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Basic topological notions and examples

I went through the beginning of Chapter 5 “Topologie” of the lecture notes

e A. Pultr, Matematické struktury, 2005, 155 pp., available at
http://kam.mff.cuni.cz/ pultr/

up to definition 3.1 of continuous maps, pp. 95-101. I left as an exercise the
following (solution is available in the lecture notes):

Exercise. Show that introducing topology via neighborhoods and via open sets
18 equivalent in the sense that if we define

(X AU(@) |z € X}) ~ (X,7) ~ (X, {V(2) |z € X})
then V(x) = U(x) for every x € X, and if we define
(X,7) ~ (X AU(z) | 2 € X}) ~ (X, 0)
then o = T.

Also, I mentioned one thing that is not in the lecture notes, characterization of
set systems that are bases of topologies. Every set system on X is a subbase of
a topology on X but this is not true for bases.

Exercise. Suppose X is a set and B C exp(X) is a set system on X. Prove
that B is a base of a topology on X (namely one whose open sets are exactly all
unions of elements of B) if and only if

1. UB=X and
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2. foreverya e UNV, UV € B, thereis a W € B withae W CUNV.

In other words, we can express X and every intersection of two members of B
as a union of elements of B.

Thus in example 2.8 “Intervalova topologie” it is not quite true that for every
linearly ordered set (X, <) the set system B = {(a,b) | a,b € X,a < b} (with
(a,b) = {x € X | a < z < b}) is a base of a topology on X — this holds
if (and only if) X has neither minimum nor maximum. Or we do get base of
a topology for every linear order (X, <) if we add to B the sets (—oo,a) and
(a,+0), a € X, with obvious definition, this is called the order topology on X.

Kleene’s first recursion theorem

This is an application of Bourbaki’s fixed point theorem, see pp. 41/42 of the
lecture notes. I naturally mentioned Kleene’s second recursion theorem, more
precisely its special case called Rogers’ fized point theorem. Suppose ., e € N, is
an admissible enumeration of all partial computable (recursive) functions, i.e. an
effective enumeration of all computer programs (Turing machines) that compute
functions from N* to N, which may not halt on some inputs and thus the domains
of definition are subsets of N*. Clearly, there is a tremendous redundancy in
the list ., ¢ € N, in the sense that a particular partial computable function
is computed by ¢, for many different indices e. Is it true that ¢, = @,11 (as
partial functions) for some n € N? Yes, it is and much more holds.

Theorem 1 (Rogers’ fixed point theorem) For every total (i.e. everywhere
defined) computable function f: N — N there is an n € N such that

Pn = Qf(n) (as partial functions, not as programs, of course) .

Exercise. Strengthen this to: for every total computable function f: N — N
and every m € N there is an n € N such that

On =Pfm) and n>m.

See for example the Wikipedia entry for the proof of the theorem. For more
information on Kleene’s second recursion theorem see the article

e Y.N. Moschovakis, Kleene’s amazing second recursion theorem. Extended
abstract, 16 pp., available on the web,

or the full version Y.N. Moschovakis, Kleene’s amazing second recursion theo-
rem, Bull. Symbolic Logic 16 (2010), 189-239, which is not so easily available.



