Lecture 7, November 14, 2019
Proof of existence of a continuous but non-differentiable function
We prove the following

Theorem (continuous but non-differentiable function). There exists
a function f € C[0,1] such that for every x € [0, 1] and every 6 > 0,

sup ({‘W‘ ' y € Pz, 500, 1]}) — 4o

This function is of course continuous but is not differentiable at any point of
the interval [0, 1].

Differentiability of a function at a given point means existence of a finite
derivative at the point, for the endpoints of the interval meant as one-sided,
and P(z,0) = (x —6,x) U (z,z + J). We prove the theorem by means of four
lemmas.

Lemma 1. A function f € C[0,1] has the property in the theorem, if it has
the property that for every x € [0, 1],

o ({2 o) - e

The parameter § in the theorem therefore can be omitted.

Proof. We assume that f has for every x in [0, 1] this property. For every
x € [0,1] and every 6 > 0, the set

Qz, 0) =0, 1\ U(x, 9) (U(z, d) = (x — 0, z+9))

is compact (Exercise 1), and we denote by M, s the maximum value of the
continuous function g(y) = |(f(y) — f(z))/(y — z)| on it. For every z € [0, 1],
every 0 > 0, and every ¢ > M, s there is by the assumption a y in [0, 1],

y # x, such that
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y—x

But then y ¢ Q(z,0), hence y € U(x,6) and y € P(x,6) (since y # x), and
we see that f has the property in the theorem. O
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Lemma 2. Suppose that (M,d) is a metric space, (x,,) C M is a sequence
of points converging to a point ro € M, and f,: M — R, n € N, is a
sequence of functions converging in the norm || - || to a continuous function
f: M — R. Then

lim f,(x,) = f(xo) .
Proof. By the triangle inequality,

[fn(zn) = f(@o)| < [fn(zn) = f(zn)] 4+ [f(2n) — f(20)] -

The first | - - - | on the right side is < £/2 whenever n > ng, because || f— f,.| —
0. The same holds for the second |- - - | whenever n > ny, due to the continuity
of f at xo (Heine’s definition of continuity is used). Hence | f,(x,)— f(xo)| < &
for n > max(ng, n). a

Heine’s definition of continuity tells us that for a function f continuous at a
point a, lima,, = a implies that lim f(a,) = f(a). The previous lemma is a
certain generalization.

Broken lines. The next two lemmas, or more precisely their proofs, use
broken lines. A broken line through the points (ag, bo), (a1,b1),..., (ag,bx)
in the plane (in this order), where ay < a3 < --- < a, is the function
f: lao, ax] — R defined on every interval [a;_1,a;], i =1,2,... k, by

(bi - bifl)@j - aifl)

Qi — aj—1

flz) = +biq .

Its graph on [a;_1, a;] is the straight segment connecting the points (a;_1, b;—1)
and (a;, b;). These are the segments of the broken line. Every broken line is
a continuous function (Exercise 9).

Slope of a line in the plane given by the equation y = axz+0b is the number
a. Slope of a straight segment is the slope of the line extending the segment.
A secant line of a function f: M — R, M C R, is a line going through two
different points of the graph of f.

Lemma 3. For every ¢ > 0 and every f € C|0, 1] there is a g € C[0,1] and
a real M > 0 such that || f — g|| < € and for every two distinct points x and

y in [0, 1],
‘g(y) —9@)|

y—x




Thus every continuous function on [0,1] can be approrimated arbitrarily
tightly by a continuous function whose secant lines have bounded slopes.

Proof. Interval [0, 1] is compact and therefore f is even uniformly continuous
(Exercise 2). For every large enough m € N and every i = 0,1,...,m we
thus have the implication

7 14+ 1
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= [f(ifm) = f(@)], [f((i + 1)/m) — f2)] < /2.

We take the broken line g through the points (i/m, f(i/m)), i =0,1,...,m.
It satisfies this implication too and even for the same m (Exercise 3), hence
for every x in [0, 1] one has |f(z) — g(z)| < €/2 +¢/2 = € (Exercise 4) and ¢
has the first property. Since for every two distinct numbers = and y in [0, 1]
it is true that

‘g(y) —9@)| ’

y—x
where s is in absolute value largest slope of a segment of g (Exercise 5), g
has the second property as well. O

Lemma 4. For every smalle > 0 and every large T > 0 there is a g € CJ0, 1]

such that ||g|| < € and for every x € [0,1] there is a y € [0, 1] different from

x such that

9(y) —g9(=)
y—x

Thus there exist continuous and small functions, defined on [0, 1], with steep

secant line through every point of the graph.

>T.

Proof. For given ¢ > 0 and T" > 0 we select sufficiently large even m € N
with 2me/3 > T, and consider the broken line g through the m + 1 points in

the plane .
(i/m, (g/3)(1 = (=1)")), i=0,1,...,m.

It starts in the point (0,0), ends in (1,0), and consists of m/2 sharp tips
with height 2¢/3 and bases of width 2/m. So ||g|| = 2¢/3 < €. Through any
point u of the graph of g we lead the secant line extending the segment of g
containing u (there may be two such segments, then we select any of them).
This line has slope in absolute value larger than 7', because both sides of
every tip have in absolute value slope (2¢/3)/(1/m) = 2me/3 > T. O



Proof of the theorem. For n € N we define sets

Ay ={feC0,1]|3ze0,1]Vye0, 1]\ {x}: [[2E) <n}.
It suffices to prove that every A, is a meager set in C[0, 1]: since the space
C[0,1] is complete (by the proposition in the last lecture), Baire’s theorem
says that there is a function

feC[O,l]\DAn.

Clearly f is a continuous function defined on [0, 1] that is outside every of
the sets A,. It therefore has the property in lemma 1 and thus the property
in the theorem, and is not differentiable at any point of the interval [0, 1].

We prove that every set A, C C[0,1] is closed and contains no ball, for
every ball B(f,r) C C[0,1] one has B(f,r) ¢ A,. This implies that A, is
meager (Exercise 6). We prove closedness of A,, by closedness to limits. Let
(fx) € A, be a sequence of points in A,, with limy_, fr = f € C[0,1] (so
fr = fon [0,1], we show that f € A,). As fx € A,, there is a number ), €
0, 1] such that for every y € [0, 1] different from xj one has |%| < n.
A theorem in Mathematical Analysis I says that the sequence (xy) C [0, 1]
has a convergent subsequence with limit in [0,1]. To simplify notation we
assume that already limg_,o 2, = 29 € [0,1]. For every y € [0, 1] different
from xy then by the property of x and by lemma 2 we have

Jely) = fulze)| _ ‘f(y) — f(x0)
Y

Y — Tk — Xo

n > lim
k—o0

because non-sharp inequality is preserved in the limit. The number x( thus
witnesses that f € A, and A, is closed.

It remains to find in a given ball B(f,r) C CJ[0, 1] a point (i.e. a function)
g outside A,. We define g as g = g1 + g2 where we find g; by lemmas 3 and
4. First we use lemma 3 to find a function ¢g; € C[0, 1] and a constant M > 0
such that ||f — g1]] < /2 and all secant lines of g; have in absolute value
slopes < M. Then we find by lemma 4 a function go € C[0, 1] such that
llg2|| < r/2 and for every point of the graph of g, there is a secant line of gy
through it with slope in absolute value more than M + n. By the triangle
inequality, [|f — gl < |[f = gull + llg2ll <7/2+7/2 =7 and g € B(f,r). Let



x € [0,1] be arbitrary. Using the property of g, we take a y € [0,1] \ {z}
such that |(g2(y) — g2(x))/(y — x)| > M + n. Then

‘g(y) —9@)| _ |20 -e@) 0@ -al)
Yy— Yy—x Yy—x
92(y) — ga() 91(y) — g1 (z)

>

y—x
> (M+n)—M=n,

y—x

so that g ¢ A,. On the first line we used the definition of g, on the second
an inequality of Exercise 7, and on the third the properties of the functions
g1 and go. a

Exercises

1. Why is for x € R and § > 0 the set [0,1] \ U(z,d) compact?

2. Let (M,d) be a compact metric space and f: M — R be a continuous
function. Prove that f is uniformly continuous (i.e. Ve > 03 > 0 :

d(a,b) <d=|f(a) — f(b)] <e).

3. Let f:[a,b] = R be a linear function. Show that for every = € [a, 0]
one has min(f(a), f(b)) < f(z) < max(f(a), f(b)).

4. Let f,g:[0,1] — R be functions, ap =0 < a; <ay <---<ap=1bea
division of the interval [0, 1], f(a;) = g(a;), for every x the function f
satisfies ;1 <z < a; = |f(z) — f(a;—1)|,|f(z) — f(a;)| < e, and the
same holds for the function g. Prove that then for every x € [0, 1] one
has |f(z) — g(x)| < 2e.

5. Let f:[0,1] — R be a broken line and S = max |s|, taken over all
slopes s of its segments. Show that then for the slope ¢ of every secant
line of f we have |t| < S.

6. Prove that every closed set X in a metric space with empty interior
(i.e. X contains no ball) is meager.

7. Prove the inequality |a + b| > |a| — |b], a,b € R.



. Determine the subsets of the definition domains on which the follow-
ing sequences of functions converge pointwisely, uniformly, and locally
uniformly. What are the limit functions?

= g™ — 2" on [0, 1].

(d) fo(z) =2™ — 2" on R.

. Why is every broken line a continuous function?



