
Lecture 2, October 10, 2019

Normed fields. Ostrowski’s theorem. Review

Normed field. A normed field is a field F = (F, 0F , 1F ,+, ·, ‖ · ‖) with a
function

‖ · ‖ : F → [0,+∞) ,

called a norm, that has the following three properties.

1. For every x ∈ F one has ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0F .

2. For every x, y ∈ F one has ‖xy‖ = ‖x‖ · ‖y‖ (multiplicativity).

3. For every x, y ∈ F one has ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

In Exercise 1 you can prove that d(x, y) = ‖x− y‖ is a metric on F . We give
three examples of normed fields, more precisely three families of norms on
fields.

Trivial norm. For every field F , the function ‖ · ‖ with ‖0F‖ = 0 and
‖x‖ = 1 if x 6= 0F is a norm (Exercise 2), called a trivial norm.

Usual absolute value. For the field of fractions F = Q, the function ‖ · ‖
with ‖x‖ = |x| = x for x ≥ 0 and ‖x‖ = |x| = −x for x < 0 is a norm. More
generally, ‖x‖ = |x|c for any real constant c ∈ (0, 1] is a norm (Exercise 3).

p-adic norms. For every real constant c ∈ (0, 1), every prime p =
2, 3, 5, 7, 11, . . . , and the field of fractions F = Q, the function ‖ · ‖, given for
nonzero x ∈ Q by

‖x‖ = cordp(x) and for zero by ‖0‖ = 0 ,

is a norm. Here for nonzero a
b
∈ Q, ordp(

a
b
) = m ∈ Z equals to the unique

integer such that a
b

= pm · c
d

with c
d
∈ Q and p not dividing cd (i.e. p divides

neither c nor d). For zero we set ordp(0) =∞.
We prove that every p-adic norm ‖ · ‖ is a norm. It clearly has property

1. Multiplicativity of p-adic norm follows from additivity of p-adic order: for
every two fractions α and β (and every prime p) we have the equality

ordp(αβ) = ordp(α) + ordp(β) (Exercise 5) .
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Here ∞ + m = m +∞ = ∞ +∞ = ∞ for any m ∈ Z. From the previous
lecture we know that for p-adic norms the triangle inequality holds in the
stronger form with + replaced by maximum. We show that for every two
fractions α and β (and every prime p) one has

‖α + β‖ ≤ max(‖α‖, ‖β‖) .

Due to the multiplicativity of norm we have for every n ∈ N = {1, 2, . . . }
that ‖nα + nβ‖ = ‖n‖ · ‖α + β‖, ‖nα‖ = ‖n‖ · ‖α‖ and ‖nβ‖ = ‖n‖ · ‖β‖.
Taking n to be a common multiple of the denominators of both fractions we
may assume that α, β ∈ Z. Moreover we may assume that αβ 6= 0 (Exercise
6). Thus

α = pma, β = pnb, m, n ∈ N0 = {0, 1, . . . }, m ≤ n, a, b ∈ Z ,

and p does not divide ab. So m = ordp(α), n = ordp(β), α + β = pm(a +
pn−mb), and ordp(α + β) ≥ m. Therefore, since the positive c is less than 1,

‖α + β‖ = cordp(α+β) ≤ cm = max(cm, cn) = max(‖α‖, ‖β‖) .

We may have α + β = 0, but this is no problem since we set c∞ = 0.

Product formula. The “true” p-adic norm ‖ · ‖p has c = 1
p
:

‖x‖p = p−ordp(x) for x 6= 0 and ‖0‖p = 0 .

The reason for this choice of c is that then all p-adic norms and the absolute
value | · |, which is sometimes denoted as | · | = | · |∞, are bound together by
the nice identity ∏

p=2, 3, 5, ... or p=∞

‖x‖p = 1 for every x ∈ Q \ {0} ,

called the product formula. You can prove it in Exercise 7.

Theorem (A. Ostrowski, 1916). Let ‖ · ‖ be a norm on the field of
fractions Q. Then exactly one of the three following cases occurs.

1. It is a trivial norm.

2. There is a real c ∈ (0, 1] such that ‖x‖ = |x|c.
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3. There is a real c ∈ (0, 1) and a prime number p such that ‖x‖ = cordp(x)

(here c∞ = 0).

Proof. Suppose that ‖ · ‖ is not of the form 1 and is not trivial. Due to
multiplicativity of norm and Exercise 4 there exists an n ∈ N such that
‖n‖ 6= 1. Two cases remain to be handled.

The case when there is an n ∈ N with ‖n‖ > 1. Let n0 be the
smallest such n. It is clear by Exercise 4 that n0 ≥ 2. There is a unique real
number c > 0 such that ‖n0‖ = nc0. We can expand every n ∈ N in the base
n0 as

n = a0 + a1n0 + a2n
2
0 + · · ·+ asn

s
0, ai, s ∈ N0, 0 ≤ ai < n0, and as 6= 0 .

For n0 = 10 it is the usual decadic notation. So

‖n‖ = ‖a0 + a1n0 + a2n
2
0 + · · ·+ asn

s
0‖

≤ ‖a0‖+ ‖a1‖ · ‖n0‖+ ‖a2‖ · ‖n0‖2 + · · ·+ ‖as‖ · ‖n0‖s

≤ 1 + nc0 + n2c
0 + · · ·+ nsc0 ≤ nsc0

∞∑
i=0

(
1

nc0

)i
≤ ncC .

On the second line we used multiplicativity of norm and the triangle inequal-
ity. On the third line we used the inequality ‖m‖ ≤ 1 for 0 ≤ m < n0 and
the definition of the number c. On the fourth line we defined the constant
C > 0 by the sum of the stated infinite series, which is a convergent geomet-
ric series, and we used the inequality ns0 ≤ n. For every n ∈ N0 we therefore
have the inequality ‖n‖ ≤ Cnc.

This inequality in fact holds even with C = 1. For every m,n ∈ N the
inequality and multiplicativity of norm give

‖n‖m = ‖nm‖ ≤ C (nm)c = C (nc)m .

Taking the m-th root of the expression we get ‖n‖ ≤ C1/mnc. For m → ∞,
C1/m → 1. Indeed ‖n‖ ≤ nc for every n ∈ N0.

In a similar way we deduce the opposite inequality ‖n‖ ≥ nc, n ∈ N0. For
every n ∈ N the above base n0 expansion shows that ns+1

0 > n ≥ ns0. From
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‖ns+1
0 ‖ ≤ ‖n‖+ ‖ns+1

0 − n‖ (the triangle inequality) we get

‖n‖ ≥ ‖ns+1
0 ‖ − ‖ns+1

0 − n‖ ≥ n
(s+1)c
0 − (ns+1

0 − n)c

≥ n
(s+1)c
0 − (ns+1

0 − ns0)c = n
(s+1)c
0

(
1−

(
1− 1

n0

)c)
≥ ncC ′ .

On the first line we used the definition of the number c and the already
proven upper bound ‖m‖ ≤ mc, m ∈ N0. On the second line we used the
inequality n ≥ ns0. On the third line we defined the constant C ′ > 0 by
the stated expression in brackets (which is independent of n) and used the
inequality ns+1

0 > n. As before the m-th root trick shows that for every
n ∈ N0, ‖n‖ ≥ nc.

Thus for every n ∈ N0 one has ‖n‖ = nc. By multiplicativity of norm
and Exercise 4 we see that ‖x‖ = |x|c for every x ∈ Q. Exercise 3 shows that
c ∈ (0, 1]. We have deduced that the norm ‖ · ‖ has form 2.

The remaining case when ‖n‖ ≤ 1 for every n ∈ N and there is
an n ∈ N with ‖n‖ < 1. Again we denote by n0 the least such n, and
again n0 ≥ 2. We claim that n0 = p is a prime. If n0 had a decomposition
n0 = n1n2 with ni ∈ Z and 1 < n1, n2 < n0, we would get the contradiction

1 > ‖n0‖ = ‖n1n2‖ = ‖n1‖ · ‖n2‖ = 1 · 1 = 1

(we used multiplicativity of norm and that ‖m‖ = 1 for every m ∈ N with
1 ≤ m < n0). We show that every other prime q 6= p has norm ‖q‖ = 1.
For contrary let q 6= p be another prime with norm ‖q‖ < 1. We take
large enough m ∈ N such that ‖p‖m, ‖q‖m < 1

2
. By a well known result

in elementary number theory in Exercise 8 there are integers a and b with
aqm + bpm = 1. Taking norm of this equality we get the contradiction

1 = ‖1‖ = ‖aqm + bpm‖ ≤ ‖a‖ · ‖q‖m + ‖b‖ · ‖p‖m < 1 · 1

2
+ 1 · 1

2
= 1 .

Here we used the triangle inequality, multiplicativity of norm, and the fact
that now ‖a‖ ≤ 1 for every a ∈ Z.

Hence ‖q‖ = 1 for every prime q different from p. From this we get with
the help of multiplicativity of norm, Exercise 4, and the prime factorization
of a nonzero fraction x the expression

‖x‖ =

∥∥∥∥∥ ∏
q=2, 3, 5, ...

qordq(x)

∥∥∥∥∥ =
∏

q=2, 3, 5, ...

‖q‖ordq(x) = ‖p‖ordp(x) = cordp(x) ,
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where c = ‖p‖ ∈ (0, 1); ‖0‖ = cordp(0) = c∞ = 0 too. We have deduced that
the norm ‖ · ‖ has form 3. 2

I took the previous proof from the book

N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, Springer-
Verlag, New York, 1984,

which contains interesting material on the p-adic norm ‖ · ‖p and on the
related p-adic analysis. Unfortunately we have to part with this topic, look
at least at Exercise 9.

Review. I review some results on metric spaces you learned in “Matematická
analýza II”. For a metric space (M,d), a point a ∈ M , and a real number
r > 0, the set of points

B(a, r) = {x ∈M | d(a, x) < r}

is called an (open) ball (with center a and radius r). A set X ⊂M is open if

∀ a ∈ X ∃ r > 0 : B(a, r) ⊂ X .

A set X ⊂ M is closed if the set M \X is open. For a sequence (an) ⊂ M
and a point a ∈M we write

lim an = a if lim d(an, a) = 0

and we call sequences, for which such a exists, convergent. Note that the last
limit is just the limit of a real sequence (with respect to the usual metric
|x−y| on the real axis). Closed sets are characterized by closedness to limits
(Exercise 11). The sets ∅ and M are both open and closed, the family of
open sets is closed to finite intersections and arbitrary unions, and for closed
sets this holds with the operations of intersection and union interchanged.
Finally, we call X ⊂M a compact set if

∀ (an) ⊂ X ∃ (akn) ⊂ (an) : lim akn = a ∈ X .

Thus in a compact set X every sequence of points has a convergent subse-
quence with limit in X. For example, [0, 1) ⊂ R is not a compact subset
of the Euclidean space (R, d2) because the sequence (1 − 1

n
) ⊂ [0, 1) has no

convergent subsequence with limit in [0, 1) (Exercise 12).
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Exercises

1. Prove that for a field norm ‖ · ‖ the function d(x, y) = ‖x − y‖ is a
metric.

2. Prove that the trivial norm is a norm.

3. Prove that ‖x‖ = |x|c, x ∈ Q and c > 0, is a norm if and only if c ≤ 1.

4. In every normed field, ‖0F‖ = 0, ‖1F‖ = ‖ − 1F‖ = 1, ‖x‖ = ‖ − x‖,
and ‖1F/x‖ = 1/‖x‖ (for x 6= 0F ).

5. Prove that the function ordp(·) is additive.

6. Prove that if one of the elements is zero then the strong triangle in-
equality holds. In our proof of the strong triangle inequality for p-adic
norms, was it really necessary to reduce it first to α, β ∈ Z and then to
nonzero αβ?

7. Prove the product formula. Is it really an infinite product?

8. Recall the proof of the fact that for every two coprime integers m,n
there exist numbers a, b ∈ Z such that am+ bn = 1.

9. Consider the metric space (Q, ‖x − y‖p) with a p-adic metric. Prove
that in it the infinite series

∞∑
n=1

an, an ∈ Q ,

converges if and only if in it lim an = 0.

10. Prove that every ball is an open set.

11. Let (M,d) be a metric space and X ⊂ M . Prove that the set X is
closed iff every sequence (an) ⊂ X satisfies: if (an) has the limit a ∈M
then a ∈ X.

12. Why (1− 1
n
) ⊂ [0, 1) has no convergent subsequence with limit in [0, 1)?
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