Introduction to approximation and randomized algorithms NDMI084

	Assumed knowledge: essentials of complexity theory				
linear programming					
		probability			
	What is this course about?				
	Think about an NP-hard problem Q. Unless P=NP, there is no algorithm that				
	1 in polynomial time	REIAX ->	1 heuristics, exp. time alg	gorithms	
	2 for any instance of Q		2 special instances, e.g.	planar	
	3 finds an optimal solution 3 provably "almost" optimal				
			= approximation	algorithms	
	Randomized algorithms - exp	loit randomness			
quality of the solution or the runtime depend on the random choices					
on average, the solution is good (fast)					
Why randomized algorithms?					
- no deterministic ones (e.g., cryptography, distributed algorithms)					
	- simplicity				
	- efficiency				
	Example: n friends want to com	pute their average	e salary ov S	VM	
	but nobody wants to reveal his/her own salary				
Assumptions: salaries - non-negative integers bounded by B					
no outside trusted party					
secure private communication for all pairs of friends					
	Requirement: even if k friends collude, they will not learn more then the sum of				
	the remaining n-k salaries				
	How to do it?				

Friends
$$F_{1}, F_{2}, \dots, F_{n}$$

salaries $S_{1}, S_{21}, \dots, S_{n} \leq B$
Protocold
F picks a raydown number $R_{1} \in [DN]$
and passes $S_{1} + R_{1} \mod N$ to F_{2}
 $F_{1}, |>1, adds S_{1} to the number from F_{1-1}
and passes the result mult to $F_{1,1}$ (to $F_{1,1}$ is case $f_{1,n}$)
 F_{1} substracts R_{1} from the result, and N
and almanaces the outcome to everyone
Any difficulty?
 $R_{1} + S_{1}$ and N
 $X = R_{1} + S_{2}$ and N
 $T_{2} = R_{1} + R_{2,1} + \dots + R_{n,1}$ and N
 F_{2} sends $R_{1,1}$ to F_{2} , for $n \geq 1$, \dots, n
 F_{2} chooses $R_{1,2} + R_{2,2} + \dots + R_{n,2}$ and N
 F_{3} sends $R_{1,2} + R_{2,2} + \dots + R_{n,3}$ and N
 $F_{4} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,1} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,2} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,2} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,2} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{1,2} + R_{2,2} + \dots + R_{2,n} = S_{2}$ (and N)
 $F_{5} = R_{5} + R$$

BASIC DEFINITIONS

TRAVELING SALESMAN PROBLEM				
Input: the set of cities $\sqrt{2} = \{1, 2,, n\}$				
and a non-negative function specifying the distances between cities,				
$d : \bigvee_{x} \bigvee \longrightarrow \mathbb{R}_{o}^{+} \qquad \text{non-existing edges } d(c) = \infty$				
Output: a permutation of the cities V_1, V_2, \dots, V_n specifying the Hamiltonian cycle				
Goal: minimize $d(V_{n_1}V_1) + \sum_{i=1}^{n} d(V_{i_1}V_{i+1})$				
12 4				
Note: an NP-optimization problem $\mathcal{I} = \dots, \mathcal{F} = \dots, \mathcal{F} = \dots, \mathcal{F} = \dots, \mathcal{F} = \dots$				
HOW WELL CAN YOU APPROXIMATE UPT?				
Assume there exists an $\alpha(n)$ -approximation algorithm for TSP.				
Think about an instance $G = (V_1 E)$ of the Hamiltonian cycle problem.				
Can we solve it using the $d(n)$ -approximation algorithm for TSP?				
Reduction Ham>TSP				
$\{u,v\}\in E \longrightarrow d(u,v) = 1$				
$\{u,v\} \notin E \longrightarrow d(u,v) = N \cdot \alpha(h)$				
Observe: YES instance -> OPT = M				
NO instance -> OPT > n.a(n)				
$=$ for YES $A(\Sigma) \leq h \propto (h)$				
NO $A(I) > h \cdot q(h)$				
That is the a(n)-appex. alg. can distinguish				
between YES and NO instances of Hamild. prob.				
- NOT possible, unless P=NP.				
۷				
Theorem: Let $\alpha(n)$ be a poly-time computable function (e.g., n^3 , 2). Unless P=NP,				

there is $no \otimes (N)$ -approximation algorithm for TSP.