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Abstract

One class of Davenport-Schinzel sequences consists of finite se-
quences over n symbols without immediate repetitions and without
any subsequence of the type abab. We present a bijective encoding
of such sequences by rooted plane trees with distinguished nonleaves
and we give a combinatorial proof of the formula

1 2k — 2n k—1
k—nmn+1\ k—n 2n—k—1

for the number of such normalized sequences of length k. The formula
was found by Gardy and Gouyou-Beauchamps by means of generat-
ing functions. We survey previous results concerning counting of DS
sequences and mention several equivalent enumerative problems.

1 Introduction

The set DS(n) of Davenport-Schinzel sequences over n symbols is formed by
finite sequences u = ajas . . . ay satisfying

1. a; € [n] ={1,2,...,n} for all i, each integer j € [n| appears in u.

2. For each pair ¢ < j of [n] the first appearance of i in u precedes that of
7.

3. ai#aiﬂ for aHZ:LQ,,kI—l
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4. a; = a;;, = a # b= a;, = a;, holds for no four indices 1 <i; < ... <
14 < k.

Condition 3 forbids immediate repetitions while condition 4 does not allow
any subsequence of the type ...a...b...a...b... where a and b are two
distinct numbers. Conditions 1 and 2 normalize sequences for purposes of
enumeration.

One can consider mazimal DS(n) sequences, denoted as M DS(n), which
end with 1. For instance,

DS(3) = {123,1231,1232, 12321, 1213, 12131}
and
MDS(3) = {1231,12321,12131}.

The number of M DS(n) sequences of length k is denoted by f,, ; and their
total number by f,. Similarly, b, is the number of DS(n) sequences of
length k£ and b, = |DS(n)|. Clearly, by = f; = 1. The mapping u — ul is a
bijection between DS(n)\M DS(n) and M DS(n), n > 1. We see that

by = 2fn and bog = fur + foki1- (1)

The minimum length of a DS(n) sequence is n and the maximum length is
2n — 1 (see [4]).
Our aim is to give a combinatorial proof of the formula

2k—2n k—1
el ) B

established by Gardy and Gouyou-Beauchamps in [6] by means of generating
functions. Here C,, = (2:> /(n + 1) stands for the n-th Catalan number that
counts, among other structures, the number of rooted plane trees on n + 1
vertices.

The paper is organized as follows. In the next section we list several (clas-
sical) enumerative problems which are equivalent to counting of M DS(n).
In the third section a combinatorial proof of (2) is given. We introduce a
new representation of DS(n) by rooted plane trees on n vertices with dis-
tinguished nonleaves. To count such trees we encode them bijectively by
another tree structure. The bijection is described in the fourth section.
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We recall briefly some basic features of a rooted plane tree T = (V, E),
shortly an rp tree. It is a finite rooted tree with edges directed away from
the root r € V. For an edge (u,v) € E of T we call u the parent of v while
v is a child of u. The order of children of u matters, we think of 7" as drawn
in the plane with r at the lowest and all edges drawn as straight segments
directed up. The number of children of u € V' is denoted by deg(u). A leaf
is a vertex with no child. The number of leaves of T is denoted by I(T).
Principal subtrees of T are the trees which arise by deleting the root of T

To conclude the present section we should say that Davenport-Schinzel
sequences were introduced by Davenport and Schinzel [4] in a more general
context where alternating subsequences ababab . . . of length d were excluded.
The most important results of the theory of Davenport-Schinzel sequences
are upper and lower bounds on their maximum length when d is fixed —
[20], [8], and [2]. Applications include both computational and combinatorial
geometry. From the enumerative point of view cases d > 4 have proven so
far intractable. Surveys can be found in [1], [18], [13], and also in [9].

2 The Schroder family

There is an old Schrdoder family of mutually equivalent enumerative problems
and the sequence of finite sets {M DS(n)},>1 is a relatively new and less
known member of it. As such M DS(n) sequences had been enumerated and
the generating function had been found well before they were defined. Since
this is not articulated in other enumerative papers about DS(n) sequences,
it appears useful here to give a brief description of these problems bearing in
mind DS(n) sequences. Our list of references is by no means exhaustive.

The sequence of numbers { f,,},>1 is the enumerator of the family. There
is no closed formula for f,, but it can be computed by a recurrence relation,
by a generating function, by sums with positive terms or by alternating sums.
We list some of these expressions below.

Special rooted plane maps. The first enumerative paper about DS(n)
sequences is due to Mullin and Stanton [11]. They proved, not mentioning so,
the membership of the problem to the Schréder family. We describe briefly
their bijection between M DS(n) and the set of special rooted plane maps
which we will call fences.



By a plane multigraph we mean a planar multigraph with a specific em-
bedding in the plane. We say it is totally outerplane if all edges lie on the
boundary of the outer face. A cut edge in a connected multigraph G is an
edge whose removal disconnects G. A fence (F,r,e) is a connected totally
outerplane multigraph with no cut edges, with distinguished edge e and ver-
tex r. The vertex r is incident with e and for an observer on r the outer face
lies to the left of e.

Note that in a fence no two vertices are connected by three or more
edges and that any fence arises from a connected totally outerplane graph
by doubling the cut edges.

In F' there is a unique closed Eulerian walk C' which goes around F
clockwise, starts at r, and uses e as its first edge. C' produces an M DS(n)
sequence. We label r as 1 and we write down the labels of vertices in the
order of C. Whenever an unlabeled vertex is encountered, it is given the
least unused label.

Counting M DS(n) or fences on n vertices is therefore equivalent. Mullin
and Stanton proved the formula

1/2n—2
bn,anl = fn,2n71 = Cnfl = ( > (3)

n\n—1

by observing that fences on n vertices with maximum number of edges are
rp trees on n vertices with all edges doubled. They also proved that

m4+1)for1—6n=3)f, +(n—2)fr1 =0 (n>3), (4)
using the generating function

> . 1+x—+1—06z+a?
n=1

They derived, for n > 2, the formula
o n—2
fo= Y 3772 2’“2’“( ol )Ck. (6)
0<k<n/2—1

Equation (5) together with the first ten values of f, appear already in [17].
Interestingly, numbers f,, and equation (4) can also be found (without any
combinatorial interpretation) in [15], p. 168.
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Dissections of a convex polygon. A dissection of a convex polygon P
with labeled vertices is a set of diagonals, no two of them crossing. Dissections
with various restrictions on the face sizes were enumerated by Etherington
[5]. Etherington pointed out that the case when there is no restriction at
all is equivalent to Schroder’s bracketing problem. Similar problems were
investigated by Motzkin [10].

Roselle [16] gave the following bijection that matches dissections of a
convex (n+ 1)-gon and M DS(n) sequences. Let D be a dissection of P with
vertices labeled by 1,2, ..., n+1 clockwise. Start with the sequence 12...nl.
Then insert between j —1 and j in the decreasing order the numbers £ where
k < j and kj is a diagonal of D. Similarly insert between n and 1 the
decreasing list of numbers k joined by a diagonal to n + 1. What you get is
an M DS(n) sequence.

In fact, Roselle described this bijection only for the case of triangulations
and M DS(n) sequences with maximum length. It is well known that tri-
angulations are counted by Catalan numbers and Roselle gave this way an
alternative proof of (3). However, it is easy to see that the bijection works
in general and that it matches the elements of M DS(n) of length k with
dissections of a convex (n+ 1)-gon with £ —n— 1 diagonals. And this implies
already (2) because as early as 1866 Prouhet [14] (see [3], p. 75) counted the
number, r(n, d), of dissections of a convex n-gon by d diagonals:

r(n,d):dj_l<n;3><n+j_1>. (7)

Thus f,r =r(n+ 1,k —n —1), and (7) combined with (1) give (2). Since
this combination leading to a combinatorial proof of (2) went unnoticed, we
take the freedom to present another combinatorial proof.

Bracketings of a product. Schréder [17] discovered the family in 1870 by
solving the following problem. Given a noncomutative product of n terms, in
how many ways can one bracket them so that each bracket contains at least
two factors? The outer bracket is not allowed. The answer is again given by
the numbers f,,.

A nice exposition of (4) and (5) is in Comtet [3] on p. 56 who gives the
expression, n > 2,

hom X G B gy 0

0<k<n/2




Here (2n — 2k — 3)!! denotes the odd factorial 1 - 3 - 5 .-+ (2n — 2k — 3).
Standard Lagrange inversion (see Goulden and Jackson [7], problem 2.7.12)
yields a simpler alternating expression

ho=r ey () (2, )

o v n—1

Other disguises. There is an obvious tree disguise of the problem. It was
noticed already by Etherington that bracketings of n terms can be visualized
by rooted plane trees having n leaves and no vertex with degree 1. Two
other, less obvious, tree disguises are given in the next two sections.

Besides (2) Gardy and Gouyou-Beauchamps in [6] determined the average
length and average number of symbols of a DS(n) sequence and found the
bivariate generating function for b, ;’s. They gave also a bijection between
DS(n) and Schroder words of length 2n — 2. These are words over the
alphabet {z, Z,y} given by the language equation

X=1+yyX +2XzX.

3 Coding and counting

The first step in our combinatorial proof of (2) is an encoding of DS(n) by
the set CT'(n) of pairs 7 = (T, S), where T is an rp tree on n vertices and
S is a subset of nonleaves of T'. We call them circled rooted plane trees,
or shortly crp trees, since we visualize the distinguished nonleaves as being
circled. See Figure 1. The encoding is easier to describe recursively but the
nonrecursive version is easier to perform.

Recursive version. Suppose u = ajas...a; is a DS(n) sequence. If k =
1 then u is encoded by a single uncircled vertex. Otherwise we use the
decomposition u = lujlus...1lu; of u by all appearances of 1. A moment
of thought reveals that the segments u; are nonempty, except possibly for
uy, they do not share symbols, and each wu; satisfies conditions 3 and 4 of
the definition of DS(n). We rename the symbols so that u; complies with
conditions 1 and 2 as well and we encode u; by 7;. The sequence u is encoded
by the crp tree 7 with principal subtrees from left to right 77,75, ..., 7}, the
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Figure 1: Encoding by crp trees

root of 7 is circled iff u; is empty. We leave the inverse decoding to the
reader.

Nonrecursive version. Suppose u = ajas...a; is a DS(n) sequence. A
crp tree (7,S) on n vertices is generated, the algorithm uses three auxiliary
variables: ¢ is the index of the currently processed term of u, v denotes the
currently processed vertex, and C'is either empty or a singleton set containing
a candidate for an element of the set S.

We initialize the variables by setting i := 1,v := p, and S := C = 0,
where p, the root, is an arbitrary point in the plane labeled by a; = 1. In
the general step if ¢ = k£ we are done. If i < k then there is to distinguish
two cases.

1. a;41 has appeared earlier in the sequence. We denote by ¢ the unique
vertex on the path joining the root and v which is labeled by a;;,. We put

i=i+1,vi=¢q, S:=5UC, and C := {v} = {q}.

In the case that now ¢ = k (we did the last step) we add ¢ to S.
2. a;;11 is a new symbol. We join to v, above v and to the right of the



children of v, a new child ¢q and give it the label a;,,. Then we put
i=i+1,v:=¢q,5:=5,and C := 0.

So S consists of vertices which were reached by a jump from above, and
from which we jumped down again or for which the procedure terminated.
In the end we can discard the labels. Even so it is easy to reconstruct u from
the crp tree (7, 5). We describe it now.

If (T,S) is a crp tree then the corresponding DS(n) sequence u =
aias . ..ay arises by climbing up and jumping down around 7' clockwise and
writing down the labels of vertices. On the beginning the vertices are unla-
beled. We start at the root r and give it the label 1. Whenever an unlabeled
vertex is encountered it is given the least unused label. We go up without
jumps to the leftmost leaf z. For the crp tree on Figure 1 we produce 12345.
Then we jump down on the r-z path P in jumps following elements of PN.S
until we reach a vertex v € P that has a child to the right of P. In our ex-
ample we perform the jumps 53 and 32. It is irrelevant now that 2 is circled,
we would end in it anyway. From v we continue in consecutive steps upward
to the second leftmost leaf and so on. For the rightmost leaf w, which is the
last one to be visited, there is no such vertex v and we finish jumping at the
lowest element of QNS where @ is the r-w path. If QNS = () then we finish
at w. In our example we finish at 2 and only now it matters that 2 is circled.

We recall that [(T") is the number of leaves in 7. The following theorem
summarizes the above encoding procedures.

Theorem 3.1 The above encodings give a bijection between the sets DS(n)
and CT(n). It follows that by equals to the number of crp trees (T,S) on
n vertices with 2n — k — 1 wuncircled nonleaves, i. e. crp trees (T,S) with

V()| =nandn—UT)—|S|=2n—k—1.

Proof. Using our recursive version we can easily prove the bijectivity. If
u € DS(n) has length k then it is encoded by a crp tree (T, S) on n vertices
such that &k = n + I[(T) + |S| — 1. So the set of circled nonleaves S has
k—n—1(T)+ 1 elements and the complement S¢ (complement in the set of
nonleaves) has n — (1) — |S| = 2n — k — 1 elements. O

It is easier to count the pairs (7,5¢) than the pairs (7,.5) because the
cardinality |S¢| is independent of the structure of 7. Therefore (formally we
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switch between circled and uncircled nonleaves) it suffices to count crp trees
with a fixed number of vertices and circles. The next step is an encoding
of crp trees by rooted plane trees with dots, shortly drp trees. We need few
definitions.

Consider an rp tree T" with n vertices drawn as a picture in the plane.
Let v be a vertex with d = deg(v) children. The d + 1 edges incident with
v, which are drawn as straight segments, split the neighborhood of v into
d + 1 wedge-shaped areas which we call gaps of v. For the root of T there
is no difference, we imagine an edge joining it to a virtual parent. The set
g(T) of all gaps in T has Yy (deg(v) + 1) = 2n — 1 elements. A drp tree is
a pair (T, D) where T is an rp tree and D is a finite multisubset of ¢(7').
This means that we distinguish, possibly with repetitions, some gaps of T
We visualize a drp tree (T, D) as an rp tree T" with D determined by dots
distributed in the gaps of 7. The number of dots in a gap g is then the
multiplicity of g in D. Look at the picture on Figure 2.

There is a bijection between crp trees with n vertices and m circles and
drp trees with n — m vertices and m dots, the proof is given in the next
section. Since it is easy to count drp trees with a given number of vertices
and dots, we are done.

Theorem 3.2 The number of crp trees with n vertices and m circles is

2n — -2
Cn_m_1.<” mm )

Proof. From Lemma 4.2 of the next section we know that the number of
crp trees with n vertices and m circles is the same as the number of drp
trees with n — m vertices and m dots. But this is equal to the number of
rp trees on n — m vertices times the number of m element multisubsets of a
2n — 2m — 1 element set. a

The proof of (2) is finished, (2) follows immediately from Theorems 3.1
and 3.2 by setting m = 2n — k — 1.

The total number b, of DS(n) sequences can be counted in two ways.
One can sum (2) for all k = n,n+1,...,2n — 1. Changing the summation
range the expression found in [6] follows:

w1l 25\ [(j+n—1
by =S — , 1
o)) o
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The other way is to form groups of crp trees on n vertices with the same
number of leaves. The number, p(n, 1), of rooted plane trees on n vertices
with [ leaves is given by the well known formula (first appearing implicitly

in [12]) 1 1 2
-5 (7050

Note that p(n,l) = p(n,n —1). The number of crp trees with the same
underlying rp tree is 2"~'. Hence

n—1 n—1 l n — n —
b= Y pln )2 =Y 2 <z1>@—f) "

=1 o n—l

Well, how many M DS(n) sequences are there then? From either (4), (6),
(8), (9), (10) or (11), taking (1) into account, we get

{futus1 = {1,1,3,11,45, 197,903, 4279, 20793, 103049, .. .}.

This is the 1163-rd sequence in the phenomenal Sloane’s handbook [19].

4 Contractions and expansions

We show that there is a natural bijection between crp trees with n vertices
and m circles and drp trees with n — m vertices and m dots. As an example
to illustrate our idea we consider first crp and drp trees with one circle and
one dot. Let (T,{v}) be such a crp tree, let e join v to its leftmost child.
We put one dot d in the gap of v lying to the right of e and contract e. The
drp tree obtained is denoted by (77*,{d}). It is easy to see how to recover
(T,{v}) from (T*,{d}). Hence the mapping (T,{v}) — (T*,{d}) is the
desired bijection in the case m = 1.

To generalize this to m > 1 we need to define a more general tree structure
with both circles and dots and we need to define an order to perform the
contractions. First we recall the standard linear order (V, <) on the vertex
set of an rp tree T'. For two distinct vertices u, v € V one considers the paths
P, and P, joining the root to u and v. Two cases arise.

1. One path — say P, — is an initial segment of the other path. Then
U <.
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2. Otherwise there is a branching point and one path — say P, —
branches to the right. Then again u < v.

Suppose (7,5, D) is a triple where (7,5), resp. (T, D), is a crp tree,
resp. a drp tree. We define a partial ordering (SU D, <). If € SU D then
x is either a circled vertex v or a dot in a gap of a vertex v, in both cases
the expression the verter of x refers to v. Let x,y € SU D be two distinct
elements, let u be the vertex of z, and let v be the vertex of .

1. u#v. Weset v <y iff u<w.

2. u=w. If xis a dot in a gap ¢g and y is a dot in a gap h, g and h
belong to the same vertex, we set x < y iff ¢ lies to the right of A. In the two
remaining cases — both x and y are dots in the same gap or one of them is
a dot and the other is a circled vertex — x and y are set to be incomparable.

A circled rooted plane tree with dots, shortly a cdrp tree, is a triple 7 =
(T, S, D) where (T,5), resp. (T, D), is a crp tree, resp. a drp tree, and such
that S < D. In other words, v < d for any v € S and any d € D. In
particular, each gap of a circled vertex is empty. We define two mutually
inverse operations on 7 with an example to illustrate them on Figure 2. The
operations preserve the sum |S| + |D|. Let v be the largest, with respect to
=<, vertex of S and w be its leftmost child. Let d be one of the minimal dots.

Contraction of T contracts the edge e = {v,w}, i.e. e is deleted and v
and w are identified. The new vertex z created by the identification is not
circled. All other circles are preserved. The dots of the leftmost gap of w
appear now in the leftmost gap of z and the dots of the rightmost gap of w
appear now in what was the second leftmost gap of v. Furthermore we add to
the latter one more dot. The distribution of dots in other gaps is preserved.
Resulting cdrp tree is denoted by C(7).

FExpansion of T expands d. Suppose d is located in a gap g of a vertex z.
We delete d and split z into two vertices w and v. The vertex w is slightly
to the left of v and is joined only to those children of z which were to the
left of g. Vertex v is joined to the remaining children and to the parent of
z. Now w is moved upward a bit with all the dots it bears and is joined to v
as its new leftmost child. The dots of g appear now in the rightmost gap of
w. All gaps of v are empty. Vertex v is circled, vertex w is not circled. Dots
in other gaps and other circles are preserved. Resulting cdrp tree is denoted

by E(T).
Lemma 4.1 C(7) and E(T) are cdrp trees again. Also C(E(T)) =
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E(C(T)) =T whenever the operations involved are defined.

Proof. The lemma can be easily proved by an inspection of the above
definitions. The proof is left to an interested reader. a

Let 7 = (T,S) be a crp tree with n vertices and m circles. We assign to
7T a drp tree U = C™(7) which arises by m iterations of the contraction
operation on 7.

Lemma 4.2 The above assignment is a bijection between crp trees with n
vertices and m circles and drp trees with n — m vertices and m dots.

Proof. It follows immediately from the previous lemma that the mappings

T —-U=C"(T)and U — T = E™(U) are inverses of one another. O
C
E
W
z
v

Figure 2: A contraction and an expansion
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