
Lecture 5, October 31, 2019

Baire’ theorem. Perfect sets. Chapter 2. Types of convergence of
sequences of functions

Baire’s theorem. There are no “holes” in complete spaces and these spaces
are rich on points. Banach’s fixed-point theorem for example says that each
equation f(x) = x with a contractive selfmap f of a complete space has a
solution. Baire’s theorem describes richness of complete spaces from another
angle: one cannot exhaust a complete space by ”infrequent points”. To state
the theorem we need two new notions. The first one specifies the ”infrequent
points”. A set X ⊂M in a general metric space (M,d) is meager if

∀ ball B ⊂M ∃ ball B′ ⊂ B : B′ ∩X = ∅ .

The second notion is, for an a ∈M and a real r > 0, the closed ball B (with
center a and radius r),

B = B(a, r) = {x ∈M | d(x, a) ≤ r} .

The only difference compared to ordinary balls is that B includes also points
having distance to a exactly r. It is easy to see that B is a closed set
(Exercise 1), B(a, r) ⊂ B(a, r), and that for every positive s < r one has
B(a, s) ⊂ B(a, r) (Exercise 2).

Theorem (R.-L. Baire, 1899). Let (M,d) be a complete metric space and
Xn ⊂M , n ∈ N, be meager sets. Then

M \
∞⋃
n=1

Xn 6= ∅ .

A complete metric space therefore never equals to an at most countable union
of meager sets (Exercise 3).

Proof. We define a sequence of closed balls

B1 ⊃ B2 ⊃ B3 ⊃ . . . , Bn = B(an, rn) ,

such that (i) Bn ∩ Xn = ∅ and (ii) lim rn = 0. It yields a point a ∈ M
that lies in none of the sets Xn. Namely, the sequence of centers (an) ⊂ M
is Cauchy (m,n ≥ n0 ⇒ am, an ∈ Bn0 , thus d(am, an) ≤ 2rn0) and its limit

1



a = lim an ∈ M has to lie in each Bn (n ≥ n0 ⇒ an ∈ Bn0 , so lim an ∈ Bn0

by Exercise 1). Hence a 6∈ Xn for every n ∈ N.
We define such sequence of closed balls. Let B1 ⊂ M be any ball and

B′1 ⊂ B1, B
′
1 = B(a1, r

′
1), be a subball disjoint to X1. We set B1 = B(a1, r1)

where r1 = r′1/2. Then (by Exercise 2) B1 ⊂ B′1 and therefore B1 is disjoint
to X1. Let us suppose that for n ∈ N and i = 1, 2, . . . , n we have already
defined the closed balls

B1 ⊃ B2 ⊃ · · · ⊃ Bn, Bi = B(ai, ri) ,

such that Bi ∩ Xi = ∅ and (for i < n) ri+1 ≤ ri
2

. We define Bn+1 as
follows. Since the set Xn+1 is meager, there is a ball B′n+1 = B(an+1, r

′
n+1) ⊂

B(an, rn) ⊂ Bn disjoint to Xn+1. We set

Bn+1 = B(an+1, rn+1), rn+1 = min(r′n+1/2, rn/2) .

It is easy to see that Bn+1 is contained in B′n+1, thus in Bn, and is therefore
disjoint to Xn+1. Also, rn+1 ≤ rn/2. It is clear that the sequence of nested
closed balls (Bn) defined in this way has properties (i) and (ii). 2

The most famous application of Baire’s theorem is the proof of existence of
a continuous function f : [0, 1]→ R that does not have finite derivative f ′(a)
in any point a ∈ [0, 1] of the interval (for a = 0 or 1 we mean one-sided
derivative). Maybe this will be told in the second chapter. We conclude the
first chapter with a simpler application.

Corollary (on perfect sets). Every nonempty and at most countable closed
sets X ⊂ R has an isolated point (Exercise 4). In fact, this holds in any
complete metric space (M,d).

Proof. Suppose the subset X ⊂ R is nonempty, closed, and has no isolated
point. The forthcoming argument works in any complete space but for some
reason we prefer to have R in mind. We show that X is uncountable. By
Exercise 15 in the last lecture the Euclidean subspace X is complete. Thus
it suffices to show that for each a ∈ X the singleton set {a} is meager (in
X). By the Baire theorem, the union

X =
⋃
a∈X

{a}
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then cannot be countable. So let a ∈ X and B = B(b, r) ⊂ X with b ∈ X
be any ball in the space X. If b 6= a then every subball B′ ⊂ B, B′ = B(b, s)
with s = min(r, d(b, a) = |b− a|), is disjoint to {a} (i.e. a 6∈ B′). Let b = a.
Since a is not an isolated point of the set X, there is a point c ∈ X ∩B(a, r),
c 6= a. We set B′ = B(c, s) with s = min(d(c, a), r − d(c, a)) (in R we have,
of course, d(c, a) = |c − a|). It is clear that B′ ⊂ B and a 6∈ B′. Each
one-element set {a}, a ∈ X, is meager in X. 2

A subset of a metric space is perfect if it is closed and has no isolated point.
The corollary thus says that in a complete metric space every nonempty
perfect set is uncountable.

Chapter 2: sequences and series of functions

In Mathematical Analysis I we investigated limits a = limn→∞ an of real
sequences (an) ⊂ R and sums s =

∑∞
n=1 an of the corresponding infinite

series, which are the limits limn→∞ (a1 +a2 + · · ·+an) of sequences of partial
sums. In this chapter we generalize it: instead of a single sequence (an) ⊂ R,
a parametric set (an(x)) ⊂ R, x ∈ M ⊂ R (in this chapter M denotes a
nonempty set of real numbers), of such sequences is given. Thus for each
element x ∈ M we have a real sequence (an(x)) or, equivalently, for each
index n ∈ N we have a function an : M → R. We will investigate how the
limit a = a(x) or the sum s = s(x) depend on x ∈ M . Instead of an we
prefer to write fn which clearly reminds of functions.

Three kinds of convergence of sequences of functions. Let M ⊂ R be
a nonempty set and fn, f : M → R, n ∈ N, be functions defined on it. The
functions fn pointwisely converge on the set M to the function f , written

fn → f on M ,

if for every x ∈M one has lim fn(x) = f(x). In other words,

∀ ε > 0 ∀x ∈M ∃n0 = n0(x) ∈ N : n ≥ n0 ⇒ |fn(x)− f(x)| < ε

(the precise formal translation should be ∀x ∈ M ∀ ε > 0 . . . , but from the
logical point of view the order of quantifiers of the same kind is irrelevant, and
this order is better because of the next definition). The index n0 in general
depends on the selected x ∈M , which is captured by the notation n0 = n0(x).
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In fact, we are given a function n0 : M → N which may be unbounded when
some “troublesome” points x require larger and larger values of n0. To be
completely precise we should write even n0 = n0(ε, x) because n0 in general
depends also on ε, and thus we have actually a function n0 : (0,+∞)×M →
N; but we take ε in this argument fixed.

If the function n0(x) is constant and a single n0 fits all x ∈M , we speak
of uniform convergence. Logically this means that the second and third
quantifier in the above formula are exchanged:

∀ ε > 0 ∃n0 ∀x ∈M : n ≥ n0 ⇒ |fn(x)− f(x)| < ε .

We say then that the functions fn converge uniformly on the set M to the
function f and write

fn ⇒ f on M .

From the practical perspective (in applications of uniform convergence)
it is often useful to relax the constantness of the function n0 : M → N only
to a local condition. We say that the functions fn converge locally uniformly
on the set M to the function f and write

fn
loc

⇒ f on M ,

if for every x ∈M there is a δ > 0 such that fn ⇒ f on M ∩ (x− δ, x+ δ).

An example with powers. Let M = [0, 1], fn(x) = xn for n ∈ N, and
f(x) = 0 for 0 ≤ x < 1 and f(1) = 1. It is clear that fn → f on [0, 1]. Note
that although all functions fn are continuous, their pointwise limit f is not
continuous. It is also easy to see that this convergence is not uniform. Since
for each fixed n ∈ N we have limx→1− x

n = 1, we can select for each n ∈ N a
point an ∈ (0, 1) such that f(an) = ann >

1
2

(or that f(an) > c for any other
constant c ∈ [0, 1), for example c = 0.99999). But then for no ε < 1

2
there is

an index n such that

∀x ∈M : |fn(x)− f(x)| < ε ,

because for x = an ∈ M this absolute value equals |fn(an) − f(an)| =
fn(an) > 1

2
. Thus fn 6⇒ f on M = [0, 1]. The well known limit

lim (1− n−1)n = e−1 > 3−1

shows that we can select the points an so that they approach the “trouble-
some” point 1 with the “speed” 1

n
.
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Exercises

1. Prove that every closed ball is a closed set.

2. Prove that for every a ∈M and every positive s < r, B(a, s) ⊂ B(a, r).

3. The statement of Baire’s theorem has countable union
⋃∞

n=1. How
does follow from this (purely formally) that the theorem in fact holds
for finite unions too?

4. Here is an attempt to construct a countable and closed set X ⊂ R
without isolated points. Let X0 = {0}. This is a closed and at most
countable set but it has an isolated point. Let X1 = {1/n | n ∈ N}.
The set X0 ∪X1 is clearly countable and closed and no point in X0 is
isolated. But every point in X1 is isolated. But we can add for every
b ∈ X1 in a similar way a sequence of points converging to b. Let X2

be the union of these sequences over all b ∈ X1. Then X0 ∪X1 ∪X2 is
a countable and closed set and no point in X0 ∪X1 is isolated. We can
similarly remove isolation of points in X2 by adding a countable set X3

and so on. The resulting set X =
⋃∞

n=0Xn is countable and closed and
none of its points is isolated. But this contradicts the Baire theorem.
What is wrong?

5. Prove that the union of two meager sets is a meager set.

6. Is the fact that a set X ⊂ M is meager a relative or an absolute
property?

7. For a metric space (M,d) and X ⊂M , we call the set X dense (in M)
if for every ball B ⊂M , X ∩B 6= ∅. Is it true that the complement of
a meager set is a dense set?

8. Is it true that the complement of a dense set is a meager set?

9. Is the intersection of two dense sets a dense set?

10. Let fn(x) = xn : [0, 1] → R, n = 1, 2, . . . , and let f be the pointwise
limit of fn (f(x) = 0 for 0 ≤ x < 1 and f(1) = 1). Prove that the
set S = {X ⊂ [0, 1] | X 6= ∅, fn ⇒ f on X} has no maximal element
with respect to inclusion (the sequence (fn) has no largest domain of
uniform convergence). What are the minimal elements?
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