On the Maximum Lengths of Davenport–Schinzel Sequences

Martin Klazar

Abstract

The quantity $N_5(n)$ is the maximum length of a finite sequence over n symbols which has no two identical consecutive elements and no 5-term alternating subsequence. Improving the constant factor in the previous bounds of Hart and Sharir, and of Sharir and Agarwal, we prove that

$$N_5(n) < 2n\alpha(n) + O(n\alpha(n)^{1/2}),$$

where $\alpha(n)$ is the inverse to the Ackermann function. Quantities $N_s(n)$ can be generalized and any finite sequence, not just an alternating one, can be assigned extremal function. We present a sequence with no 5-term alternating subsequence and with an extremal function $\gg n2^{\alpha(n)}$.

1 Introduction

Sequences are finite strings of symbols taken from a fixed infinite alphabet. For u a sequence, |u| and ||u|| denote its length and the number of its distinct symbols. Always $|u| \ge ||u||$, in the case of equality u has no repeated symbol and it is called a *chain*. We say that $u = x_1 x_2 \dots x_l$ is *sparse* if $x_i \ne x_{i+1}$ for each $i = 1, 2, \dots, l-1$. We say that u is *alternating* if $u = ababa \dots$ and $a \ne b$. The maximum length s of an alternating subsequence $x_{i_1} x_{i_2} \dots x_{i_s}, 1 \le i_1 < i_2 < \dots < i_s \le l$, in u is denoted al(u).

Sparse sequences u with bounded al(u) arise naturally in computational and combinatorial geometry. Davenport and Schinzel introduced them in 1965 [3] in connection with a geometric problem from control theory. They were interested in determining the quantities, s is fixed and $n \to \infty$,

$$N_s(n) = \max\{|u|: \ u \text{ is sparse } \& \ al(u) < s \& \|u\| \le n\}.$$
(1)

It is trivial that $N_1(n) = 0$, $N_2(n) = 1$, and $N_3(n) = n$. It is easy to prove [3] that $N_4(n) = 2n-1$. For s > 4 things get complicated. We mention only few important results and suggest as further reading [10], [8], and the article of P. Valtr in this volume.

In 1986 Hart and Sharir [4] found the rough asymptotics of the fifth function:

$$n\alpha(n) \ll N_5(n) \ll n\alpha(n). \tag{2}$$

¹⁹⁹¹ Mathematics subject Classification. Primary 05D99, 11B83.

Supported by AvH Stiftung fellowship and by grants GAČR 0194/1996 and GAUK 194/1996.

We remind that $f(n) \ll g(n)$ is an abbreviation for f(n) < cg(n) where $n > n_0$ and c > 0 is a constant. The function $\alpha(n)$, the inverse to the Ackermann function, is integral, nondecreasing, and unbounded. Its growth to infinity is enormously slow. Agarwal, Sharir and Shor [2] gave later a similar bound to the sixth function:

$$n2^{\alpha(n)} \ll N_6(n) \ll n2^{\alpha(n)}.$$
 (3)

They proved [2] strong (but not tight in the \ll sense) upper and lower bounds to any $N_s(n), s > 6$.

In this paper we are concerned in the constant in the upper bound in (2). In Section 2 we prove the following estimate.

Theorem 1.1

$$N_5(n) < 2n\alpha(n) + O(n\alpha(n)^{1/2}).$$
(4)

Our constant 2 improves the constants 52 in [4], 68 in [10], and 4 in [7] (unpublished). The proof is selfcontained and all details are given. Those who are curious about the constant in the lower bound go to (17). In Section 3 we comment on the proof and pose a problem. Then we formulate a conjecture about growth rates of a generalization of $N_s(n)$ and support it by a consequence of the lower bound construction in (3).

2 The upper bound for $N_5(n)$

The proof of (4) follows. We use the techniques developed by Hart and Sharir [4], and by Sharir and Agarwal [10]. After the proof we will comment on lemmas and on our improvements.

We begin with the standard definition of $\alpha(n)$ and of related functions. All the functions $F_k(n)$ and $\alpha_k(n)$, $k = 1, 2, ..., \omega$, are mappings from $\{1, 2, ...\}$ to itself. First $F_1(n) = 2n$. For k > 1

$$F_k(n) = F_{k-1}(F_{k-1}(\dots,F_{k-1}(1)\dots)) \quad (n \text{ applications of } F_{k-1}).$$
(5)

For example,

$$F_2(n) = 2^n \text{ and } F_3(n) = 2^{2^{n^2}} \} n.$$

For every $k, n \geq 1$ we have $F_k(n) \leq F_{k+1}(n)$ and $F_k(n) < F_k(n+1)$. The Ackermann function $F_{\omega}(n)$ is defined diagonally as $F_{\omega}(n) = F_n(n)$. The inverse functions are, $k = 1, 2, ..., \omega$,

$$\alpha_k(n) = \min\{m : F_k(m) \ge n\}.$$
(6)

Clearly, $\alpha_k(n) \geq \alpha_{k+1}(n)$ and $\alpha_k(n) \leq \alpha_k(n+1)$. The subscript of $\alpha_{\omega}(n)$ is usually omitted, $\alpha(n) = \alpha_{\omega}(n)$. For example,

$$\alpha_1(n) = \lceil n/2 \rceil$$
 and $\alpha_2(n) = \lceil \log_2 n \rceil$ (for $n > 1$; $\alpha_2(1) = 1$).

Lemma 2.1 For every $n \ge 3$ and $k \ge 2$ we have

$$\alpha_k(\alpha_{k-1}(n)) = \alpha_k(n) - 1. \tag{7}$$

Proof. It is easy to check, using (6) and (5), that if $F_k(m) < n \le F_k(m+1)$ then both sides of (7) are equal to m.

Lemma 2.2 For every $n \ge 1$ it holds

$$\alpha_{\alpha(n)+1}(n) \le 4. \tag{8}$$

Proof. First we show that for $k \ge 1$ and $n \ge 3$ it holds $F_{k+1}(n) \ge F_k(n+1)$. Indeed, $F_{k+1}(n) = F_k(F_{k+1}(n-1)) \ge F_k(F_2(n-1)) = F_k(2^{n-1}) \ge F_k(n+1)$. Applying repeatedly this inequality we obtain $F_{k+1}(3) \ge F_k(4) \ge \cdots \ge F_1(k+3) > k$. Thus,

$$F_{k+1}(4) = F_k(F_{k+1}(3)) > F_k(k).$$

Setting $k = \alpha(n)$ we obtain (8):

$$F_{\alpha(n)+1}(4) > F_{\alpha(n)}(\alpha(n)) = F_{\omega}(\alpha(n)) \ge n.$$

We introduce an important function $\psi(m, n)$. First few more definitions. The set of all symbols appearing in a sequence u is S(u). If $u = x_1 x_2 \dots x_l$ and x_i is such that $x_j \neq x_i$ for all $j < i, x_i$ is said to be the first appearance (of the symbol x_i) in u. Last appearances are defined analogously. The subsequences of first and last appearances in u are denoted F(u) and L(u), respectively. Thus, |F(u)| = |L(u)| = ||u|| = |S(u)|. The normal order $(S(u), \prec)$ is the linear ordering of S(u) by the natural order of F(u), i.e. $x \prec y$ iff the first appearance of x in u precedes that of y.

Recall that a chain is a sequence with no repeated symbol. We say, for a positive integer m, that a sequence u *m*-decomposes if one can split u into m possibly empty chains $u = u_1 u_2 \ldots u_m$ such that each $u_i \setminus F(u)$ is decreasing (going from left to right) with respect to the normal order $(S(u), \prec)$. The function $\psi(m, n)$ is defined as

 $\psi(m, n) = \max\{|u|: u \text{ m-decomposes \& al}(u) < 5 \& ||u|| \le n\}.$

We set $\psi(0,n) = \psi(m,0) = 0$. Note that $\psi(m,n)$ is nondecreasing in both variables.

Lemma 2.3 Let $m, n, m_1, m_2, \ldots, m_j$ be positive integers, $j \ge 2$, such that $m = m_1 + m_2 + \cdots + m_j$. Then there exist nonnegative integers n_0, n_1, \ldots, n_j such that $n = n_0 + n_1 + \cdots + n_j$ and

$$\psi(m,n) \le \sum_{i=1}^{j} \psi(m_i,n_i) + 2m + 2n_0 + \psi(j-1,n_0).$$
(9)

Proof. Suppose u is a sequence that m-decomposes, uses at most n symbols (in fact, it must be ||u|| = n), has no 5-term alternating subsequence, and has the maximum length $|u| = \psi(m, n)$. Let $u = u_1 u_2 \dots u_m$ be its m-decomposition. For given j positive integers m_1, \dots, m_j that sum up to m the first m_1 chains are concatenated to form the sequence v_1 , the next m_2 chains are concatenated

to form the sequence v_2 and so on. We obtain the splitting of u in j sequences $u = v_1 v_2 \dots v_j$. Each v_i is partitioned into four subsequences (not necessarily contiguous blocks of v_i)

$$v_i = r_i \cup s_i \cup t_i \cup w_i$$

as follows. Subsequence r_i consists of all appearances of the symbols $x \in S(u)$ that appear only in v_i . We put $n_i = ||r_i||$. Subsequence s_i consists of the appearances of the symbols that appear in v_i and before v_i but not after v_i . The remaining terms of v_i , i.e. the appearances of symbols appearing in v_i and after v_i and possibly before v_i , form the subsequence z_i . Then $t_i = z_i \setminus L(z_i)$ and $w_i = L(z_i)$. Let $n_0 = ||u \setminus r_1 r_2 \dots r_j||$.

Obviously, $n_0 + n_1 + \cdots + n_j = n$. We estimate the contribution of each of the four subsequence types to the length of u. The intersections of r_i with the m_i chains forming v_i produce the m_i -decomposition of r_i , whence $|r_i| \leq \psi(m_i, n_i)$. Altogether,

$$|r_1 r_2 \dots r_j| \le \sum_{i=1}^j \psi(m_i, n_i).$$
 (10)

To estimate the contribution of s_i 's we observe first that $|(s_i \setminus F(s_i)) \cap u_k| \leq 1$ for each *i* and each chain u_k . Suppose to the contrary that $a \prec b$ are two symbols which appear in some $(s_i \setminus F(s_i)) \cap u_k$. Since *a* and *b* appear also before v_i and $a \prec b$, there is an *ab* subsequence before v_i . The first *a* in s_i appears before u_k . By the definition of *m*-decomposition, in $s_i \cap u_k$ we have a subsequence *ba*. We have a contradiction — the forbidden subsequence *ababa*. Thus, $|(s_i \setminus F(s_i)) \cap u_k| \leq 1$ and $|s_i \setminus F(s_i)| \leq m_i$. It follows from the definition of s_i that $S(s_i) \cap S(s_k) = \emptyset$ for $i \neq k$. Thus, $|F(s_1)F(s_2) \dots F(s_j)| \leq n_0$. Together

$$|s_1 s_2 \dots s_j| \le m + n_0. \tag{11}$$

As to t_i 's, $|(t_i \setminus F(u)) \cap u_k| \leq 1$ for each i and each chain u_k . Suppose to the contrary that two symbols $a \neq b$ appear in $(t_i \setminus F(u)) \cap u_k$ in the order, say, ba. There is an a before u_k , namely the first a in u. By the definition of t_i , there is also a b in t_i after u_k (namely, the last b in t_i) and an a after v_i . These appearances form the forbidden subsequence ababa. Again, $|(t_i \setminus F(u)) \cap u_k| \leq 1$ and $|t_i \setminus F(u)| \leq m_i$. Since $|F(u) \cap t_1 t_2 \dots t_j| \leq n_0$, we have again

$$|t_1 t_2 \dots t_j| \le m + n_0. \tag{12}$$

To estimate the last contribution we show that

$$w = w_1 w_2 \dots w_j = w_1 w_2 \dots w_{j-1}$$

is a (j-1)-decomposition of w. Clearly, $z_j = w_j = \emptyset$. Each w_i is a chain and we need to show only that $w_i \setminus F(w)$ decreases in the normal order $(S(w), \prec)$. Suppose not, then two distinct symbols a and b appear before some w_i in this order ab and in w_i also in the same order. By the definition of w_i , a appears (in u) also after v_i and we obtain again ababa. Hence, we have a (j-1)-decomposition and can estimate |w| by ψ :

$$|w_1 w_2 \dots w_j| \le \psi(j - 1, n_0). \tag{13}$$

Summing up (10), (11), (12), and (13), we obtain (9). \Box

Lemma 2.4 For integers $k \ge 2$ and $m, n \ge 1$,

$$\psi(m,n) \le 2k(\alpha_k(m)m+n). \tag{14}$$

Proof. We proceed by induction on k and for k fixed we use induction on m. The latter is started easily because by the trivial inequality $\psi(m, n) \leq mn$ (14) is certainly true for $m \leq 2k$. The induction on k starts with k = 2. We need to prove that

$$\psi(m,n) \le 4m \lceil \log_2 m \rceil + 4n. \tag{15}$$

Let $m \ge 2$ and let $m = m_1 + m_2$ where $m_1 = \lceil m/2 \rceil$ and $m_2 = \lfloor m/2 \rfloor$. By (9), there are n_0, n_1 , and n_2 such that $n = n_0 + n_1 + n_2$ and

$$\psi(m,n) \leq \psi(m_1,n_1) + \psi(m_2,n_2) + 2m + 2n_0 + \psi(1,n_0)$$

= $\psi(m_1,n_1) + \psi(m_2,n_2) + 2m + 3n_0.$

We estimate $\psi(m_i, n_i)$ by the inductive assumption for m,

$$\psi(m,n) \le 4m_1 \lceil \log_2 m_1 \rceil + 4m_2 \lceil \log_2 m_2 \rceil + 4n_1 + 4n_2 + 2m + 3n_0.$$

Since $4n_1 + 4n_2 + 3n_0 \le 4n$, it suffices to show

$$m_1 \lceil \log_2 m_1 \rceil + m_2 \lceil \log_2 m_2 \rceil \le m(\lceil \log_2 m \rceil - 1).$$

The last inequality is immediate to check, thus (15) holds.

For k > 2 and $m \ge 3$ we apply (9) with the partition $m = m_1 + m_2 + \cdots + m_j$, where $j = \lfloor m/\alpha_{k-1}(m) \rfloor > 1$, $m_1 = \cdots = m_{j-1} = \alpha_{k-1}(m)$, and $1 \le m_j \le \alpha_{k-1}(m)$. By (9), there are $n_i, i = 0, 1, \ldots, j$, that sum up to n and

$$\psi(m,n) \le \sum_{i=1}^{j} \psi(m_i,n_i) + 2(m+n_0) + \psi(j-1,n_0).$$

Each $\psi(m_i, n_i)$ is estimated by (14) (induction on m) for the current k, $\psi(j-1, n_0)$ is estimated by (14) for k-1. By the definition of j,

$$(j-1)\alpha_{k-1}(j-1) \le (j-1)\alpha_{k-1}(m) \le m.$$

By (7),

$$\alpha_k(m_i) \le \alpha_k(\alpha_{k-1}(m)) = \alpha_k(m) - 1.$$

Thus,

$$\psi(m,n) \leq \sum_{i=1}^{j} 2k(m_i\alpha_k(m_i)+n_i) + 2(m+n_0) +2(k-1)((j-1)\alpha_{k-1}(j-1)+n_0) \leq 2km(\alpha_k(m)-1) + 2k(n-n_0) +2(m+n_0) + 2(k-1)(m+n_0) = 2k(m\alpha_k(m)+n).$$

Lemma 2.5 For all positive integers $l \ge 2$ and n,

$$N_5(n) \le \psi(\lceil 2n/l \rceil, n) + 2l(l-1)\lceil 2n/l \rceil.$$
(16)

Proof. Let u be a sparse sequence with al(u) < 5, $|u| = N_5(n)$, and $||u|| \le n$ (thus, ||u|| = n). Bad elements are the elements in $F(u) \cup L(u)$. Repetition $I(a), a \in S(u)$, is any subinterval in u that begins and ends with a and has no a inside. Note that the interior of each I(a) is nonempty because u is sparse.

Consider the splitting $u = u_1 u_2 \dots u_j$ in which each u_i starts with a bad element and contains, for $1 \leq i \leq j-1$, exactly l bad elements. The last block u_j may contain fewer bad elements. Hence, $j \leq \lfloor 2n/l \rfloor$. We claim that there are at most (2l-1)(l-1) repetitions in each u_i .

Suppose, for the contrary, that u_i contains (2l-1)(l-1)+1 repetitions. There cannot be l repetitions with mutually disjoint interiors, otherwise we would have a repetition I(a) in u_i having inside no bad element. But this forces the forbidden subsequence babab. Hence, for each symbol a there are at most l-1 repetitions I(a) of a in u_i . It follows that in u_i there are l repetitions $I(a_1), I(a_2), \ldots, I(a_l)$ where a_1, a_2, \ldots, a_l are l distinct symbols that are in addition distinct to those at most l symbols appearing in u_i as bad elements. Two of these repetitions, say $I(a_1)$ and $I(a_2)$, must intersect. Say a_1 appears inside $I(a_2)$. This again forces the forbidden subsequence $a_1a_2a_1a_2a_1$ because a_1 appears before and after u_i . Again a contradiction.

Therefore, $|u_i| - ||u_i|| \le (2l-1)(l-1)$. Deleting all terms from u_i except $F(u_i)$ we delete at most (2l-1)(l-1) elements and turn u_i into a chain. We obtain the splitting into j chains

$$v = F(u_1)F(u_2)\dots F(u_j),$$

where $|v| \ge |u| - (2l - 1)(l - 1)j$.

Finally, we delete L(v). We have the splitting into j chains

$$w = w_1 w_2 \dots w_j,$$

where $w_i = F(u_i) \setminus L(v)$ and $|w| \ge |u| - (2l - 1)(l - 1)j - n$. We show it is a *j*-decomposition of w. If not then $a \prec b$ are two elements from $(S(w), \prec)$ that appear in some $w_i \setminus F(w)$ in the order ab. We have ab before w_i (the elements in F(w)), ab in w_i and an a after w_i (the element in L(v)). Thus u contains ababa, a contradiction. The splitting of w is a *j*-decomposition and (16) follows:

$$|u| \le |w| + (2l-1)(l-1)j + n \le \psi(\lceil 2n/l \rceil, n) + 2l(l-1)\lceil 2n/l \rceil.$$

From (14), setting $k = \alpha(m) + 1$, we obtain, using (8),

$$\psi(m,n) \le 8m\alpha(m) + 8m + 2n\alpha(m) + 2n.$$

Using this bound in (16) with $l = \lfloor \alpha(n)^{1/2} \rfloor$ we obtain

$$\begin{aligned} \mathbf{V}_{5}(n) &\leq \psi(\lfloor 2n/l \rfloor, n) + 2l(l-1)\lfloor 2n/l \rfloor \\ &\leq 8\alpha(\lfloor 2n/l \rfloor)\lfloor 2n/l \rfloor + 2\alpha(\lfloor 2n/l \rfloor)n \\ &\quad +8\lfloor 2n/l \rfloor + 2n + 2l(l-1)\lfloor 2n/l \rfloor \\ &\leq 2n\alpha(n) + O(n\alpha(n)^{1/2}). \end{aligned}$$

This finishes the proof of (4).

3 Concluding comments and remarks

Lemma 2.1 is standard. Lemma 2.2 was proved in Appendix 1 in [2], see also [10]. Function $\psi(m, n)$ and Lemma 2.3 form the heart of the proof. The coefficient at n_0 in (9) is the crucial one because it produces the same constant factor in (4). The coefficient at m is irrelevant. Our $\psi(m, n)$ is a combination of the versions in [4] and [10]. From [4] we took the idea of ordered chains. Our proof of Lemma 2.3 is inspired by the ingenious proof in [4]. However, the normal order $(S(u), \prec)$ is not essential and one can obtain 2 at n_0 working only with unordered chains in the spirit of [10] (in [10] there is 4 at n_0). For unordered chains one can use in the proof of Lemma 2.3 the partition of v_i

$$v_i = \overline{r_i} \cup \overline{s_i} \cup \overline{t_i} \cup \overline{w_i}$$

where

 $\overline{r_i} = r_i, \ \overline{s_i} = s_i \setminus F(s_i), \ \overline{t_i} = t_i, \ \text{and} \ \overline{w_i} = w_i \cup F(s_i).$

A little technical complication for the proof of Lemma 2.4 is that then j - 1 in (9) increases to j. We leave it as an exercise for the interested reader to fill in the details. Lemma 2.4 is similar to the corresponding lemmas in [4] and [10]. The main improvement is Lemma 2.5 ([7]); [4] and [10] use the instance with l = 1.

As to the constant factor in the lower bound in (2), in 1988 Wiernik and Sharir [11] proved that

$$N_5(n) \ge \frac{1}{2}n\alpha(n) - 2n. \tag{17}$$

See also pp. 21–29 in [10]. Estimates (4) and (17) suggest the following problem.

Problem 3.1 Does the limit

$$\lim_{n \to \infty} \frac{N_5(n)}{n\alpha(n)}$$

exist?

If it exists then it lies in the interval [1/2, 2]. An easier problem might be to narrow this interval.

In [1] the following generalization of $N_s(n)$ was proposed. Two sequences $v = a_1 a_2 \ldots a_k$ and $w = b_1 b_2 \ldots b_k$ of the same length are *equivalent* if, for each i and j, $a_i = a_j$ iff $b_i = b_j$. A sequence v is *contained* in other sequence u if u has a subsequence equivalent to v. We denote this relation as $v \prec u$. Alternating sequence $abab \ldots$ of length s is denoted al_s . Note that al(u) < s expresses in the new notation as $al_s \not\prec u$. We say that u is k-sparse if each interval in u of length $\leq k$ is a chain. We have extended [1] the definition (1) to any sequence v:

$$Ex(v, n) = \max\{|u|: u \text{ is } ||v|| \text{-sparse } \& v \not\prec u \& ||u|| \le n\}.$$

Note that $N_s(n) = \text{Ex}(al_s, n)$.

The next two bounds are the basic facts about the growth rates of Ex(v, n).

$$\forall c \exists s \ N_s(n) = \operatorname{Ex}(\operatorname{al}_s, n) \gg n 2^{\alpha(n)^c} \quad \text{and} \tag{18}$$

$$\forall v \exists c \operatorname{Ex}(v, n) \ll n 2^{\alpha(n)^c}.$$
(19)

(18) was proved in [2] and (19) in [5] (both results are actually stronger). Since $u \prec v$ implies easily $\operatorname{Ex}(u, n) \ll \operatorname{Ex}(v, n)$ (see [1]; this is *not* true with \leq in place of \ll), it follows from (18) that the containment $\operatorname{al}_s \prec v$ for big s makes $\operatorname{Ex}(v, n)$ grow "fast". Perhaps $\operatorname{Ex}(v, n)$ can grow "fast" even if $v \not\succeq \operatorname{al}_5 = ababa$.

Problem 3.2 We conjecture that

$$\forall c \; \exists v \; ababa \not\prec v \; \& \; \operatorname{Ex}(v, n) \gg n 2^{\alpha(n)^c}.$$

In [9] (for details see [6]) a sequence v was presented, namely v = abcbadadbcd, with $ababa \not\prec v$ and $\operatorname{Ex}(v, n) \gg n\alpha(n)$. To support the conjecture even more we show now that (20) is true for c = 1.

We make use of the construction of Agarwal, Sharir and Shor [2] proving the lower bound in (3). We describe it as on pp. 53–54 in [10]. A fan, more precisely an m-fan, is any sequence of length 2m - 1 equivalent to the sequence 1 2 ... $(m - 1) m (m - 1) \dots 2 1$. We define by double induction a two-dimensional array $(S(k,m))_{k,m=1}^{\infty}$ of sequences. S(k,m) is sparse and is a concatenation of several m-fans (their number will be uniquely determined by induction). One symbol will appear typically in more fans of S(k,m).

S(1,m) consists of just one *m*-fan. S(k,1), k > 1, equals to $S(k-1,2^{k-1})$, where each 2^{k-1} -fan is regarded in S(k,1) as $2^k - 1$ 1-fans. The sequence S(k,m)for k, m > 1 is obtained from T = S(k, m - 1) and U = S(k - 1, M), where M is the number of (m-1)-fans in T. Suppose U has p M-fans. Create 2p copies of T(with disjoint sets of symbols which are also disjoint to the set of symbols of U) T_1, \ldots, T_{2p} and merge them with U as follows. First double the middle element in each fan in each T_i and in each fan of U. Then separate the twins in the middle of the k-th expanded (m-1)-fan of T_{2i-1} by the k-th element of the first half of the *i*-th expanded M-fan of U (this way an *m*-fan is obtained). The k-th element (counted from the left) of the second half does the same job in T_{2i} . Denote the modified copies as T_i^m . Set $S(k,m) = T_1^m T_2^m \ldots T_{2p}^m$.

It can be shown (in Lemma 3.1 we prove a more general statement) that $a_6 \not\prec S(k,m)$ for all k and m. One can construct — for details see pp. 52–56 in [10] — an infinite sequence of sequences

$$(u_1, u_2, \ldots) \tag{21}$$

with the following properties. Each u_i equals to some S(k,m) (thus u_i is sparse and $al_6 \not\prec u_i$), $||u_i|| = n_i < n_{i+1} = ||u_{i+1}||$, and $|u_i| \gg n_i 2^{\alpha(n_i)}$.

For a sequence u an oriented graph D(u) = (V, E) is defined by V = S(u) (the symbols of u) and $a \to b$ iff abba is a subsequence of u. For example, $D(al_6)$ is $a \leftrightarrow b$. We remind that an oriented graph is *strongly connected* if each two distinct vertices x_1 and x_2 can be joined by a directed path going from x_1 to x_2 .

Lemma 3.1 Suppose u is a sparse sequence, ||u|| > 1, and D(u) is strongly connected. Then $u \not\prec S(k,m)$ for all k and m.

Proof. By double induction on k and m. Obviously, $u \not\prec S(1, m)$. By induction, $u \not\prec S(k, 1) = S(k - 1, 2^{k-1})$. It remains to show that $u \not\prec S(k, m)$ provided $u \not\prec T = S(k, m - 1)$ and $u \not\prec U = S(k - 1, M)$. Suppose v is a subsequence of S(k, m) equivalent to u. It follows easily from the construction that if $x \in S(v)$ comes from a copy of T (with expanded fans) and $x \to y$ in D(v) = D(u), then y must come from the same copy of T. Because D(v) is strongly connected, the whole v comes from a copy of T with expanded fans or from U with expanded fans. Because u is sparse, u is contained already in T or in U. \Box

Lemma 3.2 For u from the previous lemma

 $\operatorname{Ex}(u,n) \gg n2^{\alpha(n)}.$

Proof. Consider the sequences (21). We have $|u_i| \gg n_i 2^{\alpha(n_i)}$ and, by the previous lemma, $u \not\prec u_i$. There are two small troubles. The first is that u_i is sparse but may not be ||u||-sparse. Taking from u_i an appropriate subsequence we can keep a constant fraction of length and achieve ||u||-simplicity (we use that $al_6 \not\prec u_i$). We leave this to the reader as an exercise; see [1] for this technique. Second, we need the lower bound $|u_i| \gg n_i 2^{\alpha(n_i)}$ for all n and not only for infinitely many. This is achieved by the same interpolation as in [10].

Now consider the sequence

$$u^* = abcbadadbecfcfedef,$$

 $S(u^*) = \{a, b, c, d, e, f\}$. It does not contain *ababa* but at the same time it satisfies the hypothesis of Lemma 3.1 since it is sparse and $D(u^*)$ contains the oriented Hamiltonian cycle *abdfec*. Thus, by Lemma 3.2, u^* witnesses (20) for c = 1.

One cannot strengthen the conjecture (20) by replacing *ababa* with *abab*. It follows from the results in [9] that

$$abab \not\prec v \Rightarrow \operatorname{Ex}(v, n) \ll n.$$

References

- R. Adamec, M. Klazar and P. Valtr, Generalized Davenport-Schinzel sequences with linear upper bound, Discrete Math. 108 (1992), 219–229.
- [2] P.K. Agarwal, M. Sharir and P. Shor, Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences, J. Combinatorial Theory Ser. A 52 (1989), 228–274.
- [3] H. Davenport and A. Schinzel, A combinatorial problem connected with differential equations, Amer. J. Math. 87 (1965), 684–694.
- [4] S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986), 151–177.

- [5] M. Klazar, A general upper bound in Extremal theory of sequences, Comment. Math. Univ. Carolin. 33 (1992), 737–746.
- [6] M. Klazar, Two results on a partial ordering of finite sequences, Comment. Math. Univ. Carolin. 34 (1993), 697–705.
- [7] M. Klazar, Combinatorial aspects of Davenport-Schinzel sequences, Doctoral thesis, Charles University, Prague, 1995.
- [8] M. Klazar, Combinatorial aspects of Davenport-Schinzel sequences, Discrete Math. 165/166 (1997), 431–445.
- [9] M. Klazar and P. Valtr, Generalized Davenport-Schinzel sequences, Combinatorica 14 (1994), 463–476.
- [10] M. Sharir and P.K. Agarwal, Davenport-Schinzel sequences and their geometric applications, Cambridge University Press, Cambridge, 1995.
- [11] A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzel sequences by segments, Discrete Comput. Geom. 3 (1988), 15–47.

Forschungsinstitut für Diskrete Mathematik, Lennéstr. 2, 53113 Bonn, Germany

Current address : DEPARTMENT OF APPLIED MATHEMATICS, MALOSTRANSKÉ NÁM. 25, 118 00 PRAHA, CZECH REPUBLIC

Email address: klazar@kam.ms.mff.cuni.cz