Nz, H(Z;) and w € N(v) \ Wb,

The (<) implication is trivial: if v € ('_, H(Z;) then, by Claim 5.11, v is an in-hub for W?.
Then the assumption that w € N (v)\W? implies that w is an out-hub for W, directly by definition.

It remains to prove the (=) implication. Suppose that w € H(W?’) and let T be its witness
tree. By the definition of H(W?) we have w € V (OW?).
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We argue first that the degree of w in T is 1. Otherwise, if the degree of w in T is at least 2,
let e be an edge from w such that v € T, (such an edge necessarily exists.) Then 7" does not
span whole W? as there is another edge from w to W? in 7. Thus v € V(T %) C W?, and 91,
is a K-cut, a contradiction again with Observation 5.8.

Therefore the degree of w in T is 1. Let this single edge from w be (w, z). Then Observation 5.6
implies that (T, w) is a safe tree if and only if (7", z) is a safe tree. Then 7, " witnesses that z is
an in-hub for W?. But Claims 5.10 and 5.11 imply that only v can be an in-hub for W?, providing
that v € N_, H(Z;), completing the proof of the (=) implication in Claim 5.12. O

If b is an internal node of Type 0, W may have multiple in-hubs, but, as we show in the lemma
below, they still must be common hubs for all Z;’s. The out-hubs of W may either be neighbors
of such in-hubs, or common out-hubs for all Z;’s.

Lemma 5.13. Let b be a Type-0 internal node of the cactus. Let Zy,...,7Z; be the children of WP.
Then
HWY = HUNHNW )\ W), where H=V@W") nN._, H(Z). (2)

Proof. We first show the (D) inclusion. Consider some w € H. Then w is a hub for each set Z;.
Consider the corresponding witness trees T; for w and Z; for all i = 1,...,¢t. By Observation 5.6
their union is a safe tree rooted at w and thus it is a witness tree for w and OW®. Together with
w € V(OW?) this implies that w is an in-hub for W?.

Next, consider some v € N(H NW?) \ Wb That is, u € V' \ W?, and u is a neighbor of some
w € HNW?". By the previous paragraph, w is an in-hub for W?®, so Observation 5.6 implies that u
is an out-hub for W°. This completes the proof of the (2) inclusion.

To show the (C) inclusion, fix any w € H(W?), and let T be its witness tree. Recall that
T spans W U {w}, so any neighbor of w in T is in W? = U’;f:1 Z;. We need to show that w €
HUN(HNWP?)\ WP, To this end, we consider the three cases below.

Case 1: w € WP. We will show that in this case w € H. Note that w € V(OW?) by the definition
of a hub, so we need to show that w € "'_, H(Z;).

We start with the following simple observation. For any edge (w,u) in T, 97" is a K-cut and
v C WP\ {w} € WP, which implies that 7. is a subset of one of the sets Z;.

Now, fix some arbitrary index i € {1,...,¢}. It remains to show that w € H(Z;). Let ey, ... ,€q
be all the edges in T from w to Z;. We claim that the subtrees Te;w, 7 =1,...,q cover all the
vertices of Z;, possibly with the exception of w in case when w € Z;. Indeed, consider any vertex
x € Z; \ {w} and the first edge ¢/ = (w, ') on the path from w to z in T. By the previous
observation, v’ € Z;, as T_," contains x € Z;. Using Observations 5.4, 5.6, and 5.5, this implies
that U?:l(Te;w U {e;}) is a witness tree for w and 0Z;, so w € H(Z;), as needed.

Case 2: w ¢ WP and the degree of w in T is at least 2. We will show that in this case w € H. The
argument is essentially the same as in Case 1. We have that w € V(dW?), by the definition of a
hub, and it remains to show that w € (:_, H(Z;).

For any edge (w,u) in T, 9T, is a K-cut and T, C WP\ {u/} € W?, where «’ is any neighbor
of w in T" other than w. This implies that 7" is a subset of one of the sets Z; — the same property
that we had in Case 1.

Following the same argument as in Case 1, for any index ¢ we can obtain the witness tree for w
and 0Z; by combining the branches of T inside Z;, showing that w € H (Z;). Since ¢ is arbitrary,
we conclude that w € ('_, H(Z).

Case 3: w ¢ WP and the degree of w in T'is 1. In this case, we show that w € N(HNW?)\ W?. Let
this single edge from w in T be e = (w, z). Then Observation 5.6 implies that (7', w) is a safe tree
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if and only if (T, ", z) is a safe tree. However, then T, witnesses that z is an in-hub for W? and
we have already shown that this in turn happens if and only if x € H. Thus w € N(H N W?)\ Wb,
completing the proof. O

5.1.3 Constructing the Hub Sets for Non-Trivial Cycles

In the previous sub-section we characterized hubs associated with K-cuts WP, for nodes b € €¢. In
this sub-section, we assume that K is even and we analyze hubs associated with the other type of
basic K-cuts, namely with K-cuts W, for non-trivial cycles C of €. The structural properties we
establish are analogous to those in Lemma 4.9, where they were based on a congestion-K spanning
tree T'. Here, we need to show that similar properties can be derived based on safe trees instead.
The path of T that traversed all basic K-cuts associated with C , identified in Lemma 4.9, will be
represented here by two sub-paths emanating from the head node a¢ of C, one clockwise and the
other counter-clockwise on C'. These sub-paths will be referred to as the front and back spine of C.

We denote the nodes of C by aqg,...,ap_1,a; = ag, in the order along C, where £ > 3. That is,
the links of C' are exactly (ap,a1), (a1, a2), ..., (ag—1,ap). We assume that ag = a, is the head node
ac of C. The children of W€ are the sets Z; = W%, i=1,...,¢ — 1. For convenience, we also use
notation Zy = Z, = V(@WC) \ WC. We stress that this set Zp is not a full shore of W¢ (unlike the
other sets Z;), it only includes the endpoints of the edges of the cut OWC that are outside W. As
in Section 4.2, for each i = 0,...,¢ — 1, the set 0Z; N 0Z;41 is a half-K-cut in G (contains exactly
K /2 edges).

We now define the two spines for C, mentioned earlier:

o A back spine is a path wg,. .. ,wy in G, with s € {2, ..., £}, such that ws € ZsﬂfI(Zs_l)ﬁfI(Zs),

w; € ZiﬂfI(Zi) foreachi=s+1,...,0—1, and wy € Z,.

e Symmetrically, a front spine is a path wy,...,ws in G, with s € {0,...,¢ — 2}, such that

wo € Zy, w; € Ziﬂﬁ(Zi) foreachi=1,...,s—1, and ws € Zsﬁﬁ(Zs)ﬂﬁ(Zsﬂ).

Observation 5.14. If ws,...,wy is a back spine then w; € ﬁ(Zi,l) foralli=s,... 0. Symmet-
rically, if wo,...,ws is a front spine then w; € H(Z;i11) for alli=0,...,s.

Proof. Consider the case of a back spine. For ¢ = s the claim is included in the definition of a back
spine. For each i € {s+1,...,¢}, by the definition of back spines, w;_1 is an in-hub for Z; 4, so,
since we also have (w;_1,w;) € 0Z;_1, Observation 5.6 implies that w; is an out-hub for Z; ;. The
case of the front spine is symmetric. O

Lemma 5.15. Let C' be a non-trivial cycle in the cactus Cg with vertices ag,ai,...,ar_1,ar = ag,
listed in their order around C. Then
(i) If wa, ..., we is a back spine then wy_q,wy € H(WE).
(i) If wo,...,we—2 is a front spine then wy, w1 € ﬁ(Wc)
(ili) If wo,...,wg—2 is a front spine and wgy1,...,w; = wo s a back spine, for some index g €
{2,...,0—1}, then wo € HWE).
(iv) H(WC) contains only the vertices included in rules (i), (ii) and (iii).

Proof. (i) Let wa, ..., wy be a back spine. Let T7 be a witness tree for wy and Zi, and, for each
i=2,...,£—1, T; be a witness tree for w; and Z;. These witness trees exist by the definition of a back
spine. Let T" be the tree obtained as a union of trees 77, ..., Ty_1 and edges (w1, w2), ..., (we—2, w_1),
and T"” be the tree obtained by adding edge (wy_1,wy) to T". From Observations 5.5 and 5.6 we
obtain that 7" is a witness trees for w,_; and WC, and T” is a witness tree for w, and W¢. So
We—1,Wyp € H(Wc)
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Figure 7: An illustration of Lemma 5.15(iii), for K = 8, £ = 7 and g = 4. Thick blue edges show the front
spine wq, w1, ws and back spine ws, wg, w7, with wy = wy. For ¢ € {1,2,5,6}, the witness trees T; for w;
and Z; are depicted with thin purple lines. The witness trees for wo and Z3, and for w5 and Z, are depicted
with thin blue lines. Thin brown lines are non-tree edges in the cuts 0Z;.

The proof of (ii) is symmetric to (i).

(iii) Let wo, ..., wg—2 and wg1, ..., we—1,wy be a front and back spine, where g € {2,...,¢—1}.
Then, from the definition of these spines, the following witness trees exist:
e a tree T; for w; and Z;, for each i € {1,...,9 — 2}, and a tree Ty_; for wy_o and Z,_;, and

e a tree T; for w; and Z;, for each i € {g+1,...,¢ -1} and a tree T for wyq1 and Z,.
Let T' be a tree obtained as a union of all these trees, along with edges (wo,w1), ..., (wg—3, wg—2)
and (Wg41, Wg+2), -, (We—1,we). (See an example in Figure 7.) Using Observations 5.5 and 5.6, T’
is a witness tree for wy = wy and W¢, and thus wq € fNI(WC)

(iv) Assume that w € H(WC), and let T be a witness tree for w and WC. By the definition of
hubs we have w € V(OWY), so the structure of C' implies that w € Zyg U Z1 U Z;_1.

We first consider the case when w € Zy = Z,, that is w is an out-hub for W¢. The argument
relies on the two claims below.

Claim 5.16. Leti € {1,...,0—1}. IfTN0Z;1N0Z; #0 and TNOZ;N0Ziy1 # O then all edges
in T NOZ; have a common endpoint, say w;, and w; € Z; N\ H(Z;).

That, under the assumptions of the claim, all edges in T'NJZ; have a common endpoint, follows
from Lemma 5.3. Since Z; 1 N Z;1 = 0, we must have w; € Z;.

It remains to show that w; € H(Z;). Let e; = (wj,uq),...,ex = (w;, ug) be all edges in T" such
that u; € Z; for all j = 1,...,k. Since w ¢ Z;, the first part of the claim implies that for each
x € Z; \ {w;} the path from w to x goes through w;. So the trees Te;“’i, for j =1,..., k, along with
the singleton {w;}, form a partition of Z;. For each j, by Observations 5.4 and Observation 5.6,
both (7", u;) and (T, "U{e;}, v) are safe trees. Observ&fion 5.5 now implies that U§:1(Te;vu{€j})
is a witness tree for w; and Z;, thus showing that w; € H(Z;).

Claim 5.17. Leti € {1,...,4—1}. Suppose that there isv € Z;—1UZ;11 that is a common endpoint
of all all edges in T NOZ;. Then v € H(Z;).
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The argument is similar to the one above. Let e; = (v,u1),...,ex = (v,ug) be all edges in T
such that u; € Z; for all j = 1,..., k. The assumption of the claim implies that for each x € Z; the
path from w to x goes through v. So the trees Tezwi, for j =1,..., k, form a partition of Z;. By the

same reasoning as the one for Claim 5.16, we can conclude that v € H (Z;).
In the next claim, we show that T traverses all half-cuts of C', except one.

Claim 5.18. There is exactly one index g € {1,...,£} for which TNdZ;—1 NOZ; = 0.

That there is at least one such index g, follows from Claim 5.16: If 7" had an edge in each half-
K-cut of C then the edges in all half- K-cuts would form a cycle. Since T' is a spanning tree of the
subgraph induced by W and since the half-K-cuts represented by C' contain all edges connecting
different sets Z;, the uniqueness of g follows.

It remains to prove that the edges of T" in the half- K-cuts represented by C form either a back
spine satisfying condition (i), or a front spine satisfying condition (ii), or can be divided into two
spines that satisfy condition (iii). With Claims 5.16, 5.17 and 5.18, this is just a matter of verifying
that these conditions hold.

By Claim 5.16, for each i € {1,...,¢}\ {g — 1, ¢}, all edges in T'N9Z; have a common endpoint
w; € Z;, and w; € ﬁI(ZZ) for i # ¢. Furthermore, if g > 1 then wy_2 is a common endpoint of
TNOZy—1 CTNOZy_2NIZy—1, and Claim 5.17 implies that wy_o € .FNI(Zg_l). Similarly, if g < ¢
then wgy1 € ﬁ(Zg). Therefore:

o If g =1, then wy,...,wy_1,wy is a back spine and w = wy satisfies (i).
o If g = ¢, then wo,w1,...,wy_o is a front spine and w = wy satisfies (ii).
o If ge{2,...,0— 1} then w = wp, w1, ..., wy—2 is a front spine, wgy1,...,we—1,we = w is a

back spine, and w satisfies (iii).
This completes the proof of (iv) for the case when w € Zj.

The other case is when w € Z; U Z;_4, that is w is an in-hub for W¢. Recall that T denotes
the witness tree for w andNWC. By the definition of hubs and Zjp, w has a neighbor wg € Zj.
By Observation 5.6, wg € H(WY) (that is, wp is an out-hub for W) and (T U {(wo, w)},wo) is
its witness tree for wg and W¢. The proof above for the case of out-hubs now implies that wy
satisfies either condition (i) or (ii); in the first case w satisfies (i) as wy_1, and in the second case w
satisfies (ii) as wy. 0

5.2 The Algorithm

As explained at the beginning of this section, to determine whether stc(G) = K it is sufficient to
compute the hub sets for the basic K-cuts of G. This is because stc(G) = K if and only if r (the
root vertex of G, that has degree K) is a hub for its basic K-cut 0Z, where Z =V \ {r}.

The algorithm follows a dynamic programming paradigm, processing all basic K-cuts bottom-
up along their tree structure, as defined earlier in this section. As presented (see the pseudo-code
in Algorithm 1), it only solves the decision version, determining whether stc(G) = K or not. If
stc(G) = K, a spanning tree of G with congestion K can be reconstructed by standard backtracking.

For each basic K-cut 0Z, the algorithm constructs a set H(Z) intended to contain exactly the
hubs for Z. These sets are computed using a recurrence relation established in Section 5.1. We
start with external nodes. If Z = W%, for an external node a = ¢(w) of &g, then, according to
Lemma 5.7, in H(Z) we include w and its neighbors (line 7). If Z = W for an internal node a, then
H(Z) is computed from the hub sets of its children, using either the recurrence from Lemma 5.9, if
a is of Type 1 (lines 10-11), or the recurrence from Lemma 5.13, if a is of Type 0 (lines 14-15). In
both cases, this computation can be implemented efficiently using standard data structures.
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Algorithm 1 The main algorithm

1: Input: Graph G = (V, E) and its a cactus representation €g, ¢

2: if there exists a node b of €¢ such that |¢~1(b)| > 1 then output NO
3: choose a root r € V of degree K in G

4: order the basic K-cuts linearly so that each child precedes its parent
5: for each basic K-cut 07, in this ordering do

6: case Z = W? for an external node a = ¢(w) for w € V' \ {r}

7: H(W?®*) + {w} UN(w)

8: case Z = W? for a Type-1 internal node a = ¢(w) for some w € V
9: let Z1,...,Z; be the list of all the children of W¢

10: if we H(Z;) forall i =1,...,¢t then HW?®) + {w} U (N(w)\ W)
11: else H(W®) « ()

12: case Z = W for a Type-0 internal node a

13: let Z1,...,Z; be the list of all the children of W¢

14: H« V(OW) N H(Z1) NN H(Z)

15: H(W%) « HU (N(HNW*)\ W2)

16: case Z = WY for a non-trivial cycle C

17: apply Algorithm 2
18: if r € H(V '\ {r}) then output YES else output NO

The last case, relevant only when K is even, is when Z = WY, for a non-trivial cycle C of €g
(the pseudo-code for this case is given separately in Algorithm 2). In this case the algorithm applies
the recurrence implicit in Lemma 5.15. In order to do this, for each vertex w € Z; U Zy U Z,_1 we
need to identify back and/or front spines that, based on the cases (i), (ii) or (iii) from this lemma,
would imply that w should be added to H(Z).

The challenge is to implement this process efficiently. One key observation here is that (by
definition and Observation 5.14), every non-empty suffix of a back spine is also a back spine, and
the analogous property applies to front spines. This means that it’s sufficient to only compute the
maximum spine lengths for each candidate vertex w, not the actual spines. We achieve this using an
embedded dynamic programming procedure that processes C' in the two directions, and computes
H(Z) in time O(k|C|) (the number of edges represented by C).

To give more detail, let’s consider the case of back spines (the computation for front spines is
symmetric). In this case it is sufficient to calculate, for each candidate vertex w; € Z; of a back
spine, the minimum value s for which there exists a path ws,...,w; that is a potential prefix of a
back spine, i.e., each w; on this path is an in-hub for Z;; and wy is also an out-hub for Z;_;. This
value s computed by the algorithm is denoted S~ (wj;). It is sufficient to compute S~ (w;) for the
vertices w; in the candidate set U, C Z; which, in accordance with the definition of a back spine
and Observation 5.14, contains only in-hubs for Z; that are also out-hubs for Z;_; (line 5). Two
border cases are treated differently: for ¢ = ¢, U, is restricted, in a natural way, to out-hubs for
Zy—1 in Zy and, for i = 0, we let U; = () for technical convenience (line 3). The values S~ (w;) are
then computed by a dynamic program starting from S~ (wg) = 2 for all candidates wy € Zs, and
then, for increasing i, setting S~ (w;) to be the maximum of S~ (w;_1) over the neighbors of w;, or
to ¢ if there are no candidate neighbors (line 7).

Once the maximum spine lengths, back and front, are computed, the calculation follows the
rules from Lemma 5.15 in a straightforward way (lines 13-16).
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Algorithm 2 The subroutine for cycles
1: Input: Cycle C in €g of length ¢ > 3
2: let Z1,...,Zs_1 be the children of W¢ ordered along the cycle C
> computing the back spines
3: Uy < 0;U; « H(Zi—q)\WC
4: fori=2,3,...,¢ do
5: if i < ¢ then U; — Z;N H(Z,L) N H(Zlfl)
for all w € U;” do
S™(w )<—maX{Z}U{S )|ve Nw)nU_;}) >fori =2, 5 (w) =2
> computing the front spines
8 US| <+ 0, U « H(Z,)\W¢
9: fori=¢-2,/-3,...,1,0do
10 ifi>1then U < Z;NH(Z;)N H(Zi41)
11: for all w € UZ-+ do
12: ST (w) + max({i} U {S*(v) [ve Nw)nUL,})
> computing the out-hubs in both front and back spines
13: HY «+ {weUinU; | ST (w)+3 >S5 (w)}
> computing the in-hubs
14: H~- <—{weU“mV(aWC|S ) =2}
15: HY « {w e U nV(OWOY) | St (w) = ¢ — 2}
> computing the resulting set of hubs
16: HWY) <« HOUH-U(N(H)\WE)UHTU(NH')\ W)

Correctness proof. To prove the correctness of the algorithm, we need to show that it correctly
decides whether stc(G) = K. This follows directly from the claim below.

Claim 5.19. Algorithm 1 (with the subroutine in Algorithm 2) computes the correct hub sets, that
is, for each basic K-cut 0Z we have H(Z) = H(Z).

To prove Claim 5.19, we prove that H(Z) = H(Z) for all basic K-cuts 8Z inductively, in the
order in which the sets H(Z) are calculated by the algorithm.

For basic K-cuts Z = dW?, where b # ¢(r), the calculation of H(W?") in Algorithm 1 exactly
follows the statements for fI(Wb) in Lemmas 5.7, 5.9, and 5.13 for external nodes, Type-1 internal
nodes, and Type-0 internal nodes, respectively. So the inductive claim follows.

For a nontrivial cycle C, as already explained earlier, in the first part of Algorithm 2 we calculate,
for each w = wy € H(Z,_1) \ WY, the value S™(w) equal to the minimal s such that a back spine
ws, . . ., wy exists. Similarly, for each w = wo € H(Z1)\ WY, the value S*(w) is the maximal s’ for
which a front spine wy, ..., wy exists.

It remains to explain the meaning and the computation of sets H?, H~ and H*. These are
simply the hub sets corresponding to the three different cases in Lemma 5.15.

Consider the computation of HY. If for some w = wy = w; we have s’ + 3 > s then we select a

back spine ws, ..., wy and a front spine wy, ..., wy that are guaranteed to exist by the previous
paragraph. We let g = s — 1 and observe that s > ¢g—2and g € {2,...,£—1}. Now wy, ..., wyg—2
is a front spine, as it is a prefix of the front spine wy, ..., wy above and wgy1, ..., wy is a back

spine equal to the back spine above. Thus w € H (W) by Lemma 5.15(iii). Algorithm 2 calculates
HY as the set of precisely all these hubs w.
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Consider the computation of H~. (The case of H is symmetric.) Each w = wy_; € H™ is in
V(@Wc), thus it has a neighbor wy € Z,. We also have S‘(wg_1)~: 2, which now guarantees the
existence of a back spine ws, ..., wy_1, we. It follows that wy,_y € H(W®) by Lemma 5.15(i). Thus
Algorithm 2 calculates H~ as the set of all in-hubs from Lemma 5.15(i), and N(H~)\ W€ is the
set of out-hubs from Lemma 5.15(i).

This completes the proof of the inductive claim for cycles, namely that H(WS) = H(WC) for

each non-trivial cycle C. The proof of Claim 5.19 is now complete.

Running time. We now analyze the running time. Recall that n = |V is the number of vertices
of G and m = |E| is the number of edges. As the input graph is K-edge-connected, each vertex
has degree at least K, so m = Q(Kn). One key property behind our estimate of the running time
is that for each basic cut 0Z, its corresponding hub set H(Z) satisfies |H(Z)| < 2K. This follows
directly from the fact that H(Z) C V(0Z), and |0Z| = K. Furthermore, the set differences that
occur in Algorithms 1 and 2 are also subsets of V(9Z), so they can be computed in O(K) time.

We first analyze Algorithm 2. As explained above, all the sets U, , U;r, HY H~, HT have size
O(K). Thus the computation of spines and of the sets H°, H~, H*' involves O(K¥) operations
on integers in {1,...,n} and vertex identifiers. The subsequent computation consists of a constant
number of operations on sets of vertices of size K. Since the total length of the cycles in €5 is O(n),
the overall time for all invocations of Algorithm 2 is O(Kn) = O(m).

Turning to Algorithm 1, the initialization part runs in time O(m), including the construction of
the cactus representation €q, ¢ (see [12]). Within the dynamic programming process, for each node
a of €¢ of degree d, processing a basic K-cut 0Z = 0W* involves O(d) set operations, each on sets
of vertices of size O(K). Since the number of links in €g is O(n), the total time for processing all
these K-cuts is O(Kn) = O(m).

Combining the bounds for Algorithms 1 and 2, we conclude that the total running time of our

algorithm is O(m). Together with Claim 5.19 this completes the proof of Theorem 1.2.
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A NP-Hardness for Degree 4

In this section, as a warm-up for our NP-completeness proof of problem STC for graphs of degree
3, we show a simpler proof for graphs of degree at most 4. That is, we prove the following theorem.

Theorem A.1. Problem STC is NP-complete for graphs of degree at most 4.

The proof is by reduction from problem (M2P1N)-SAT, the version of SAT defined in Section 3
(see also [23]|). We show how, given a boolean expression ¢ that is an instance of (M2P1N)-SAT,
to compute in polynomial time a graph G and a constant K such that

(%) ¢ is satisfiable if and only if stc(G) < K.

Our construction builds on the ideas from |23, 18]; in particular we use the concept of a graph
with double-weighted edges, with weights a:b that are polynomial in the size of ¢. This is permitted
by Lemma B.1 and our construction of W(a,b) in Appendix B. (Alternatively, for this proof we
can use the double-weight gadget of degree 4 constructed in [18].) For brevity, from now on we will
refer to double weights simply as “weights”. Similarly, the “degree” of a vertex refers to its weighted
degree.

Let ¢ be the given instance of (M2P1N)-SAT with n variables and m clauses, of which m’
clauses are 2N- or 2P-clauses. We take K = 3m + 5, and we convert ¢ into a graph G as follows
(see Figure 8):

e For each variable x, create a vertex x and for each clause k create a vertex k.

e For each vertex v that is a variable, 2N-clause or 2P-clause, create three other corresponding

vertices: root vertices r}, r2 and a terminal vertex t,, connected by three unweighted edges
(rl,r2), (rl ty), and (r2,t,).

e Add n + m’ weight-2 edges arbitrarily so that the root vertices form a cycle called the root
cycle. The edges in the cycle will be called root-cycle edges, and the edges connecting the root

cycle to terminal vertices are root-terminal edges.
e For each variable z, add a root-variable edge (x,t,) with weight 1: K — 5.

e For each 2P-clause v, add an edge (7,t) with weight 1: K — 1, and for each 2N-clause a, add
an edge («, ty) with weight 2: K — 1. Call these edges root-clause edges.

e For each clause k, add an edge from x to each vertex representing a variable whose literal
(positive or negative) appears in k. If k is a positive clause, these edges have weight 1: K — 2,
and if k is a negative clause, these edges have weight 1: K — 3. Call such edges clause-variable
edges.

In the proof, when discussing G, for brevity, we will refer to the vertex representing a variable
x simply as “variable x” and, similarly, to the vertex representing a clause x as “clause k”.

It now remains to show that G and K satisfy condition (x). We prove the two implications
in () separately.
(=) Given a truth assignment that satisfies ¢, we can construct a spanning tree T for G by adding

to it the following edges (see Figure 9):

e cach root-variable edge,

e for each clause k, exactly one clause-variable edge from « to any variable whose literal satisfies
k (if k is satisfied by multiple literals, choose this variable arbitrarily),

e all edges in the root cycle except for one edge of weight 2,
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2N 3P 2P 2N 3P 2P

Figure 9: Converting a truth assignment satisfying ¢ into a spanning tree 7. The picture shows a variable
2 with its 2N-clause a, 3P-clause 8 and 2P-clause . Tree edges are shown using thick (green) lines. On the
left, the case when x is false and edge (z, «) is chosen for a.. On the right, the case when z is true and edge
(z,B) is chosen for 8. Three other cases are not shown: when z is chosen for 7, when z is chosen for both
and v, and when x is not chosen at all.

e for each variable or clause u, edge (t,,7.).

By inspection, T' forms a spanning tree, and each clause is a leaf in 1. Furthermore, for each
variable z, if x has an edge in T to its 2N-clause then x does not have an edge in T' to any of its
positive clauses. To complete the proof of the (=) implication, we show that each edge e in T" has
congestion at most K. For this, we consider several cases.

Case 1: e is in the root cycle or it is a root-terminal edge. Consider first the sub-case when
e = (rl,r2), for some v (variable or clause). Then e contributes 1 to its induced cut, (r2t,)
contributes 1, and the only edge from the root cycle not contained in 1" contributes 2. All other
edges in this cut are clause-variable and root-clause edges and there are at most 3m of them (because
clauses are leaves in T'). Thus, cngp(e) <4+ 3m < K.

The second sub-case is when e = (r2,rl), for some u # v (variables or clauses), is very similar.
Edge e contributes 2 to its cut, the only edge from the root cycle not contained in 7T contributes 2,
and the clause-variable and root-clause edges contribute 3m at most, so cngp(e) <4+ 3m < K as
well.

In the third sub-case when e is a root-terminal edge (t,,r.), for some v, e contributes 1 to its
cut, and (t,,72) contributes 1. If v is a clause, then the only other edge in the cut is a root-clause

edge of weight at most 2; if v is a variable, then all other edges in the cut are at most 5 of the 9
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clause-variable edges from the clauses of x. Thus, cngp(e) <2+5=7< K.

Case 2: e is a root-variable edge e = (z,t,) for some variable . Let «, 3,7 be the 2N-clause, 3P-
clause, and 2P-clause of z, respectively. The shore T, of = of the cut induced by e contains z and
can also contain some of its clauses, but if it contains « then it contains none of 3,v. So T.t* is either
(i) {x}, or (ii) {=, k} for & € {a, 8,7}, or (iii) {x, B,7}. In case (i), cngg p(e) = (K —5)+3 < K 2.
In case (ii), cngg r(e) < (K —5)+2+3 = K. (It is equal K only when x = «.) In case (iii),
cnggr(e) = (K —=5)+1+2+2=K.

Case 3: e is a clause-variable edge e = (z, k), for some clause x of z. If K = « then cngg r(e) =
(K —3)+3=K,and if k € {,7} then cngg r(e) = (K —2)+2 =K.

(<) Let T be a spanning tree with cng,(7) < K. We show how to convert T into a satisfying
assignment for ¢. It is sufficient to prove the following lemma:

Lemma A.2. Tree T has the following properties:

(a) T does not contain any root-clause edges.

(b) If a variable x is connected in T to its 2N-clause, then x is not connected in T to its 2P-clause
or its 3P-clause.

The reason this lemma is sufficient is because it allows us to produce a satisfying assignment for
¢: For each variable x, if x is connected to its 2N-clause in T', make x false; otherwise make it true.
By Lemma A.2(b), this is a valid truth assignment, and by Lemma A.2(a), every clause vertex x
has an edge in T to some of its variables, so the definition of the truth assignment guarantees that
this variable will satisfy k.

Proof. The proof of Lemma A.2(a) is straightforward: Suppose that a 2N- or 2P-clause x has its
root-clause edge f = (k,tx) in T. Let z,y be the two variables of the literals in x. Then there are
two disjoint paths from s to ¢, in G that do not use f: namely paths starting with k — x — ¢, and
k — 1y — ty, and then following the root cycle to t,, for one path clockwise and for the other one
counter-clockwise, to ensure that the paths are disjoint. The cut 0T induced by f must contain at
least one edge from each of these two paths, implying cng(f) > K —1+2 = K 41, a contradiction.

The rest of this section is devoted to the proof of Lemma A.2(b), which will complete the proof
of NPP-completeness. We start with the following claim:

Claim A.3. For any two root vertices, the path in T between these vertices consists of only root-cycle
edges and root-terminal edges.

To justify Claim A.3, consider any two different root vertices p and ¢ and suppose that the p-to-g
path P in T does not satisfy Claim A.3. Since, by Lemma A.2(a), P does not contain any root-clause
edges, P must contain at least one clause-variable edge, say f = (y, k) (cf. Figure 10). But then in
the cut 97y induced by f, the vertices p and ¢ would be in different shores, so this cut would have to
contain two root-cycle edges, or a root-cycle edge and two root-terminal edges, or four root-terminal
edges; in any case, the total weight of these edges is 4. Thus, cngp(f) > K —3+4 =K +1 -
contradicting the assumption that cng,(7") < K. So Claim A.3 holds.

Continuing with the proof of Lemma A.2(b), let z be any variable, and let o, 3, 7y be its 2N-clause,
3P-clause, and 2P-clause. Assume for contradiction that edges («, x) and (7, z) are in T for some
m € {fB,v}. Consider the path P in T connecting {a, x, 7} to the root cycle. By Lemma A.2(a), P
must use a root-variable edge, and let e = (y, t,) be the first such edge. We will examine the edges
crossing the cut 9T, induced by e. From Claim A.3, we obtain:

Corollary A.4. The root cycle is on the shore T of OT., while o, z, 7 are all on the shore T, ™.
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Figure 10: The cut of a clause-variable edge f = (k,y) that is on a path between two different root vertices
p and ¢, implying cng,(f) > K + 1. Tree edges are shown using thick (green) lines. The cut is indicated
using a (blue) dashed curve.

By the definition of (M2P1N)-SAT, different clauses in ¢ cannot share more than one variable.
This implies that there are four distinct variables z1, 22, 23, 24, none equal to x, with clause-variable
edges from «, 3,7, namely such that z; € a, 29,23 € 8, and z4 € . This in turn implies that there
are 7 edge-disjoint paths in G from the set {a, z, 7} to the root cycle. These paths are:

1

)

1

T

1

a —to — 12 (these count as disjoint because w1 (a,ty) = 2), a — 21 — t,, — T2

o a—1ty—T
o r—t,—7T

: . 1 1 1
o ifm=0: B—zo—tly — 1y, B—23—tsyy — 15, x— 77— by — 75

rT—fB—29—t,, — 7}

o if m=r ’y—ty—r,ly,’y—24—tz4—r1 e

Z4)

All these 7 paths cross cut 07, and at most one of them can use edge e to cross it. So the congestion
of e is at least cngp(e) > K —5+ 6 = K + 1, contradicting the choice of T', and completing the
proof of Lemma A.2. O

B The Double-Weight Gadget

In this section we describe the construction of our double-weight gadget W(a,b), that will be used
to replace edges with double weights in our NIP-completeness proof in Section 3. The double-weight
gadget is constructed from a sub-gadget that we call a bottleneck, that we introduce first.

The bottleneck gadget. For an integer w > 3, we define a w-bottleneck of degree 3 as an
unweighted graph B = B(w) with two distinguished vertices s,t called the gates of B, that has the
following properties:

(b1) ste(B) = w,

(b2) for any spanning tree 7" of B, the s-to-t path in 7" contains an edge e with cngp 1 (e) > w,

(b3) the degrees of s and t are 2 and all other degrees in B are at most 3.

We now show a construction of B(w). We remark that congestion properties of some grid-
like graphs of degree 3 have been analyzed in the literature, for example in [19] for hexagonal
grids. However, these results are not sufficient for our purpose because they don’t explicitly address
condition (b2) of bottleneck graphs.

Let w > 3 be the specified parameter. Our gadget is a hexagonal grid, depicted as a slanted
wall-of-bricks grid of dimensions w x w, illustrated in Figure 11 for w = 4 and w = 5. More precisely,
geometrically the grid has w — 1 rows of 2 x 1 rectangular faces called bricks, with w — 1 bricks per
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row. The vertices are the corners of the rectangles, with the edges represented by lines connecting
these corners. The gate s of B is the bottom left corner while ¢ is chosen to be the top right corner.
The gates have degree 2 and all other vertices have degree 2 or 3, so property (b3) is satisfied.

¢t ® ° ® ® t

w=4 w=35

Figure 11: Bottleneck gadget B for w = 4 and w = 5. Their spanning trees T with congestion w are shown
in thick (red).

First, we claim that B has property (b1) that stc(B) = w. It is sufficient to prove that stc(B) < w,
because the other inequality follows from (b2)~. To this end, we specify a spanning tree 17" of B with
congestion w (See Figure 11.) For odd w, T includes the middle horizontal path, with vertical
branches alternatively connecting to the top and bottom boundaries. For even w, T includes both
middle horizontal paths, with one of the two middle vertical edges connecting them. The vertical
branches are analogous to the odd case. By inspection, the congestion of T" in both cases is w.
Specifically, for odd w, excluding the edges on the left and right boundaries, the edges in the middle
horizontal path and the vertical edges touching this path have congestion w. All other edges have
lower congestion. For even w, the connecting edge in the middle row has congestion w, and the
edges along the middle horizontal paths touching the central brick also have congestion w. All
other edges have lower congestion. Note that in both cases, the s-to-t path in T includes some of
congestion-w edges.

Next, we prove property (b2), namely that for any spanning tree T of B, at least one of the
edges in the s-to-t path P in T has congestion at least w. To do this, it is convenient to express
the argument in terms of the dual graph. This follows the approach in [10, 20|, where the authors
studied congestion in rectangular and triangular grid graphs. Let By = B+ (s, t), a graph obtained
from B by adding an edge (s,t), that splits the outer face of B into two faces. T remains a valid
spanning tree of Bg. Let Bg; be the dual graph of By;. (l’;’st has some parallel edges, because B has
some vertices of degree 2.) Define z; j to be the dual vertex in B representing the brick at (skewed)
column ¢ and row j, where 1 <1i,5 < w — 1. We also define two special dual vertices: 2, is the
dual vertex of the outer face whose boundary includes the bottom and right boundaries of B, and
20w corresponds to the outer face whose boundary include the top and left boundaries of B (See
Figure 12.)

Let 7' be the graph obtained from B by removing the edges dual to the edges of T'. Then T is
connected and acyclic, so it is a spanning tree of B, and is referred to as the tree dual to 7.

Now consider the dual vertices corresponding to the bricks on the main diagonal of 5 namely
the vertices z; ; where i + j = w. Let C be the set of (horizontal) edges of B dual to the edges
of the path 204 — 21,w—1 — 22w—2 — *** — Zw—1,1 — Zw,0 N l';’st. C' is a cut of B (consisting of the
edges along the main diagonal), and therefore P contains at least one edge from C, say an edge
e € T whose dual is é = (24, 2p+1,4-1). Note 24 is above e while 2,41 4—1 is below it. Since
the cycle P + (s, t) encloses the top-left region of By (more precisely, the corresponding dual edges
form a cut of B that separates zq,, from z, (), there are two disjoint paths @, Q’ in T that start
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Figure 12: llustration of an s-t path P in thick (blue) edges that includes an edge e with congestion w = 5.

at z,q and 2zp414—1 and end at zg,, and 2,0, respectively (See Figure 12 for an example). Let
1(Q),1(Q) denote their respective lengths. Both @, Q" must cross the boundaries of B. If the two
boundaries they cross are top and bottom then 1(Q) + I1(Q') > w — g+ (¢ — 1) = w — 1; if they
are left and right then I[(Q) +1(Q') > p+w — (p+ 1) = w — 1. Otherwise, if the two boundaries
are top and right, then I[(Q) + (Q') > w — ¢+ w — (p+ 1) = w — 1; if they are left and bottom
then 1(Q) +1(Q") > p+q—1=w—1. In all cases, [(Q) + 1(Q') > w — 1. Tt is not difficult to
see that the congestion of e is equal to 1(Q) + 1(Q’) + 1; for a detailed proof of this observation see
the analyses of rectangular grids in [10, Section 3.3] and triangular grids in [20, pp. 6], that both
naturally apply also to our wall-of-bricks gadget. This means cngg r(e) > w which completes the
proof for property (b2).

Double-weight gadget. To construct a double-weight gadget W(a,b) of degree 3, where a:b is a
double weight with a < b, create a disjoint copies B, ..., B, of B(b — a + 1) (constructed above),
where the gates of each B; are s; and ¢;. Then add two additional vertices s* and t* called the ports
of W(a,b), with s* connected by edges to each gate s; and t* is connected by edges to each gate ¢;.
(See Figure 13.)

The lemma below, establishing the validity of converting a bottleneck sub-gadget into a double-
weight gadget W(a,b), was shown in [23] for some specific choice of the bottleneck sub-gadget, but
it trivially extends to our more general formulation, so we omit its proof here.

Figure 13: On the left, the double-weight gadget W(a,b) replacing an edge (u,v) of G with weight a : b
to produce a new graph G’. Here, a = 3. The pictures in the middle and right illustrate how this gadget
“simulates” the double weight. If (u,v) is not in the spanning tree of G, the corresponding spanning tree
of G’ can traverse the gadget as in the middle picture, contributing a to the congestion. If (u,v) is in the
spanning tree of G, the corresponding spanning tree of G’ can traverse the gadget as in the picture on the
right, contributing (b — a + 1) + a — 1 = b to the congestion.
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Lemma B.1. Let K > 3 be an integer, G a double-weighted graph of maximum degree A > 3, and
e = (u,v) € E an edge in G with double weight a:b satisfying a < b and b—a < K —2. Let G’ be
the graph obtained from G by removing e and replacing it by a degree-3 double-weight gadget W(a,b)
whose ports s* and t* are identified with u and v, respectively. Then
(i) The (weighted) degrees of the original vertices of G (including u,v) remain unchanged. Thus
the maximum degree in G’ is A.

(ii) ste(G) < K if and only if ste(G') < K.
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