
Lecture 12, December 19, 2019

The constant ρ = 2πi. The Cauchy–Goursat theorem. The
functional

∫
Several integrals. We are continuing in the proof of Theorems 1, 2, and 3
of the previous lecture. For k ∈ N and a segment u, the k-equipartition of u
is the partition of u in k subsegments of the same length 1

k
|u|, which is the

image of the partition 0 < 1
k
< 2

k
< · · · < k−1

k
< 1 of the unit interval.

Proposition (
∫
u, ∂R

of a lin. function). Let a, b, α, β ∈ C with a 6= b,

f(z) = αz + β, and R be a rectangle.

1. It is true that∫
ab

f =

∫
ab

(αz + β) = g(b)− g(a), where g(z) = α
z2

2
+ βz .

2. Also, ∫
∂R

f =

∫
∂R

(αz + β) = 0 .

Proof. 1. It is not hard to compute this as lim C(f, pn) where the pn are the
n-equipartitions of ab. We leave it as Exercise 1.

2. Let the canonic vertices of R be a, b, c, d. By the definition of
∫
∂R

and
part 1 we have∫

∂R

f = g(b)− g(a) + g(c)− g(b) + g(d)− g(c) + g(a)− g(d) = 0 .

2

The proof of the next reduction of
∫
u
f to the Riemann integral is left as

Exercise 2.

Proposition (
∫
u

and (R)
∫ b

a
). Let a, b ∈ C with a 6= b, f : ab → C be a

continuous function, and ϕ = t(b−a)+a : [0, 1]→ C be the parameterization
defining the segment u = ab. Then∫

u

f = (R)

∫ 1

0

re (f(ϕ(t)) · ϕ′(t)) dt+ i · (R)

∫ 1

0

im (f(ϕ(t)) · ϕ′(t)) dt

= (b− a)

(
(R)

∫ 1

0

re (f(ϕ(t))) dt+ i · (R)

∫ 1

0

im (f(ϕ(t))) dt

)
.
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For completeness we mention the standard definition of the integral
∫
ϕ
f of

f along a curve ϕ which is a basic notion in complex analysis. If

f : U → C, and ϕ : [a, b]→ U

is a piecewise smooth and continuous function, then∫
ϕ

f := (R)

∫ b

a

re (f(ϕ(t)) · ϕ′(t)) dt+ i · (R)

∫ b

a

im (f(ϕ(t)) · ϕ′(t)) dt

if these Riemann integrals exist.
The next result is an under-appreciated pillar of complex analysis: if the

constant ρ in it were 0, no Cauchy formulae, which we derive next time,
would exist and the complex analysis would collapse.

Proposition (the constant ρ = 2πi). Let S be the square with vertices
±1± i. Then

ρ :=

∫
∂S

1

z
6= 0, in fact im(ρ) ≥ 4 .

Proof. The canonic vertices of S are a = −1 − i, b = 1 − i, c = 1 + i, and
d = −1 + i. Let pn = (a0, a1, . . . , an) be the n-equipartition of the segment
ab. The multiplication by i geometricly means the rotation around 0 by the
angle π/2 in the positive direction (counter-clockwisely). Thus qn := ipn =
(ia0, ia1, . . . , ian) is the n-equipartition of bc. Similarly rn := iqn = −pn
and sn := irn = −ipn are the n-equipartitions of the segments cd and da,
respectively. Surprisingly, for f(z) = 1

z
we have

C(f, pn) = C(f, qn) = C(f, rn) = C(f, sn) .

Indeed, expanding the fraction by i we get

C(f, pn) =
n∑

j=1

(b− a)/n

a+ j(b− a)/n
=

n∑
j=1

(ib− ia)/n

ia+ j(ib− ia)/n
= C(f, qn)

because ib = c and ia = b. The remaining two equalities follow in the same
way. Since b − a = 2 and a = −1 − i, expanding the fraction by 2j

n
− 1 + i
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we get

im (C(f, pn)) = im

(
n∑

j=1

2/n

−1− i+ 2j/n

)
= im

(
2

n

n∑
j=1

2j/n− 1 + i

(2j/n− 1)2 + 1

)

=
2

n

n∑
j=1

1

(2j/n− 1)2 + 1
≥ 2

n

n∑
j=1

1

2
= 1 .

Hence

im(ρ) = im

(∫
∂S

1

z

)
= 4 · im

(∫
ab

1

z

)
= 4 · lim

n→∞
im (C(1/z, pn)) ≥ 4

(Exercise 3) and indeed ρ 6= 0. 2

You can calculate in Exercise 5 that ρ = 2πi. This constant is ubiquitous in
the complex analysis.

The Cauchy–Goursat theorem is in complex analysis result number 1:
the integral

∫
ϕ
f of a holomorphic function f over a simple closed curve ϕ

(this means that ϕ is injective, except for ϕ(a) = ϕ(b)), which lies in the
definition domain of f together with its interior, equals 0. But we only can
integrate over boundaries of rectangles; complicated curves do not interest
us.

For the proof of the theorem we need the notion of the diameter diam(X)
of a set X ⊂ C, and we remind an auxiliary result from the proof of the
Baire theorem. We define

diam(X) := sup({|x− y| | x, y ∈ X}) .

The diameter may be +∞. We leave the proof of the next proposition as
Exercise 6, see also Exercises 7 and 8.

Proposition (nested closed sets). If

C ⊃ A1 ⊃ A2 ⊃ . . .

are nonempty and closed sets with lim diam(An) = 0, then
⋂∞

n=1An 6= ∅.

We still need the construction of the quarters of a rectangleR with canonic
vertices a, b, c, d. If e = a+b

2
, f = b+c

2
, g = c+d

2
, and h = d+a

2
are the midpoints
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of the sides of R and j = a+c
2

is the midpoint of R, the four quarters of R
are the rectangles A,B,C, and D with the canonic vertices

(a, e, j, h), (e, b, f, j), (j, f, c, g), and (h, j, g, d) ,

respectively, to which is R split by cutting it along the segments eg a hf .
For each of these quarters E, per(E) = 1

2
per(R) and diam(E) = 1

2
diam(R).

Theorem (Cauchy–Goursat). Let f : U → C be a holomorphic function
and R ⊂ U be a rectangle. Then∫

∂R

f = 0 .

Proof. Let f , U , and R be as given. We construct such nested rectangles

R = R0 ⊃ R1 ⊃ R2 ⊃ . . .

that for every n ∈ N0, Rn+1 is a quarter of Rn and∣∣∣∣ ∫
∂Rn+1

f

∣∣∣∣ ≥ 1

4

∣∣∣∣ ∫
∂Rn

f

∣∣∣∣ .
Let R0, R1, . . . , Rn have been already defined and A,B,C, and D be the
quarters of the rectangle Rn. We claim that∫

∂Rn

f =

∫
∂A

f +

∫
∂B

f +

∫
∂C

f +

∫
∂D

f .

This identity follows by applying part 3 of the theorem on properties of
∫

.
Expanding each

∫
∂A
f, . . . ,

∫
∂D
f as a sum of four integrals over the sides

yields 16 terms on the right side. Eight of them that correspond to the
sides of the quarters lying inside Rn cancel out because they form four pairs
of opposite orientations of four segments. The remaining eight terms that
correspond to the sides of the quarters lying on ∂Rn sum up to the integral
on the left side. The identity implies by the triangle inequality that there is a
quarter E ∈ {A,B,C,D} such that |

∫
∂E
f | ≥ 1

4
|
∫
∂Rn

f |. We set Rn+1 = E.
By the last proposition there exists a point z0 such that

z0 ∈
∞⋂
n=0

Rn .
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As R0 = R ⊂ U , also z0 ∈ U . Now we use the existence of the derivative
f ′(z0). For a given ε > 0 there is a δ > 0 such that B(z0, δ) ⊂ U and for
some function ∆: B(z0, δ)→ C we have for every z ∈ B(z0, δ) that |∆(z)| < ε
(Exercise 9) and

f(z) = f(z0) + f ′(z0)(z − z0)︸ ︷︷ ︸
g(z)

+ ∆(z)(z − z0)︸ ︷︷ ︸
h(z)

.

We consider the marked functions g(z) and h(z). Clearly, g(z) is linear
and h(z) = f(z) − g(z) is continuous. Suppose that n ∈ N0 is so big that
Rn ⊂ B(z0, δ). By part 2 of the first proposition (and by the linearity of the
integral) we have ∫

∂Rn

f =

∫
∂Rn

g +

∫
∂Rn

h =

∫
∂Rn

h .

By the ML bound (part 2 of the theorem on properties of
∫

),∣∣∣∣ ∫
∂Rn

h

∣∣∣∣ ≤ max
z∈∂Rn

|∆(z)(z − z0)| · per(Rn)

< ε · diam(Rn) · per(Rn) = ε · diam(R)

2n
· per(R)

2n

< ε · per(R)2

4n
.

We used the above mentioned decrease for quarters of both the diameter and
the perimeter to a half, and that the diameter of a rectangle is less than the
perimeter. Thus

1

4n

∣∣∣∣ ∫
∂R

f

∣∣∣∣ ≤ ∣∣∣∣ ∫
∂Rn

f

∣∣∣∣ =

∣∣∣∣ ∫
∂Rn

h

∣∣∣∣ < ε · per(R)2

4n

and |
∫
∂R
f | < ε · per(R)2. This is true for every ε > 0 and

∫
∂R
f = 0. 2

It is a remarkable proof, isn’t it? The author of the theorem is the French
mathematician Augustin-Louis Cauchy (1789–1857) who during his political
emigration lived in 1833 also in Prague. But Cauchy always assumed in his
arguments that f ′ was continuous, and it was another French mathematician
Édouard Goursat (1858–1936) who proved the theorem in 1900 only under
the assumption of existence of f ′, in

5



E. Goursat, Sur la définition générale des fonctions analytiques,
d’après Cauchy, Trans. Amer. Math. Soc. 1 (1900), 14–16.

The functional
∫

. We define for compact sets A ⊂ C— recall that these
sets A are closed and bounded — the sets of holomorphic functions

HA := {f : C \ A→ C | f is holomorphic} and H :=
⋃

A⊂C is compact

HA .

Thus H consists of the functions that are holomorphic on the complement
of a compact set.

Definition (the functional
∫

). We define
∫

, a function on the set H, by∫
: H → C,

∫
f =

∫
∂R

f ,

where f ∈ HA and R is an arbitrary rectangle such that int(R) ⊃ A.

Before we state and in the next last lecture prove various properties of the
functional

∫
, we show that its value is independent of the selection of the

rectangle R and the definition is therefore correct.
For a function f ∈ HA and every two rectangles R and S with A ⊂

int(R) ∩ int(S) we prove that ∫
∂R

f =

∫
∂S

f .

Let first S ⊂ int(R). Extending the sides of S we split R in nine rectangles
R1, . . . , R8, S. The same geometric argument as in the last proof gives the
first of the next two equalities:∫

∂R

f =
8∑

i=1

∫
∂Ri

f +

∫
∂S

f =

∫
∂S

f .

The second one, that always
∫
∂Ri

f = 0, follows from the Cauchy–Goursat
theorem because Ri ⊂ C\A. The general position of R and S reduces to this
case. By Exercise 10 for every two rectangles R and S and every nonempty
compact set A with A ⊂ int(R)∩ int(S) there exists a rectangle T such that

A ⊂ int(T ) and T ⊂ int(R) ∩ int(S) .
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Here the property of rectangles that the intersection of every two of them, if
their interiors intersect, is again a rectangle is useful. For discs or triangles
this does not hold. Thus ∫

∂R

f =

∫
∂T

f =

∫
∂S

f .

Theorem (properties of the functional
∫

). There are four important
properties.

1. Linearity: for every α, β ∈ C and f, g ∈ H,∫
(αf + βg) = α

∫
f + β

∫
g .

But where is αf + βg defined? — Exercise 11.

2. Extension of the C.–G. theorem: if a ∈ C and a function f ∈ H{a} is
bounded on a deleted neighborhood of the point a, then∫

f = 0 .

3. Again ρ: for every a ∈ C, ∫
1

z − a
= ρ

where ρ (= 2πi) is the above constant.

4. Exchange of a limit and
∫

: if f, fn ∈ HA , n = 1, 2, . . . , A ⊂ int(R)
for a rectangle R, and fn ⇒ f on ∂R, then

lim
n→∞

∫
fn =

∫
f .

Exercises

1. Prove that
∫
ab

(αz + β) = α( b
2

2
− a2

2
) + β(b− a).

2. Prove the proposition reducing
∫
u

to (R)
∫ b

a
.
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3. Let (zn) be a convergent sequence of complex numbers. Prove that
im(lim zn) = lim im(zn).

4. Prove that re(ρ) = 0.

5. If a = −1− i and b = 1− i, compute that∫
ab

1

z
=
πi

2
. Hence ρ = 4(πi/2) = 2πi .

6. Prove the proposition on nested closed sets in C.

7. Prove that this proposition holds even if we only assume (instead of
lim diam(An) = 0) that A1 is bounded.

8. But show that this is not true in a general complete metric space.

9. What is the value at z0 of the function ∆(z) in the proof of the C.–G.
theorem?

10. Prove the lemma on the rectangle T in the proof of the correctness of
the definition of

∫
.

11. If f, g ∈ H and α, β ∈ C, where is αf + βg defined?

12.
∫

1/z2 =?
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