Tutorial 7, November 14, 2019

- 1. For $x \in \mathbb{R}$ and $\delta > 0$ we denote by $P(x, \delta)$ the deleted δ -neighborhood of x. Why is $[0, 1] \setminus P(x, \delta)$ compact?
- 2. (HW 3 pts.) Let (M, d) be a compact metric space and $f: M \to \mathbb{R}$ be a continuous function. Prove that f is uniformly continuous.
- 3. (HW 3pts.) Let $f: [0,1] \to \mathbb{R}$ be a broken line (i.e. a piecewise linear continuous function) and let $S = \max |s|$, taken over all slopes s of the straight segments of the graph of f. Prove that then for the slope t of any secant line of the graph of f we have $|t| \leq S$.
- 4. Let $f: [a, b] \to \mathbb{R}$ be a linear function. Show that then for every $x \in [a, b]$ one has $\min(f(a), f(b)) \le f(x) \le \max(f(a), f(b))$.
- 5. Prove that for every $a, b \in \mathbb{R}$ one has $|a + b| \ge |a| |b|$.
- 6. Prove that if $a, b \in \mathbb{R}$ with 0 < a < 1 then the function $f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n x) \colon \mathbb{R} \to \mathbb{R}$ is continuous.
- 7. Determine the intervals (or subsets) of the definition domains, on which the following sequences of functions converge pointwisely, uniformly, and locally uniformly. What are the limit functions?
 - (a) $f_n(x) = \frac{1}{x+n}$, defined on \mathbb{R} .
 - (b) $f_n(x) = x^n x^{3n}$, defined on [0, 1].
 - (c) $f_n(x) = x^{n+1} x^{n-1}$, defined on [0, 1].
 - (d) (HW 3 pts.) $f_n(x) = x^n x^{n+1}$, defined on \mathbb{R} .