Tutorial 2, October 10, 2019

- 1. Prove that for any field norm $\|\cdot\|$ the function $d(x, y) = \|x y\|$ is a metric.
- 2. Prove that the trivial norm is a norm.
- 3. (HW) Prove that $||x|| = |x|^c$, $x \in \mathbb{Q}$ and c > 0, is a norm if and only if $c \leq 1$.
- 4. In every normed field, $||0_F|| = 0$, $||1_F|| = ||-1_F|| = 1$, ||x|| = ||-x||and $||1_F/x|| = 1/||x||$ (for $x \neq 0_F$).
- 5. Prove that the function $\operatorname{ord}_p(\cdot)$ is additive.
- 6. Prove that if one of the elements is zero then the strong triangle inequality holds.
- 7. Prove the product formula. Is it really an infinite product?
- 8. (HW) Prove that for any two coprime integers $m, n \in \mathbb{Z}$ there are integers a, b such that am + bn = 1.
- 9. (HW) Let (M, d) be a metric space, $a \in M$, and r > 0 be real. Prove that every ball $B(a, r) = \{x \in M \mid d(x, a) < r\}$ is an open set.
- 10. Let (M, d) be a metric space and $X \subset M$. Prove that X is closed if and only if for every convergent sequence $(a_n) \subset X$, $\lim a_n = a \in X$.