Tutorial 6, November 7, 2019

- 1. Prove that $f_n \rightrightarrows f$ on M iff $||f_n f|| \to 0$ for $n \to \infty$.
- 2. Prove that $f_n \stackrel{\text{loc}}{\Rightarrow} f$ on [0, 1), where $f_n(x) = x^n$ and f is the pointwise limit of the functions f_n on [0, 1), the zero function.
- 3. (HW 3 pts.) Prove that for $f_n(x) = \frac{nx}{1+n^2x^2}$ the sequence of functions $f_n \not\rightleftharpoons^{\text{loc}} \equiv 0$ on \mathbb{R} .
- 4. Prove that the convergence of the $f_n(x)$ in the previous exercise is uniform on $(-\infty, -\delta) \cup (\delta, +\infty)$ for every $\delta > 0$.
- 5. Prove that the set of functions $X = \{f_1, f_2, ...\} \subset N$, where $f_n(1/n) = 1$ and $f_n(x) = 0$ for $x \neq 1/n$ and $N = \{f \mid f : [0,1] \rightarrow \mathbb{R}$ and f is bounded}, is a closed and bounded but not compact subset of the metric space N.
- 6. Prove that the normed space of all real functions defined on a nonempty set is complete.
- 7. How does exactly follow from the theorem in the lecture each Cauchy sequence (f_n) of continuous functions $f_n: M \to \mathbb{R}$ defined on a metric space M has a uniform limit that is a continuous function on M that the uniform limit of continuous functions is a continuous function?
- 8. Prove that for finite $M, f_n \to f$ on M implies $f_n \rightrightarrows f$ on M.
- 9. (HW 4 pts.) Let $f_n \rightrightarrows f$ on M and $g_n \rightrightarrows f$ on M. Determine if then also $f_n + g_n \rightrightarrows f + g$ on M.
- 10. (HW 4 pts.) Let $f_n \rightrightarrows f$ on M and $g_n \rightrightarrows g$ on M. Determine if then also $f_n g_n \rightrightarrows f g$ on M.