Tutorial 6, November 7, 2019

1. Prove that $f_{n} \rightrightarrows f$ on M iff $\left\|f_{n}-f\right\| \rightarrow 0$ for $n \rightarrow \infty$.
2. Prove that $f_{n} \xrightarrow{\text { loc }} f$ on $[0,1)$, where $f_{n}(x)=x^{n}$ and f is the pointwise limit of the functions f_{n} on $[0,1)$, the zero function.
3. (HW 3 pts.) Prove that for $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ the sequence of functions $f_{n} \stackrel{\text { loc }}{\nRightarrow} \equiv 0$ on \mathbb{R}.
4. Prove that the convergence of the $f_{n}(x)$ in the previous exercise is uniform on $(-\infty,-\delta) \cup(\delta,+\infty)$ for every $\delta>0$.
5. Prove that the set of functions $X=\left\{f_{1}, f_{2}, \ldots\right\} \subset N$, where $f_{n}(1 / n)=1$ and $f_{n}(x)=0$ for $x \neq 1 / n$ and $N=\{f \mid f:[0,1] \rightarrow$ \mathbb{R} and f is bounded $\}$, is a closed and bounded but not compact subset of the metric space N.
6. Prove that the normed space of all real functions defined on a nonempty set is complete.
7. How does exactly follow from the theorem in the lecture - each Cauchy sequence $\left(f_{n}\right)$ of continuous functions $f_{n}: M \rightarrow \mathbb{R}$ defined on a metric space M has a uniform limit that is a continuous function on M - that the uniform limit of continuous functions is a continuous function?
8. Prove that for finite $M, f_{n} \rightarrow f$ on M implies $f_{n} \rightrightarrows f$ on M.
9. (HW 4 pts.) Let $f_{n} \rightrightarrows f$ on M and $g_{n} \rightrightarrows f$ on M. Determine if then also $f_{n}+g_{n} \rightrightarrows f+g$ on M.
10. (HW 4 pts.) Let $f_{n} \rightrightarrows f$ on M and $g_{n} \rightrightarrows g$ on M. Determine if then also $f_{n} g_{n} \rightrightarrows f g$ on M.
