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The present lecturer (MK) views the discipline of probability as fol-
lows. Probability divides in (i) the formalized probability residing in
mathematics and (ii) the physical probability residing in our heads and
the world out there. The latter probability reflects our incomplete in-
formation, the unknown future, and the random nature of the world
(quantum mechanics). The formalized probability can be viewed ei-
ther classically, as a mathematical model of the physical probability,
or enumeratively as a formal method to count in a generalized sense
mathematical objects.

Now and later I will be mentioning interesting books and texts on
probability.
• P. Diaconis and B. Skyrms, Ten Great Ideas about Chance, Princeton
U. Press, 2018. The ideas are: Measurement, Judgment, Psychology,
Frequency, Mathematics, Inverse Inference, Unification, Algorithmic
Randomness, Physical Chance, and Induction. Not Counting :-(.
• G. J. Székely, Paradoxes in Probability Theory and Mathematical
Statistics, Springer, 1987.
• J. Haigh, Probability: A Very Short Introduction, Oxford U. Press,
2012. A quote from p. 109: “The subject of probability is wholly free
from real paradoxes.” :-)
• E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge
U. Press, 2003 (a preliminary version is available online).
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• Edwin T. Jaynes (1922–1998) was an American physicist, for whom
probability theory was an extension of logic. His book was published
posthumously by efforts of the editor Larry Bretthorst.

• G. Shafer and V. Vovk, Game-Theoretic Foundations for Probability
and Finance, J. Wiley, 2019 (a preliminary version is available online).
The idea of Finance is definitely missing in the book of Diaconis and
Skyrms. This book provides a practical advice in the title of Chapter
13.5: Getting Rich Quick with the Axiom of Choice.
• P. Billingsley, Probability and Measure, J. Wiley, 1995 (a version is
available online).

• Patrick Billingsley (1925–2011) was an American mathematician
and stage and screen actor.

We review notation. N = {1, 2, . . . } are the natural numbers, for
n ∈ N we set [n] := {1, 2, . . . , n}, N0 = {0, 1, . . . } = N ∪ {0} are the
nonnegative integers, Z = {. . . ,−1, 0, 1, . . . } are the integers, Q are
the rational numbers (fractions), R are the real numbers, and C are
the complex numbers. By |X| we denote the cardinality of a set X,
which for finite X means just the number of elements in X.

Although you heard it already in Lecture 1, I review definition of
a probability space. For a set X we denote by P(X) the power set of
X, the set of all subsets of X. A probability space is a triple

(Ω, Σ, Pr)

such that Ω 6= ∅ is a set, Σ ⊂ P(Ω) is a σ-algebra on Ω (which
means that ∅,Ω ∈ Σ, that Σ is closed to complements to Ω, and that
Σ is closed to countable unions), and Pr: Σ → [0, 1] is the proba-
bility (function) that is σ-additive (which means that for any pair-
wise disjoint sets A1, A2, . . . in Σ one has that Pr(A1 ∪ A2 ∪ . . . ) =
Pr(A1) + Pr(A2) + . . . ) and has the value Pr(Ω) = 1. From these ax-
ioms one readily deduces the value Pr(∅) = 0, the monotonicity rule
A ⊂ B ⇒ Pr(A) ≤ Pr(B) for any A,B ∈ Σ, and the union bound

Pr(A1 ∪ A2 ∪ . . . ) ≤ Pr(A1) + Pr(A2) + . . .

for any An ∈ Σ. The elements of Σ are called events. The intersection
of the empty set of events is always defined to be Ω.

2



Finitely additive measures (probabilities), for which σ-additivity is
relaxed and one requires that the sum identity only holds for finite
collections of sets from Σ, is a large research topic which we mention
here only by listing two books devoted to it. They are probably still
available in the Academia bookstores in Prague.
• M. Paštéka, On four approaches to density, Veda, 2013.
• M. Paštéka, Density and related topics, Academia, 2017.

• Milan Paštéka is a Slovak mathematician working at the Univer-
sity of Trnava in the area of densities on integers. He should not
be confused with the Slovak painter of the same name, who lived in
1931–1998.

In a discrete probability space (Ω,Σ,Pr) the set Ω is at most count-
able (but Σ and Pr still may be uncountable sets); in our course we
are interested most of the time only in such spaces. At this occasion
we describe their structure.

Let (Ω,Σ) be a σ-algebra. A set A ∈ Σ is an atom if A 6= ∅ and for
any set B ∈ Σ we have that if B ⊂ A then B = ∅ or B = A. The σ-
algebra (Ω,Σ) is atomic if every element of Ω lies in an atom. Atoms
are disjoint and in every atomic σ-algebra the set A of atoms forms
a set partition of Ω: the elements in A are nonempty and disjoint
subsets of Ω such that

⋃
A = Ω. In fact, then every set X ∈ Σ has

a unique partition into atoms.
An atomic probability space (Ω,Σ,Pr) has atomic σ-algebra (Ω,Σ)

and in consequence has a simple structure. Namely, if A is the set of
its atoms then Σ = {

⋃
B | B ⊂ A}, for any nonempty A ∈ Σ one has

that
Pr(A) =

∑
B∈A, B⊂A

Pr(B) ,

and Pr(∅) = 0. Thus the function Pr is completely determined by its
values on atoms. It is easy to see that if Pr : A → [0, 1] is any function
then its extension to Σ by the above displayed formula is a probability
function iff

∑
A∈A Pr(A) = 1.

In the other way it is easy to see that for any at most countable set
Ω 6= ∅ and any function f : Ω → [0, 1] such that

∑
ω∈Ω f(ω) = 1, the
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triple
(Ω, P(Ω), Pr) ,

where Pr: P(Ω) → [0, 1] is defined by Pr(A) =
∑

ω∈A f(ω) (with
Pr(∅) = 0), is an atomic discrete probability space with the set of
atoms A = {{ω} | ω ∈ Ω}.

Proposition (on discrete probability spaces). Every discrete
probability space (Ω,Σ,Pr) is atomic.

Proof. We need to show that every element x in Ω is contained in
an atom. For finite Ω this is clear as every strictly decreasing chain
Ω = A0 ⊃ A1 ⊃ . . . where An ∈ Σ and x ∈ An, is finite and terminates
in an atom containing x. We show that also for any countable set Ω
each such chain terminates, after α steps for a countable ordinal α, in
an atom containing the given element x.

Let Ω be countable, x ∈ Ω be any element, and A0 = A∅ := Ω ∈ Σ.
We suppose that α > 0 is an ordinal and that Aβ has been already
defined for every ordinal β < α (i.e. β ∈ α) and that always x ∈ Aβ.
Suppose that α = β + 1 is a successor ordinal and let Xα := Aβ ∈ Σ.
If there exists a set X ∈ Σ such that x ∈ X ⊂ Xα and X 6= Xα, we
set Aα := X ∈ Σ. Else we set Aα := ∅ and terminate the construction
at α. Suppose that α is a (countable) limit ordinal and let Xα :=⋂
β<αAβ ∈ Σ. If there exists a set X ∈ Σ such that x ∈ X ⊂ Xα and

X 6= Xα, we set Aα := X ∈ Σ. Else we set Aα := ∅ and terminate the
construction at α. The ordinal sequence r = (Xβ)β>0 ⊂ Σ thus defined
strictly decreases (in ⊃) and each set in it contains x as an element.
We associate with it the sequence s = (aβ)β>0 ⊂ Ω by selecting any
elements aβ ∈ Xβ \Aβ. Since s consists of mutually distinct elements
of the countable set Ω, the sequence r has to terminate with a set Xα

for a countable ordinal α < ω1, before the first uncountable ordinal
ω1. It follows that Xα ∈ Σ is an atom containing x. �

Independence of events is a fundamental notion in probability, mo-
tivated by the physical probability. Events A1, A2, . . . , An in a prob-
ability space (Ω,Σ,Pr) are independent if for every set I ⊂ [n],

Pr
(⋂

i∈I Ai

)
=
∏
i∈I

Pr(Ai) .
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We say that these n events are independent coin tosses if they are
independent and each has probability 1

2 . So then for any set I ⊂ [n],

Pr
(⋂

i∈I Ai

)
=
(

1
2

)|I|
.

Recall that |I| is the number of elements in the set I. We think of
the events Ai, i ∈ [n], as of n mutually independent acts of flipping
a fair coin, with its head and tail coming up with the same (physical)
probability 1

2 . We show that for any discrete probability space there
is an upper bound N ∈ N on the number of independent coin tosses
in it. For the proof we need the next lemma.

Lemma. If A1, A2, . . . , An are independent coin tosses in any proba-
bility space then for any set I ⊂ [n],

Pr
(⋂

i∈I A
′
i

)
=
(

1
2

)|I|
where each A′i means either the event Ai, or its complement Ai :=
Ω \ Ai.

Proof. We proceed by induction on the number c ≥ 0 of comple-
mented events in the collections C = {A′i | i ∈ I} with I ⊂ [n]. For
c = 0 we are done by the assumption. Suppose that in C we have
c > 0 and that the identity holds for any collection with fewer than c
complemented events. Let i0 ∈ I be such that A′i0 = Ai0. Then indeed

Pr
(⋂

i∈I A
′
i

)
= Pr

(⋂
i∈I\{i0}A

′
i

)
− Pr

(
Ai0 ∩

⋂
i∈I\{i0}A

′
i

)
=
(

1
2

)|I|−1 −
(

1
2

)|I|
=
(

1
2

)|I|
where the second equality follows by induction. �

This is a generalization of the trivial fact that if Pr(A) = 1
2 then also

Pr(A) = 1
2 . As an exercise you may generalize this lemma to general

independent events. Later, for the Lovász Local Lemma (LLL), we
will need another similar lemma.

Theorem (few independent coin tosses). For any discrete prob-
ability space P = (Ω,Σ,Pr) there exists an N ∈ N such that any
collection C of independent coin tosses in P has |C| ≤ N events.
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Proof. Let P = (Ω, Σ, Pr) be an arbitrary discrete probability space.
By the previous proposition it is atomic and we consider the set A of
its atoms. We suppose for contradiction that for every m ∈ N there
exist m independent coin tosses in P , and deduce that Pr(A) = 0
for every atom A ∈ A. Since there is the partition Ω =

⋃
A∈AA,

σ-additivity of Pr implies the contradiction that

1 = Pr(Ω) =
∑
A∈A

Pr(A) =
∑
A∈A

0 = 0 .

Let A ∈ A be an atom and m ∈ N. We take m independent coin
tosses A1, A2, . . . , Am and define the events B1, B2, . . . , Bm by

Bk =

{
Ak . . . A ⊂ Ak ,

Ω \ Ak . . . A ⊂ Ω \ Ak .

Then A ⊂ Bk for every k ∈ [m] and thus

Pr(A) ≤ Pr
(⋂m

k=1Bk

)
=
(

1
2

)m
where the last equality follows by the previous lemma and the assump-
tion on the Ak. Since m may be arbitrarily large and then (1/2)m → 0,
indeed Pr(A) = 0. �

This theorem strengthens Problem 1.1 (a) in Billingsley’s textbook
which asserts nonexistence of infinitely many independent coin tosses
in any discrete probability space. See Problem 1.1 (b) for a variant.
To model infinitely many, or — as we have seen — even only arbitrar-
ily many, independent coin tosses we therefore need a probability
space (Ω,Σ,Pr) with uncountable set Ω. Constructions of uncount-
able probability spaces, which can accommodate infinitely many in-
dependent coin tosses, are described in the initial part of Billingsley’s
textbook. This topic lies outside the scope of our course.

Despite it I will tell you three interesting results from the realm of
continuous (uncountable) probability. Necessarily I will reason more
or less informally. I apologize that this version of my lecture lacks
pictures, see the handwritten version for them.

1. Buffon’s needle (and noodle) problem. We draw in the Eu-
clidean plane R2 = R× R the system {`k | k ∈ Z} of parallel vertical
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lines
`k = {(k, y) | y ∈ R} ,

and randomly drop in the plane a needle N of length l ∈ (0, 1). That
is, we randomly select in the plane a straight segment N ⊂ R2 with
length l. What is the probability

PBu(l) := Pr(∃ k ∈ Z : `k ∩N 6= ∅) ?

In words, what is the probability that the needle intersects some of
the lines? The lines delimit strips with the same width 1 and the
needle is shorter, thus the needle intersects at most one line.

No probability space was specified — the next result shows that this
is a problem — but as we said, we argue informally. To compute the
probability PBu(l) we define XN ∈ {0, 1} to be the random variable
counting intersections of the needle with the lines, formally

XN :=
∣∣N ∩⋃k∈Z `k

∣∣ .
In the situation when N ⊂ `k for some k ∈ Z we agree to count just
one intersection; this event has probability 0 and does not matter
anyway. Then

PBu(l) = EXN .

We make k − 1 marks on the needle, k ∈ N, and divide it in effect
in k subneedles Ni with lengths li > 0, i = 1, 2, . . . , k, summing to l.
To drop randomly in the plane the needle means to drop randomly
in the plane each of the subneedles, and from XN =

∑k
i=1XNi

(the
subneedles are disjoint) we get by the linearity of expectation that

EXN =
k∑
i=1

EXNi
.

We bend the needle in each of the marks and get a deformed needle
N ′ with the shape of a broken line, but with the same length l. Now
XN becomes XN ′, each XNi

becomes XN ′
i
, but, crucially, EXN ′

i
=

EXNi
. The reason is that, again, to drop randomly in the plane N ′

entails to drop randomly in the plane each N ′i , and each N ′i differs
from Ni insignificantly, it is still a straight segment with length li.
(These are all plausible claims, but since no formal setup was given,
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one cannot really prove or refute them. We argue informally, non-
rigorously.) Again XN ′ =

∑k
i=1XN ′

i
and

EXN ′ =
k∑
i=1

EXN ′
i

=
k∑
i=1

EXNi
= EXN .

Note that for N ′ the random variable XN ′ ∈ N0 may attain values
larger than 1 because N ′ may have several intersections with one line.

The trick is to select the shape of N ′ so that N ′ = C, the circle with
circumference l. We cannot get precisely C, of course, but taking k
very large and max1≤i≤k li very small we can certainly deform N in
N ′ so that N ′ approximates C very closely. By the above displayed
equations we get that

PBu(l) = EXC .

Here, like above, XC is the number of intersections of the random
circle C with the lines.

It is easy to compute EXC . Let c = (x, y) ∈ R2 be the center of the
random circle C ⊂ R2 with circumference l. Recall that any number
α ∈ R has its integral part bαc ∈ Z and its fractional part {α} ∈ [0, 1)
uniquely determined by the equation

α = bαc+ {α} .

Whether C ∩ `k 6= ∅ for some k ∈ Z depends only on the coordinate
x of c. It happens if and only if

{x} ∈ [0, l/2π] ∪ [1− l/2π, 1) ⊂ [0, 1)

—C has radius r = l/2π and the circle C intersects some line `k if
and only if the center c is in distance r or less to `k, that is, if and
only if x is in distance at most r to an integer. The union of the two
subintervals of the unit interval has length l/π. Therefore

Pr(∃ k ∈ Z : C ∩ `k 6= ∅) =
l/π

1
=
l

π
.

For C we have XC ∈ {0, 1, 2} and Pr(XC = 1) = 0 as this is the event
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that {x} = l/2π or 1− l/2π. Thus we conclude that

PBu(l) = EXC

= 0 · Pr(XC = 0) + 1 · Pr(XC = 1) + 2 · Pr(XC = 2)

= 0 + 0 + 2 · l
π

=
2l

π
.

And where is the noodle? To shape the needle N in the form C,
you may heat it up in the forge so that it softens and behaves like
a noodle in soup. In conclusion I should mention that I learned the
above argument in the book
• D. A. Klain and G.-C. Rota, Introduction to Geometric Probability,
Cambridge U. Press, 1997.

• Daniel A. Klain is an American mathematician working at the Uni-
versity of Massachusetts Lowell.

• Gian-Carlo Rota (1932–1999) was an Italian–American mathemati-
cian and philosopher who spent most of his career at the Massachusetts
Institute of Technology.

• Georges-Louis Leclerc, Comte de Buffon (1707–1788) was, by the
Wikipedia, a French naturalist, mathematician, cosmologist, and en-
cyclopédiste.

2. Bertrand’s paradox. This paradox was published by J. Bertrand
in 1889 in his book Calcul des probabilités. It consists in three numeri-
cally different solutions to the same problem in geometric probability,
each of which is clearly correct.

• Joseph Bertrand (1822–1900) was a French mathematician who
worked also in theoretical economy. In fact, there he authored an-
other paradox.

In the problem one should compute the probability

PBe := Pr(length of T >
√

3)

that a random chord T in a unit circle C, which is a circle with
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radius 1, is longer than the side of the inscribed equilateral triangle.
We present three solutions and in each the chord T is determined by
two one-dimensional parameters.

Solution 1. The chord T = AB is determined by its endpoints
A and B lying on C. We randomly select first A and then B. Let
D,E ∈ C be the other two vertices of the equilateral triangle with
vertex A inscribed in C. The points A,D,E divide C in three arcs
with equal lengths, and T is longer than the side of the triangle iff B
falls in the arc between D and E. Thus

PBe =
the length of the arc DE

the circumference of C
=

1

3
.

Solution 2. The chord T is determined by its direction and dis-
tance from the center A of C. First we randomly select a radius B
of C, a segment B = AD with the other endpoint D ∈ C, which
determines the direction of T in the way that T intersects B and is
perpendicular to it. Then we randomly select the intersection point
E of B and T . We consider the equilateral triangle inscribed in C so
that one its side intersects the radius B in a point F and is perpen-
dicular to B. It is easy to see that F is the midpoint of B and that
T is longer than the side of the triangle iff E falls in the subsegment
AF of the radius B. Thus

PBe =
the length of AF

the length of AD
=

1

2
.

Solution 3. The chord T is determined by the position of its
central point A. As we know from the previous solution, T is longer
than the side of the triangle iff the distance of A from the center of C
is less than 1

2 , that is, iff A lies inside the circle B that is concentric
with C and has radius 1

2 . Thus

PBe =
the area inside B

the area inside C
=

1

4
.

;-) Some texts on probability explain Bertrand’s paradox away by
saying: these are three different probability spaces, thus it is abso-
lutely no wonder that one gets three different solutions. But we do
not get rid of the paradox so cheaply, one feels that the real problem
lies elsewhere. The selection of random chords T in C should model
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some real physical experiment in which real, physical chords are being
randomly selected, in some way. That experiment can have only one
result, at least in the macro-world. What is the experiment and what
is the result? As recently as 2014 people were solving Bertrand’s para-
dox, see for example the preprint D. Aerts and M. Sassoli de Bianchi,
Solving the Hard Problem of Bertrand’s Paradox, arXiv:1403.4139,
15 pp.

3. Valtr’s convex chains. This is also a result from geometric prob-
ability, as the previous two, but it is undeservedly not so well known.
Let C = [0, 1] × [0, 1] be the unit square and pi ∈ C, i = 1, 2, . . . , n,
be n random points in it. Here the probability space is without dis-
pute the square of the Lebesgue measure on the unit interval [0, 1].
It should be clear what it means that p1, . . . , pn form a convex n-gon.
We say that p1, . . . , pn form a convex n-chain, which is a particular
case of a convex n-gon, if these points lie on a graph of a convex func-
tion. Said more explicitly, when the points are relabeled so that in the
sequence p1, p2, . . . , pn the x-coordinate increases (two x-coordinates
coincide with zero probability), then the direction vectors

p2 − p1, p3 − p2, . . . , pn − pn−1

rotate counter-clockwisely. What is the conditional probability

PVa(n) := Pr(pi form a convex n-chain | pi form a convex n-gon) ?

Trivially, PVa(1) = PVa(2) = 1, and easily PVa(3) = 1
2 . The answer for

general n ∈ N involves the Catalan numbers

Cn :=
1

n

(
2n− 2

n− 1

)
=

1

n
· (2n− 2)!

(n− 1)!2
.

Their sequence begins as (Cn)n≥1 = (1, 1, 2, 5, 14, 42, 130, . . . ). In 1997
P. Valtr proved in his article Catalan numbers via random planar point
sets, Intuitive geometry (Budapest, 1995), János Bolyai Math. Soc.,
441–443 that

PVa(n) =
1

Cn
.

The result comes out from the proofs as a ratio of two probabilities
that are computed separately. One feels that there might be a more
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direct argument based on some symmetry extending the case n = 3.
We state it as a research problem.

Problem. Derive by a direct symmetry argument, by means of
some combinatorial properties of the Catalan numbers, the formula
for PVa(n).

• Eugène Catalan (1814–1894), after whom the numbers Cn are named,
was a French and Belgian mathematician whose areas of interest were
number theory and combinatorics. The Catalan conjecture in Dio-
phantine analysis, that the only solution to the equation xa − yb = 1
in numbers x, y, a, b ∈ N \ {1} is 32− 23 = 1, is also named after him.
The conjecture was proved in 2004 by P. Mihăilescu.

• Pavel Valtr is lecturer’s colleague in the Department of Applied
Mathematics of MFF UK, indeed he was the chairman of the depart-
ment, and is a world-famous researcher in the area of computational
and discrete geometry.

We turn to the last topic of this lecture, bounds on the Ramsey
numbers R(k), k ∈ N. You saw a proof of a lower bound in Lecture 1
but now we look at this topic from a bit different angle. R(k) is the
minimum natural number n such that every graph on n vertices has
a clique or an independent set of size k. Formally,

R(k) := min
(
{n ∈ N | χ :

(
[n]
2

)
→ [2]⇒

∃X ⊂ [n] : |X| = k ∧ χ |
(
X
2

)
= χc}

)
.

Here
(
X
2

)
denotes the set of all two-element subsets of the set X, · | ·

is the restriction operation for functions, and χc denotes any constant
function.

• Frank P. Ramsey (1903–1930), after whom the numbers R(k) are
named, was a British philosopher, mathematician, economist, and
truly a genius. Unfortunately, he conformed to the image of a ro-
mantic genius also by dying very young (probably because of liver
infection he contracted when he was swimming in the river Cam).
For his life see the biography
• Ch. Misak, Frank Ramsey. A Sheer Excess of Powers, Oxford Uni-
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versity Press, 2020.

We upper bound R(k).

Theorem (an upper bound on R(k)). For every k ∈ N,

R(k) ≤ 4k−1 .

Proof. Let k ∈ N and n = 4k−1 = 22k−2. For k = 1 the bound
holds and we assume that k > 1. Let χ :

(
[n]
2

)
→ [2] be any coloring.

We set x1 = n and select a subset X1 ⊂ [n − 1] such that |X1| ≥
22k−3 and the colors χ({x, x1}), x ∈ X1, are the same. We set x2 =
max(X1) and select a subset X2 ⊂ X1 \ {x2} such that |X2| ≥ 22k−4

and the colors χ({x, x2}), x ∈ X2, are the same. We continue this
way and define elements n = x1 > x2 > · · · > x2k−1 ≥ 1 (x2k−1

is any element of X2k−2) such that for any j < i, i′ one has that
χ({xi, xj}) = χ({xi′, xj}). Thus the color of each pair from the set
X = {x1, x2, . . . , x2k−1} depends only on the larger element of the
pair, and we can select a set Y ⊂ X such that |Y | = k and χ |

(
Y
2

)
is

a constant coloring. �

It was necessary to give an upper bound on R(k) to make sure that
R(k) is a well defined thing. Think of the following example. We
define the number R′(k) by omitting in the above definition of R(k)
the clause “or an independent set”, that is, we replace at the end
of the formal definition χc with χ1, the constant map χ ≡ 1. The
proof below is easily adapted with almost no change to prove that
R′(k) > 2k/2, it even gets simpler. But the whole thing is a nonsense
because R′(k) is not defined for any k > 1, the set {n ∈ N | . . . } in
its formal definition is empty for any k > 1.

We proceed to the lower bound on R(k) and let speak its autor
P. Erdős himself. Below is a proof of the lower bound R(k) > 2k/2,
quoted verbatim from p. 292 of the 1947 article P. Erdös, Some re-
marks on the theory of graphs, Bull. Amer. Math. Soc. 53, 292–294.
By the canonical textbook of the probabilistic method
• N. Alon and J. H. Spencer, The Probabilistic Method, John Wiley
& Sons, 2000,
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it is “The three-page paper that ‘started’ the probabilistic method,
giving an exponential lower bound on Ramsey R(k, k)” (p. 276).

• Paul (Pál) Erdős (1913–1996) was a prolific Hungarian mathemati-
cian working in combinatorics, number theory, mathematical analysis,
probability theory, and set theory.

• Noga Alon is an Israeli mathematician and computer scientist. He
is the greatest living combinatorialist.

• Joel H. Spencer is an American mathematician, working in combi-
natorics. His book The Strange Logic of Random Graphs, Springer,
2001, is quite interesting.

Erdős’s notation: f(k, k) := R(k) and Ca,b :=
(
a
b

)
. Now PE speaks:

“Theorem I. Let k ≥ 3. Then

2k/2 < f(k, k) ≤ C2k−2,k−1 < 4k−1.

The second inequality of Theorem I was proved by Szekeres, thus
we only consider the first one. Let N ≤ 2k/2. Clearly the num-
ber of different graphs of N vertices equals 2N(N−1)/2. (We consider
the vertices of the graph as distinguishable.) The number of differ-
ent graphs containing a given complete graph of order k is clearly
2N(N−1)/2/2k(k−1)/2. Thus the number of graphs of N ≤ 2k/2 vertices
containing a complete graph of order k is less than

CN,k
2N(N−1)/2

2k(k−1)/2
<
Nk

k!

2N(N−1)/2

2k(k−1)/2
<

2N(N−1)/2

2
(1)

since by a simple calculation for N ≤ 2k/2 and k ≥ 3

2Nk < k!2k(k−1)/2.

But it follows immediately from (1) that there exists a graph such that
neither it nor its complementary graph contains a complete subgraph
of order k, which completes the proof of Theorem I.”

This reminds me that at the beginning of the lecture I wrote and
said that formalized probability can be viewed also as a method of
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enumeration. P. Erdős wisely saw that his simple and beautiful proof
should not be obfuscated by unnecessary probabilistic jargon, and in
the whole article there is no single mention of probability theory or
randomness. Alon and Spencer gloss over this fact.

We conclude with the best currently known lower and upper bounds
on R(k) when k →∞ (c > 0 is a constant):

(1 + o(1))

√
2

e
k
(√

2
)k
< R(k) < e−c log2 k

(
2k

k

)
∼ e−c log2 k4k .

The lower bound is due to J. Spencer in 1975, by means of the LLL
which is the topic of the next lecture. The upper bound was proved
this year 2020 in the preprint A. Sah, Diagonal Ramsey via effective
quasi-randomness, arXiv:2005.09251, 14 pp. This proof also uses the
probabilistic method, the mentioned quasi-randomness. A tantalizing
and no doubt very difficult problem is to close or at least narrow the
gap between

√
2 and 4 in the above displayed exponential bounds on

R(k).

• Ashwin Sah — “Hello! Welcome to my homepage. I am a mathemat-
ics graduate student at MIT (since Fall 2020). My research interests
include combinatorics, probability, and number theory.”

Thank you!

(final version of January 13, 2021)
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