Introduction to approximation and randomized algorithms
NDMI084

Assumed knowledge: essentials of complexity theory

linear programming

probability

What is this course about?

Think about an NP-hard problem Q. Unless P=NP, there is no algorithm that
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Randomized algorithms - exploit randomness

quality of the solution or the runtime depend on the random choices

on average, the solution is good (fast)

Why randomized algorithms?

- no deterministic ones (e.qg., cryptography, distributed algorithms)

- simplicity

- efficiency

Example: n friends want to compute their average salary oV S\)H
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but nobody wants to reveal his/her own salary

Assumptions: salaries - non-negative integers bounded by B

no outside trusted party

secure private communication for all pairs of friends

Requirement: even if k friends collude, they will not learn more then the sum of

the remaining n-k salaries

How to do it?
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raolc. DEFINITIONS

Def. Optimization problem  a quadraple (/L_ ?’ ({ z) where

,T_ is the set of all valid instances T Vou -\—,s

’,}:’ is a function specifying for eachinstance T & ‘ a set of feasible solutions/}' (1)

A, is a function specifying for each _T_C—.-.I and each feasible solution SG;F(‘I.)
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the cost of the solution --- obl\'tc“?n v ‘Qv\v\ ' ow
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Example: the shortest path problem
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Def. NP-Optimization problem s an optimization problem s.t.

4 instances are finite strings

foreach | & andeach S€X (T < o\ \

q there exists a poly-time decision procedure that tests for each _'f_and Se Z’*

whether € &“F <_1_‘_>

Yy ,/Q is poly-time computable
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For aninstance I of an optimization problem

o™ (I\ denotes the optimal value of a feasible solution, i.e., \\{:&4 ( i,(lﬁ\

For an algorithm /\ for an optimization problem, A(I) denotes the value

of the objective function L for the solution of the algorithm

For randomized algorithms, A\‘(_T_‘_) is a random value
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Def. Algorithm Ahas approximation ratio Rif R onsaal o {"uvxcjl‘\ o
v \ \_—\/

A is a poly-time algorithm that for each [ finds a feasible solution s.t.

AC) 2R O®T(L) if g=min, or AL 2 o_?‘-f(';')' if g=max

For randomized algorithms, replace A (13 \o'a E[A(I_)] the expected value



TRAVELING SALESHAN ProRlLeM

Input: the set of cities \V = ‘[4 WA -,V\T(

and a non-negative function specifying the distances between cities,

A VaxV —‘>R:

non-existing edges ¢f() =co

Output: a permutation of the cities  Va,Va, - -+ VY, specifying the Hamiltonian cycle

Goal: minimize o& (\(,“V,| ) + "i A(V,',V,-+4>

Note: an NP-optimization problem I = ...
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Assume there exists an O<(V\) -approximation algorithm for TSP.

Think about an instance G‘ =(Vl E) of the Hamiltonian cycle problem.

Can we solve it using the d (\n\ -approximation algorithm for TSP?

Redecho, Hawm. —>TSP
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Theorem: Leta\(n})e a poly-time computable function (e.g.., " | 2 ). Unless P=NP,

there is no()((V\\—approximation algorithm for TSP.




