
Lecture 7, November 14, 2019

Proof of existence of a continuous but non-differentiable function

We prove the following

Theorem (continuous but non-differentiable function). There exists
a function f ∈ C[0, 1] such that for every x ∈ [0, 1] and every δ > 0,

sup

({∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ∣∣∣∣ y ∈ P (x, δ) ∩ [0, 1]

})
= +∞ .

This function is of course continuous but is not differentiable at any point of
the interval [0, 1].

Differentiability of a function at a given point means existence of a finite
derivative at the point, for the endpoints of the interval meant as one-sided,
and P (x, δ) = (x− δ, x)∪ (x, x+ δ). We prove the theorem by means of four
lemmas.

Lemma 1. A function f ∈ C[0, 1] has the property in the theorem, if it has
the property that for every x ∈ [0, 1],

sup

({∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ ∣∣∣∣ y ∈ [0, 1] \ {x}
})

= +∞ .

The parameter δ in the theorem therefore can be omitted.

Proof. We assume that f has for every x in [0, 1] this property. For every
x ∈ [0, 1] and every δ > 0, the set

Q(x, δ) = [0, 1] \ U(x, δ) (U(x, δ) = (x− δ, x+ δ))

is compact (Exercise 1), and we denote by Mx,δ the maximum value of the
continuous function g(y) = |(f(y)−f(x))/(y−x)| on it. For every x ∈ [0, 1],
every δ > 0, and every c > Mx,δ there is by the assumption a y in [0, 1],
y 6= x, such that ∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ > c .

But then y 6∈ Q(x, δ), hence y ∈ U(x, δ) and y ∈ P (x, δ) (since y 6= x), and
we see that f has the property in the theorem. 2
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Lemma 2. Suppose that (M,d) is a metric space, (xn) ⊂ M is a sequence
of points converging to a point x0 ∈ M , and fn : M → R, n ∈ N, is a
sequence of functions converging in the norm ‖ · ‖∞ to a continuous function
f : M → R. Then

lim fn(xn) = f(x0) .

Proof. By the triangle inequality,

|fn(xn)− f(x0)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x0)| .

The first | · · · | on the right side is < ε/2 whenever n ≥ n0, because ‖f−fn‖ →
0. The same holds for the second | · · · | whenever n ≥ n1, due to the continuity
of f at x0 (Heine’s definition of continuity is used). Hence |fn(xn)−f(x0)| < ε
for n ≥ max(n0, n1). 2

Heine’s definition of continuity tells us that for a function f continuous at a
point a, lim an = a implies that lim f(an) = f(a). The previous lemma is a
certain generalization.

Broken lines. The next two lemmas, or more precisely their proofs, use
broken lines. A broken line through the points (a0, b0), (a1, b1), . . . , (ak, bk)
in the plane (in this order), where a0 < a1 < · · · < ak, is the function
f : [a0, ak]→ R defined on every interval [ai−1, ai], i = 1, 2, . . . , k, by

f(x) =
(bi − bi−1)(x− ai−1)

ai − ai−1
+ bi−1 .

Its graph on [ai−1, ai] is the straight segment connecting the points (ai−1, bi−1)
and (ai, bi). These are the segments of the broken line. Every broken line is
a continuous function (Exercise 9).

Slope of a line in the plane given by the equation y = ax+b is the number
a. Slope of a straight segment is the slope of the line extending the segment.
A secant line of a function f : M → R, M ⊂ R, is a line going through two
different points of the graph of f .

Lemma 3. For every ε > 0 and every f ∈ C[0, 1] there is a g ∈ C[0, 1] and
a real M > 0 such that ‖f − g‖ < ε and for every two distinct points x and
y in [0, 1], ∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ < M .
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Thus every continuous function on [0, 1] can be approximated arbitrarily
tightly by a continuous function whose secant lines have bounded slopes.

Proof. Interval [0, 1] is compact and therefore f is even uniformly continuous
(Exercise 2). For every large enough m ∈ N and every i = 0, 1, . . . ,m we
thus have the implication

i

m
≤ x ≤ i+ 1

m
⇒ |f(i/m)− f(x)|, |f((i+ 1)/m)− f(x)| < ε/2 .

We take the broken line g through the points (i/m, f(i/m)), i = 0, 1, . . . ,m.
It satisfies this implication too and even for the same m (Exercise 3), hence
for every x in [0, 1] one has |f(x)− g(x)| < ε/2 + ε/2 = ε (Exercise 4) and g
has the first property. Since for every two distinct numbers x and y in [0, 1]
it is true that ∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ ≤ s ,

where s is in absolute value largest slope of a segment of g (Exercise 5), g
has the second property as well. 2

Lemma 4. For every small ε > 0 and every large T > 0 there is a g ∈ C[0, 1]
such that ‖g‖ < ε and for every x ∈ [0, 1] there is a y ∈ [0, 1] different from
x such that ∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ > T .

Thus there exist continuous and small functions, defined on [0, 1], with steep
secant line through every point of the graph.

Proof. For given ε > 0 and T > 0 we select sufficiently large even m ∈ N
with 2mε/3 > T , and consider the broken line g through the m+ 1 points in
the plane (

i/m, (ε/3)(1− (−1)i)
)
, i = 0, 1, . . . , m .

It starts in the point (0, 0), ends in (1, 0), and consists of m/2 sharp tips
with height 2ε/3 and bases of width 2/m. So ‖g‖ = 2ε/3 < ε. Through any
point u of the graph of g we lead the secant line extending the segment of g
containing u (there may be two such segments, then we select any of them).
This line has slope in absolute value larger than T , because both sides of
every tip have in absolute value slope (2ε/3)/(1/m) = 2mε/3 > T . 2
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Proof of the theorem. For n ∈ N we define sets

An = {f ∈ C[0, 1] | ∃x ∈ [0, 1] ∀ y ∈ [0, 1] \ {x} : |f(y)−f(x)
y−x | ≤ n} .

It suffices to prove that every An is a meager set in C[0, 1]: since the space
C[0, 1] is complete (by the proposition in the last lecture), Baire’s theorem
says that there is a function

f ∈ C[0, 1] \
∞⋃
n=1

An .

Clearly f is a continuous function defined on [0, 1] that is outside every of
the sets An. It therefore has the property in lemma 1 and thus the property
in the theorem, and is not differentiable at any point of the interval [0, 1].

We prove that every set An ⊂ C[0, 1] is closed and contains no ball, for
every ball B(f, r) ⊂ C[0, 1] one has B(f, r) 6⊂ An. This implies that An is
meager (Exercise 6). We prove closedness of An by closedness to limits. Let
(fk) ⊂ An be a sequence of points in An with limk→∞ fk = f ∈ C[0, 1] (so
fk ⇒ f on [0, 1], we show that f ∈ An). As fk ∈ An, there is a number xk ∈
[0, 1] such that for every y ∈ [0, 1] different from xk one has |fk(y)−fk(xk)

y−xk
| ≤ n.

A theorem in Mathematical Analysis I says that the sequence (xk) ⊂ [0, 1]
has a convergent subsequence with limit in [0, 1]. To simplify notation we
assume that already limk→∞ xk = x0 ∈ [0, 1]. For every y ∈ [0, 1] different
from x0 then by the property of xk and by lemma 2 we have

n ≥ lim
k→∞

∣∣∣∣fk(y)− fk(xk)
y − xk

∣∣∣∣ =

∣∣∣∣f(y)− f(x0)

y − x0

∣∣∣∣
because non-sharp inequality is preserved in the limit. The number x0 thus
witnesses that f ∈ An and An is closed.

It remains to find in a given ball B(f, r) ⊂ C[0, 1] a point (i.e. a function)
g outside An. We define g as g = g1 + g2 where we find gi by lemmas 3 and
4. First we use lemma 3 to find a function g1 ∈ C[0, 1] and a constant M > 0
such that ‖f − g1‖ < r/2 and all secant lines of g1 have in absolute value
slopes < M . Then we find by lemma 4 a function g2 ∈ C[0, 1] such that
‖g2‖ < r/2 and for every point of the graph of g2 there is a secant line of g2
through it with slope in absolute value more than M + n. By the triangle
inequality, ‖f − g‖ ≤ ‖f − g1‖+ ‖g2‖ < r/2 + r/2 = r and g ∈ B(f, r). Let
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x ∈ [0, 1] be arbitrary. Using the property of g2 we take a y ∈ [0, 1] \ {x}
such that |(g2(y)− g2(x))/(y − x)| > M + n. Then∣∣∣∣g(y)− g(x)

y − x

∣∣∣∣ =

∣∣∣∣g2(y)− g2(x)

y − x
+
g1(y)− g1(x)

y − x

∣∣∣∣
≥

∣∣∣∣g2(y)− g2(x)

y − x

∣∣∣∣− ∣∣∣∣g1(y)− g1(x)

y − x

∣∣∣∣
> (M + n)−M = n ,

so that g 6∈ An. On the first line we used the definition of g, on the second
an inequality of Exercise 7, and on the third the properties of the functions
g1 and g2. 2

Exercises

1. Why is for x ∈ R and δ > 0 the set [0, 1] \ U(x, δ) compact?

2. Let (M,d) be a compact metric space and f : M → R be a continuous
function. Prove that f is uniformly continuous (i.e. ∀ ε > 0 ∃ δ > 0 :
d(a, b) < δ ⇒ |f(a)− f(b)| < ε).

3. Let f : [a, b] → R be a linear function. Show that for every x ∈ [a, b]
one has min(f(a), f(b)) ≤ f(x) ≤ max(f(a), f(b)).

4. Let f, g : [0, 1]→ R be functions, a0 = 0 < a1 < a2 < · · · < ak = 1 be a
division of the interval [0, 1], f(ai) = g(ai), for every x the function f
satisfies ai−1 ≤ x ≤ ai ⇒ |f(x) − f(ai−1)|, |f(x) − f(ai)| < ε, and the
same holds for the function g. Prove that then for every x ∈ [0, 1] one
has |f(x)− g(x)| < 2ε.

5. Let f : [0, 1] → R be a broken line and S = max |s|, taken over all
slopes s of its segments. Show that then for the slope t of every secant
line of f we have |t| ≤ S.

6. Prove that every closed set X in a metric space with empty interior
(i.e. X contains no ball) is meager.

7. Prove the inequality |a+ b| ≥ |a| − |b|, a, b ∈ R.
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8. Determine the subsets of the definition domains on which the follow-
ing sequences of functions converge pointwisely, uniformly, and locally
uniformly. What are the limit functions?

(a) fn(x) = 1
x+n

on R.

(b) fn(x) = xn − x3n on [0, 1].

(c) fn(x) = xn+1 − xn−1 on [0, 1].

(d) fn(x) = xn − xn+1 on R.

9. Why is every broken line a continuous function?
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