Last MA 2 tutorial test, January 11, 2024

For 90 minutes and each problem is worth 4 points. At least 50% of the points (= 16 pts.) are required for passing. Justify your answers.

- 1. Define metric spaces (M, d). Show that for every $a, b, c, e \in M$ it holds that $d(a, e) \leq d(a, b) + d(b, c) + d(c, e)$.
- 2. Define compact sets in metric spaces (M, d). Is it true that the whole set M is always compact?
- 3. Is it true that the identity map $f: M \to M$, f(x) = x, from a metric space (M, d) to itself is always continuous?
- 4. Let $A \in \mathbb{R}^{k \times l}$ and $B \in \mathbb{R}^{l \times m}$ be two real matrices. Write the formula for their product $A \cdot B$.
- 5. Is the real axis \mathbb{R} (with the metric d(x, y) = |x y|) a complete metric space?
- 6. Compute for the function $f(x, y, z) = e^{x+y} \sin(x+y+z)$ partial derivatives f_x , f_y and f_z .
- 7. Why can we be sure that the function $f(x, y) = x^2 y \sin(xy)$ attains on the set $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ (the closed unit disc in the plane) its maximum value? Give a simple reason.
- 8. And what about the function $f(x, y) = x^2 + y^2$ and the set $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ (the open unit disc in the plane)?