Tutorial 12, December 19, 2019

1. Expand $f(x)=|x|$ on $-\pi \leq x \leq \pi$ in Fourier series and determine its sum.
2. The same for $f(x)=\cos (x)^{3}$ on \mathbb{R}.
3. The same for $f(x)=\sin (x)^{3}$ on \mathbb{R}.
4.

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} \frac{\sin (n x)}{\sin x} d x=?
$$

Homeworks - due by January 2, 2020

1. (4 pts.) Expand $f(x)=\exp (a x)$ on $[-\pi, \pi)$, where $a \in \mathbb{R}$ is a parametr, in Fourier series.
2. (6 pts.) Let $f(x)=a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right)$ be a trigonometric polynomial with coefficients $a_{k}, b_{k} \in \mathbb{R}$. Prove that if $f(x)=0$ for every $x \in \mathbb{R}$ then all its coefficients are 0 .
3. (3 pts.) Is there a Riemann-integrable function $f:[-\pi, \pi) \rightarrow \mathbb{R}$ whose sine Fourier coefficients are $b_{n}=10 / \sqrt{n}$?
