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Abstract

The quantity N5(n) is the maximum length of a finite sequence over n
symbols which has no two identical consecutive elements and no 5-term alter-
nating subsequence. Improving the constant factor in the previous bounds
of Hart and Sharir, and of Sharir and Agarwal, we prove that

N5(n) < 2nα(n) + O(nα(n)1/2),

where α(n) is the inverse to the Ackermann function. Quantities Ns(n)
can be generalized and any finite sequence, not just an alternating one,
can be assigned extremal function. We present a sequence with no 5-term
alternating subsequence and with an extremal function � n2α(n).

1 Introduction

Sequences are finite strings of symbols taken from a fixed infinite alphabet. For u
a sequence, |u| and ‖u‖ denote its length and the number of its distinct symbols.
Always |u| ≥ ‖u‖, in the case of equality u has no repeated symbol and it is called a
chain. We say that u = x1x2 . . . xl is sparse if xi 6= xi+1 for each i = 1, 2, . . . , l−1.
We say that u is alternating if u = ababa . . . and a 6= b. The maximum length
s of an alternating subsequence xi1xi2 . . . xis

, 1 ≤ i1 < i2 < · · · < is ≤ l, in u is
denoted al(u).

Sparse sequences u with bounded al(u) arise naturally in computational and
combinatorial geometry. Davenport and Schinzel introduced them in 1965 [3] in
connection with a geometric problem from control theory. They were interested
in determining the quantities, s is fixed and n→∞,

Ns(n) = max{|u| : u is sparse & al(u) < s & ‖u‖ ≤ n}. (1)

It is trivial that N1(n) = 0, N2(n) = 1, and N3(n) = n. It is easy to prove [3] that
N4(n) = 2n−1. For s > 4 things get complicated. We mention only few important
results and suggest as further reading [10], [8], and the article of P. Valtr in this
volume.

In 1986 Hart and Sharir [4] found the rough asymptotics of the fifth function:

nα(n) � N5(n) � nα(n). (2)
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We remind that f(n) � g(n) is an abbreviation for f(n) < cg(n) where n > n0

and c > 0 is a constant. The function α(n), the inverse to the Ackermann function,
is integral, nondecreasing, and unbounded. Its growth to infinity is enormously
slow. Agarwal, Sharir and Shor [2] gave later a similar bound to the sixth function:

n2α(n) � N6(n) � n2α(n). (3)

They proved [2] strong (but not tight in the � sense) upper and lower bounds to
any Ns(n), s > 6.

In this paper we are concerned in the constant in the upper bound in (2). In
Section 2 we prove the following estimate.

Theorem 1.1
N5(n) < 2nα(n) +O(nα(n)1/2). (4)

Our constant 2 improves the constants 52 in [4], 68 in [10], and 4 in [7] (unpub-
lished). The proof is selfcontained and all details are given. Those who are curious
about the constant in the lower bound go to (17). In Section 3 we comment on
the proof and pose a problem. Then we formulate a conjecture about growth rates
of a generalization of Ns(n) and support it by a consequence of the lower bound
construction in (3).

2 The upper bound for N5(n)

The proof of (4) follows. We use the techniques developed by Hart and Sharir [4],
and by Sharir and Agarwal [10]. After the proof we will comment on lemmas and
on our improvements.

We begin with the standard definition of α(n) and of related functions. All the
functions Fk(n) and αk(n), k = 1, 2, . . . , ω, are mappings from {1, 2, . . .} to itself.
First F1(n) = 2n. For k > 1

Fk(n) = Fk−1(Fk−1(. . . Fk−1(1) . . .)) (n applications of Fk−1). (5)

For example,

F2(n) = 2n and F3(n) = 22··
·2

}
n.

For every k, n ≥ 1 we have Fk(n) ≤ Fk+1(n) and Fk(n) < Fk(n + 1). The
Ackermann function Fω(n) is defined diagonally as Fω(n) = Fn(n). The inverse
functions are, k = 1, 2, . . . , ω,

αk(n) = min{m : Fk(m) ≥ n}. (6)

Clearly, αk(n) ≥ αk+1(n) and αk(n) ≤ αk(n + 1). The subscript of αω(n) is
usually omitted, α(n) = αω(n). For example,

α1(n) = dn/2e and α2(n) = dlog2 ne (for n > 1; α2(1) = 1).

Lemma 2.1 For every n ≥ 3 and k ≥ 2 we have

αk(αk−1(n)) = αk(n)− 1. (7)
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Proof. It is easy to check, using (6) and (5), that if Fk(m) < n ≤ Fk(m + 1)
then both sides of (7) are equal to m. 2

Lemma 2.2 For every n ≥ 1 it holds

αα(n)+1(n) ≤ 4. (8)

Proof. First we show that for k ≥ 1 and n ≥ 3 it holds Fk+1(n) ≥ Fk(n + 1).
Indeed, Fk+1(n) = Fk(Fk+1(n − 1)) ≥ Fk(F2(n − 1)) = Fk(2n−1) ≥ Fk(n + 1).
Applying repeatedly this inequality we obtain Fk+1(3) ≥ Fk(4) ≥ · · · ≥ F1(k+3) >
k. Thus,

Fk+1(4) = Fk(Fk+1(3)) > Fk(k).

Setting k = α(n) we obtain (8):

Fα(n)+1(4) > Fα(n)(α(n)) = Fω(α(n)) ≥ n.

2

We introduce an important function ψ(m,n). First few more definitions. The
set of all symbols appearing in a sequence u is S(u). If u = x1x2 . . . xl and xi

is such that xj 6= xi for all j < i, xi is said to be the first appearance (of the
symbol xi) in u. Last appearances are defined analogously. The subsequences of
first and last appearances in u are denoted F (u) and L(u), respectively. Thus,
|F (u)| = |L(u)| = ‖u‖ = |S(u)|. The normal order (S(u),≺) is the linear ordering
of S(u) by the natural order of F (u), i.e. x ≺ y iff the first appearance of x in u
precedes that of y.

Recall that a chain is a sequence with no repeated symbol. We say, for a positive
integerm, that a sequence u m-decomposes if one can split u intom possibly empty
chains u = u1u2 . . . um such that each ui\F (u) is decreasing (going from left to
right) with respect to the normal order (S(u),≺). The function ψ(m,n) is defined
as

ψ(m,n) = max{|u| : u m-decomposes & al(u) < 5 & ‖u‖ ≤ n}.

We set ψ(0, n) = ψ(m, 0) = 0. Note that ψ(m,n) is nondecreasing in both vari-
ables.

Lemma 2.3 Let m,n,m1,m2, . . . ,mj be positive integers, j ≥ 2, such that m =
m1 +m2 + · · ·+mj. Then there exist nonnegative integers n0, n1, . . . , nj such that
n = n0 + n1 + · · ·+ nj and

ψ(m,n) ≤
j∑

i=1

ψ(mi, ni) + 2m+ 2n0 + ψ(j − 1, n0). (9)

Proof. Suppose u is a sequence that m-decomposes, uses at most n symbols
(in fact, it must be ‖u‖ = n), has no 5-term alternating subsequence, and has
the maximum length |u| = ψ(m,n). Let u = u1u2 . . . um be its m-decomposition.
For given j positive integers m1, . . . ,mj that sum up to m the first m1 chains
are concatenated to form the sequence v1, the next m2 chains are concatenated



4 MARTIN KLAZAR

to form the sequence v2 and so on. We obtain the splitting of u in j sequences
u = v1v2 . . . vj . Each vi is partitioned into four subsequences (not necessarily
contiguous blocks of vi)

vi = ri ∪ si ∪ ti ∪ wi

as follows. Subsequence ri consists of all appearances of the symbols x ∈ S(u) that
appear only in vi. We put ni = ‖ri‖. Subsequence si consists of the appearances
of the symbols that appear in vi and before vi but not after vi. The remaining
terms of vi, i.e. the appearances of symbols appearing in vi and after vi and
possibly before vi, form the subsequence zi. Then ti = zi\L(zi) and wi = L(zi).
Let n0 = ‖u\r1r2 . . . rj‖.

Obviously, n0 + n1 + · · · + nj = n. We estimate the contribution of each of
the four subsequence types to the length of u. The intersections of ri with the mi

chains forming vi produce the mi-decomposition of ri, whence |ri| ≤ ψ(mi, ni).
Altogether,

|r1r2 . . . rj | ≤
j∑

i=1

ψ(mi, ni). (10)

To estimate the contribution of si’s we observe first that |(si\F (si)) ∩ uk| ≤ 1
for each i and each chain uk. Suppose to the contrary that a ≺ b are two symbols
which appear in some (si\F (si)) ∩ uk. Since a and b appear also before vi and
a ≺ b, there is an ab subsequence before vi. The first a in si appears before uk. By
the definition of m-decomposition, in si ∩ uk we have a subsequence ba. We have
a contradiction — the forbidden subsequence ababa. Thus, |(si\F (si)) ∩ uk| ≤ 1
and |si\F (si)| ≤ mi. It follows from the definition of si that S(si)∩S(sk) = ∅ for
i 6= k. Thus, |F (s1)F (s2) . . . F (sj)| ≤ n0. Together

|s1s2 . . . sj | ≤ m+ n0. (11)

As to ti’s, |(ti\F (u)) ∩ uk| ≤ 1 for each i and each chain uk. Suppose to the
contrary that two symbols a 6= b appear in (ti\F (u)) ∩ uk in the order, say, ba.
There is an a before uk, namely the first a in u. By the definition of ti, there is also
a b in ti after uk (namely, the last b in ti) and an a after vi. These appearances form
the forbidden subsequence ababa. Again, |(ti\F (u))∩uk| ≤ 1 and |ti\F (u)| ≤ mi.
Since |F (u) ∩ t1t2 . . . tj | ≤ n0, we have again

|t1t2 . . . tj | ≤ m+ n0. (12)

To estimate the last contribution we show that

w = w1w2 . . . wj = w1w2 . . . wj−1

is a (j − 1)-decomposition of w. Clearly, zj = wj = ∅. Each wi is a chain and we
need to show only that wi\F (w) decreases in the normal order (S(w),≺). Suppose
not, then two distinct symbols a and b appear before some wi in this order ab and
in wi also in the same order. By the definition of wi, a appears (in u) also after
vi and we obtain again ababa. Hence, we have a (j − 1)-decomposition and can
estimate |w| by ψ:

|w1w2 . . . wj | ≤ ψ(j − 1, n0). (13)

Summing up (10), (11), (12), and (13), we obtain (9). 2
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Lemma 2.4 For integers k ≥ 2 and m,n ≥ 1,

ψ(m,n) ≤ 2k(αk(m)m+ n). (14)

Proof. We proceed by induction on k and for k fixed we use induction on m.
The latter is started easily because by the trivial inequality ψ(m,n) ≤ mn (14)
is certainly true for m ≤ 2k. The induction on k starts with k = 2. We need to
prove that

ψ(m,n) ≤ 4mdlog2me+ 4n. (15)

Let m ≥ 2 and let m = m1 + m2 where m1 = dm/2e and m2 = bm/2c. By (9),
there are n0, n1, and n2 such that n = n0 + n1 + n2 and

ψ(m,n) ≤ ψ(m1, n1) + ψ(m2, n2) + 2m+ 2n0 + ψ(1, n0)
= ψ(m1, n1) + ψ(m2, n2) + 2m+ 3n0.

We estimate ψ(mi, ni) by the inductive assumption for m,

ψ(m,n) ≤ 4m1dlog2m1e+ 4m2dlog2m2e+ 4n1 + 4n2 + 2m+ 3n0.

Since 4n1 + 4n2 + 3n0 ≤ 4n, it suffices to show

m1dlog2m1e+m2dlog2m2e ≤ m(dlog2me − 1).

The last inequality is immediate to check, thus (15) holds.
For k > 2 and m ≥ 3 we apply (9) with the partition m = m1 +m2 + · · ·+mj ,

where j = dm/αk−1(m)e > 1, m1 = · · · = mj−1 = αk−1(m), and 1 ≤ mj ≤
αk−1(m). By (9), there are ni, i = 0, 1, . . . , j, that sum up to n and

ψ(m,n) ≤
j∑

i=1

ψ(mi, ni) + 2(m+ n0) + ψ(j − 1, n0).

Each ψ(mi, ni) is estimated by (14) (induction on m) for the current k, ψ(j−1, n0)
is estimated by (14) for k − 1. By the definition of j,

(j − 1)αk−1(j − 1) ≤ (j − 1)αk−1(m) ≤ m.

By (7),
αk(mi) ≤ αk(αk−1(m)) = αk(m)− 1.

Thus,

ψ(m,n) ≤
j∑

i=1

2k(miαk(mi) + ni) + 2(m+ n0)

+2(k − 1)((j − 1)αk−1(j − 1) + n0)
≤ 2km(αk(m)− 1) + 2k(n− n0)

+2(m+ n0) + 2(k − 1)(m+ n0)
= 2k(mαk(m) + n).

2
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Lemma 2.5 For all positive integers l ≥ 2 and n,

N5(n) ≤ ψ(d2n/le, n) + 2l(l − 1)d2n/le. (16)

Proof. Let u be a sparse sequence with al(u) < 5, |u| = N5(n), and ‖u‖ ≤ n
(thus, ‖u‖ = n). Bad elements are the elements in F (u) ∪ L(u). Repetition
I(a), a ∈ S(u), is any subinterval in u that begins and ends with a and has no a
inside. Note that the interior of each I(a) is nonempty because u is sparse.

Consider the splitting u = u1u2 . . . uj in which each ui starts with a bad element
and contains, for 1 ≤ i ≤ j − 1, exactly l bad elements. The last block uj may
contain fewer bad elements. Hence, j ≤ d2n/le. We claim that there are at most
(2l − 1)(l − 1) repetitions in each ui.

Suppose, for the contrary, that ui contains (2l−1)(l−1)+1 repetitions. There
cannot be l repetitions with mutually disjoint interiors, otherwise we would have
a repetition I(a) in ui having inside no bad element. But this forces the forbidden
subsequence babab. Hence, for each symbol a there are at most l − 1 repetitions
I(a) of a in ui. It follows that in ui there are l repetitions I(a1), I(a2), . . . , I(al)
where a1, a2, . . . , al are l distinct symbols that are in addition distinct to those
at most l symbols appearing in ui as bad elements. Two of these repetitions, say
I(a1) and I(a2), must intersect. Say a1 appears inside I(a2). This again forces the
forbidden subsequence a1a2a1a2a1 because a1 appears before and after ui. Again
a contradiction.

Therefore, |ui|−‖ui‖ ≤ (2l−1)(l−1). Deleting all terms from ui except F (ui)
we delete at most (2l− 1)(l− 1) elements and turn ui into a chain. We obtain the
splitting into j chains

v = F (u1)F (u2) . . . F (uj),

where |v| ≥ |u| − (2l − 1)(l − 1)j.
Finally, we delete L(v). We have the splitting into j chains

w = w1w2 . . . wj ,

where wi = F (ui)\L(v) and |w| ≥ |u| − (2l − 1)(l − 1)j − n. We show it is a
j-decomposition of w. If not then a ≺ b are two elements from (S(w),≺) that
appear in some wi\F (w) in the order ab. We have ab before wi (the elements in
F (w)), ab in wi and an a after wi (the element in L(v)). Thus u contains ababa,
a contradiction. The splitting of w is a j-decomposition and (16) follows:

|u| ≤ |w|+ (2l − 1)(l − 1)j + n ≤ ψ(d2n/le, n) + 2l(l − 1)d2n/le.

2

From (14), setting k = α(m) + 1, we obtain, using (8),

ψ(m,n) ≤ 8mα(m) + 8m+ 2nα(m) + 2n.

Using this bound in (16) with l = bα(n)1/2c we obtain

N5(n) ≤ ψ(b2n/lc, n) + 2l(l − 1)b2n/lc
≤ 8α(b2n/lc)b2n/lc+ 2α(b2n/lc)n

+8b2n/lc+ 2n+ 2l(l − 1)b2n/lc
≤ 2nα(n) +O(nα(n)1/2).
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This finishes the proof of (4).

3 Concluding comments and remarks

Lemma 2.1 is standard. Lemma 2.2 was proved in Appendix 1 in [2], see also [10].
Function ψ(m,n) and Lemma 2.3 form the heart of the proof. The coefficient at
n0 in (9) is the crucial one because it produces the same constant factor in (4).
The coefficient at m is irrelevant. Our ψ(m,n) is a combination of the versions in
[4] and [10]. From [4] we took the idea of ordered chains. Our proof of Lemma
2.3 is inspired by the ingenious proof in [4]. However, the normal order (S(u),≺)
is not essential and one can obtain 2 at n0 working only with unordered chains in
the spirit of [10] (in [10] there is 4 at n0). For unordered chains one can use in the
proof of Lemma 2.3 the partition of vi

vi = ri ∪ si ∪ ti ∪ wi,

where
ri = ri, si = si\F (si), ti = ti, and wi = wi ∪ F (si).

A little technical complication for the proof of Lemma 2.4 is that then j − 1 in
(9) increases to j. We leave it as an exercise for the interested reader to fill in the
details. Lemma 2.4 is similar to the corresponding lemmas in [4] and [10]. The
main improvement is Lemma 2.5 ([7]); [4] and [10] use the instance with l = 1.

As to the constant factor in the lower bound in (2), in 1988 Wiernik and Sharir
[11] proved that

N5(n) ≥ 1
2nα(n)− 2n. (17)

See also pp. 21–29 in [10]. Estimates (4) and (17) suggest the following problem.

Problem 3.1 Does the limit

lim
n→∞

N5(n)
nα(n)

exist?

If it exists then it lies in the interval [1/2, 2]. An easier problem might be to narrow
this interval.

In [1] the following generalization of Ns(n) was proposed. Two sequences
v = a1a2 . . . ak and w = b1b2 . . . bk of the same length are equivalent if, for each
i and j, ai = aj iff bi = bj . A sequence v is contained in other sequence u if u
has a subsequence equivalent to v. We denote this relation as v ≺ u. Alternating
sequence abab . . . of length s is denoted als. Note that al(u) < s expresses in the
new notation as als 6≺ u. We say that u is k-sparse if each interval in u of length
≤ k is a chain. We have extended [1] the definition (1) to any sequence v:

Ex(v, n) = max{|u| : u is ‖v‖-sparse & v 6≺ u & ‖u‖ ≤ n}.

Note that Ns(n) = Ex(als, n).
The next two bounds are the basic facts abouth the growth rates of Ex(v, n).

∀c ∃s Ns(n) = Ex(als, n) � n2α(n)c

and (18)
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∀v ∃c Ex(v, n) � n2α(n)c

. (19)

(18) was proved in [2] and (19) in [5] (both results are actually stronger). Since
u ≺ v implies easily Ex(u, n) � Ex(v, n) (see [1]; this is not true with ≤ in place
of �), it follows from (18) that the containment als ≺ v for big s makes Ex(v, n)
grow ”fast”. Perhaps Ex(v, n) can grow ”fast” even if v 6� al5 = ababa.

Problem 3.2 We conjecture that

∀c ∃v ababa 6≺ v & Ex(v, n) � n2α(n)c

. (20)

In [9] (for details see [6]) a sequence v was presented, namely v = abcbadadbcd,
with ababa 6≺ v and Ex(v, n) � nα(n). To support the conjecture even more we
show now that (20) is true for c = 1.

We make use of the construction of Agarwal, Sharir and Shor [2] proving the
lower bound in (3). We describe it as on pp. 53–54 in [10]. A fan, more precisely an
m-fan, is any sequence of length 2m− 1 equivalent to the sequence 1 2 . . . (m−
1) m (m − 1) . . . 2 1. We define by double induction a two-dimensional array
(S(k,m))∞k,m=1 of sequences. S(k,m) is sparse and is a concatenation of several
m-fans (their number will be uniquely determined by induction). One symbol will
appear typically in more fans of S(k,m).

S(1,m) consists of just one m-fan. S(k, 1), k > 1, equals to S(k − 1, 2k−1),
where each 2k−1-fan is regarded in S(k, 1) as 2k − 1 1-fans. The sequence S(k,m)
for k,m > 1 is obtained from T = S(k,m− 1) and U = S(k − 1,M), where M is
the number of (m− 1)-fans in T . Suppose U has p M -fans. Create 2p copies of T
(with disjoint sets of symbols which are also disjoint to the set of symbols of U)
T1, . . . , T2p and merge them with U as follows. First double the middle element in
each fan in each Ti and in each fan of U . Then separate the twins in the middle
of the k-th expanded (m− 1)-fan of T2i−1 by the k-th element of the first half of
the i-th expanded M -fan of U (this way an m-fan is obtained). The k-th element
(counted from the left) of the second half does the same job in T2i. Denote the
modified copies as Tm

i . Set S(k,m) = Tm
1 Tm

2 . . . Tm
2p .

It can be shown (in Lemma 3.1 we prove a more general statement) that al6 6≺
S(k,m) for all k and m. One can construct — for details see pp. 52–56 in [10] —
an infinite sequence of sequences

(u1, u2, . . .) (21)

with the following properties. Each ui equals to some S(k,m) (thus ui is sparse
and al6 6≺ ui), ‖ui‖ = ni < ni+1 = ‖ui+1‖, and |ui| � ni2α(ni).

For a sequence u an oriented graph D(u) = (V,E) is defined by V = S(u) (the
symbols of u) and a → b iff abba is a subsequence of u. For example, D(al6) is
a↔ b. We remind that an oriented graph is strongly connected if each two distinct
vertices x1 and x2 can be joined by a directed path going from x1 to x2.

Lemma 3.1 Suppose u is a sparse sequence, ‖u‖ > 1, and D(u) is strongly con-
nected. Then u 6≺ S(k,m) for all k and m.
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Proof. By double induction on k and m. Obviously, u 6≺ S(1,m). By induction,
u 6≺ S(k, 1) = S(k − 1, 2k−1). It remains to show that u 6≺ S(k,m) provided
u 6≺ T = S(k,m − 1) and u 6≺ U = S(k − 1,M). Suppose v is a subsequence of
S(k,m) equivalent to u. It follows easily from the construction that if x ∈ S(v)
comes from a copy of T (with expanded fans) and x → y in D(v) = D(u), then
y must come from the same copy of T . Because D(v) is strongly connected, the
whole v comes from a copy of T with expanded fans or from U with expanded
fans. Because u is sparse, u is contained already in T or in U . 2

Lemma 3.2 For u from the previous lemma

Ex(u, n) � n2α(n).

Proof. Consider the sequences (21). We have |ui| � ni2α(ni) and, by the previous
lemma, u 6≺ ui. There are two small troubles. The first is that ui is sparse but
may not be ‖u‖-sparse. Taking from ui an appropriate subsequence we can keep a
constant fraction of length and achieve ‖u‖-simplicity (we use that al6 6≺ ui). We
leave this to the reader as an exercise; see [1] for this technique. Second, we need
the lower bound |ui| � ni2α(ni) for all n and not only for infinitely many. This is
achieved by the same interpolation as in [10]. 2

Now consider the sequence

u∗ = abcbadadbecfcfedef,

S(u∗) = {a, b, c, d, e, f}. It does not contain ababa but at the same time it satisfies
the hypothesis of Lemma 3.1 since it is sparse and D(u∗) contains the oriented
Hamiltonian cycle abdfec. Thus, by Lemma 3.2, u∗ witnesses (20) for c = 1.

One cannot stregthen the conjecture (20) by replacing ababa with abab. It
follows from the results in [9] that

abab 6≺ v ⇒ Ex(v, n) � n.
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