Tutorial 12, December 19, 2019

- 1. Expand f(x) = |x| on $-\pi \le x \le \pi$ in Fourier series and determine its sum.
- 2. The same for $f(x) = \cos(x)^3$ on \mathbb{R} .
- 3. The same for $f(x) = \sin(x)^3$ on \mathbb{R} .
- 4.

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} \frac{\sin(nx)}{\sin x} \, dx = ?$$

Homeworks — due by January 2, 2020

- 1. (4 pts.) Expand $f(x) = \exp(ax)$ on $[-\pi, \pi)$, where $a \in \mathbb{R}$ is a parametr, in Fourier series.
- 2. (6 pts.) Let $f(x) = a_0 + \sum_{k=1}^n (a_k \cos(kx) + b_k \sin(kx))$ be a trigonometric polynomial with coefficients $a_k, b_k \in \mathbb{R}$. Prove that if f(x) = 0 for every $x \in \mathbb{R}$ then all its coefficients are 0.
- 3. (3 pts.) Is there a Riemann-integrable function $f : [-\pi, \pi) \to \mathbb{R}$ whose sine Fourier coefficients are $b_n = 10/\sqrt{n}$?