Tutorial 7, November 14, 2019

1. For $x \in \mathbb{R}$ and $\delta>0$ we denote by $P(x, \delta)$ the deleted δ-neighborhood of x. Why is $[0,1] \backslash P(x, \delta)$ compact?
2. (HW 3 pts.) Let (M, d) be a compact metric space and $f: M \rightarrow \mathbb{R}$ be a continuous function. Prove that f is uniformly continuous.
3. (HW 3pts.) Let $f:[0,1] \rightarrow \mathbb{R}$ be a broken line (i.e. a piecewise linear continuous function) and let $S=\max |s|$, taken over all slopes s of the straight segments of the graph of f. Prove that then for the slope t of any secant line of the graph of f we have $|t| \leq S$.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a linear function. Show that then for every $x \in$ $[a, b]$ one has $\min (f(a), f(b)) \leq f(x) \leq \max (f(a), f(b))$.
5. Prove that for every $a, b \in \mathbb{R}$ one has $|a+b| \geq|a|-|b|$.
6. Prove that if $a, b \in \mathbb{R}$ with $0<a<1$ then the function $f(x)=$ $\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} x\right): \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
7. Determine the intervals (or subsets) of the definition domains, on which the following sequences of functions converge pointwisely, uniformly, and locally uniformly. What are the limit functions?
(a) $f_{n}(x)=\frac{1}{x+n}$, defined on \mathbb{R}.
(b) $f_{n}(x)=x^{n}-x^{3 n}$, defined on $[0,1]$.
(c) $f_{n}(x)=x^{n+1}-x^{n-1}$, defined on $[0,1]$.
(d) (HW 3 pts.) $f_{n}(x)=x^{n}-x^{n+1}$, defined on \mathbb{R}.
