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Abstract

The extremal function Ex(u, n) (introduced in the theory of Davenport-
Schinzel sequences in other notation) denotes for a fixed finite alter-
nating sequence u = ababa . . . the maximum length of a finite sequence
v over n symbols with no immediate repetition which does not contain
u. Here (following the idea of J. Nešetřil) we generalize this concept
for arbitrary sequence u. We summarize the already known properties
of Ex(u, n) and we present also two new theorems which give good up-
per bounds on Ex(u, n) for u consisting of (two) smaller subsequences
ui provided we have good upper bounds on Ex(ui, n). We use these
theorems to describe a wide class of sequences u (”linear sequences”)
for which Ex(u, n) = O(n). Both theorems are used for obtaining new
superlinear upper bounds as well. We partially characterize linear se-
quences over three symbols. We also present several problems about
Ex(u, n).

Key words: Davenport-Schinzel sequence, extremal problem, maxi-
mum length
AMS Classification 05 D 99
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1 Introduction

In this paper we shall investigate the maximum length Ex(u, n) of
finite sequences over n symbols not containing a fixed sequence u.
We search for sequences u for which there is a linear upper bound on
Ex(u, n). We call them linear sequences.
First we give a brief informal overview of results concerning extremal
problems of this type (belonging to a branch which could be called
”Extremal theory of sequences”). After that all necessary definitions
will be introduced. The first section concludes by the formulation of
our main result: we present two operations which enable us to de-
rive upper bounds on Ex(u, n) from upper bounds for shorter u. In
the second section we summarize the properties of Ex(u, n) which are
useful in the proofs. In the third section we show four applications
of our operations: we prove the linearity of certain relatively compli-
cated sequences, we show on examples how to derive nonlinear upper
bounds on Ex(u, n), we discuss the linearity of sequences over three
symbols and we describe which linear sequences we are able to obtain
at present. The remaining two sections are devoted to the proofs of
the main theorems. In the second and in the third sections we list
some problems which might stimulate further research in this area.

1.1 History

Davenport-Schinzel sequences are finite sequences over n symbols with
no immediate repetition of the same symbol which contain no five-term
alternating subsequence (or, more generally, no alternating subse-
quence of the length s). Davenport and Schinzel posed [4] the problem
to estimate the maximum length of such sequences. They proved in
[4] Ex(ababa, n) = O(n. log n) (Ex(ababa, n) = O(n. log n/ log log n)
in [5]) and Ex(ababab . . . , n) = O(n. exp(

√
n) (s fixed) which was

improved by Szemerédi [14] to Ex(ababab . . . , n) = O(n. log∗ n). As
usual log∗ n denotes the minimum number of iterations of the power
function 2m (starting with m = 1) which are needed to get a number
bigger or equal to n. However, the problem whether Ex(ababa, n) =
O(n) remained open until 1986 when it was answered [7] by Hart and
Sharir in the negative: they proved Ex(ababa, n) = Θ(n.α(n)) where
α(n) is the inverse to the Ackerman function and goes to infinity but
extremely slowly. Later simpler constructions proving Ex(ababa, n) =
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Ω(n.α(n)) were found ([11],[15]). M. Sharir [12] derived the upper
bounds (ababab . . . is of the length s)

Ex(ababab . . . , n) = O(n.α(n)O(α(n)s−5)).

Agarwal, Sharir and Shor [3] found almost tigh upper and lower bounds:

Ex(ababab . . . , n) ≤ n.2(α(n))
s−5
2 log2 α(n)+Cs(n) for s ≥ 5 odd

Ex(ababab . . . , n) ≤ n.2(α(n))
s−4
2 +Cs(n) for s ≥ 6 even

Ex(ababab . . . , n) = Ω(n.2Ks.(α(n))
s−4
2 +Qs(n)) for s ≥ 6 even

where Ks = 1
( s−4

2
)!

and the functions Cs(n) and Qs(n) are asymptot-

icaly smaller then the main terms in the exponent. For s = 6 they
found a stronger estimate Ex(ababab, n) = Θ(n.2α(n)).
Füredi and Hajnal [6] investigated a similar problem what is the max-
imum number of 1’s in a 0-1 matrix of the size n× n if some configu-
rations are forbidden.
The primary motivation of Davenport-Schinzel sequences was geomet-
rical and now they play an important role in computational geometry.
See the books [2] and [13] for more information and references.
The function Ex(u, n) extending functions Ex(ababa, n) resp. Ex(ababab . . . , n)
was defined in [1]. Note here that this definition which follows in the
next subsection was suggested by J. Nešetřil. Some other results from
[1] will be mentioned in the second section. In [8] it was proved that

Ex(u, n) = n.2O(α(n)|u|−4)

(|u| denotes the length of u) for any fixed finite sequence u. Thus,
from the practical point of view, Ex(u, n) has a ”linear” upper bound
for any u. In this paper we study the question for which u actually
Ex(u, n) = O(n) and we give a partial answer to it. It is easy to prove
that it holds for u = abab but it is not so easy to prove the same thing
for u = aabbaabb. The more general sequence

x1 . . . x1x2 . . . x2 . . . xk . . . xkx1 . . . x1x2 . . . x2 . . . xk . . . xk

is linear as well ([9]) but here we prove stronger results.
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1.2 Definitions

For any finite sequence u we denote by |u| the length of u, by S(u)
the set of all symbols occuring in u and by ‖u‖ the size of S(u). Thus
‖u‖ ≤ |u| for all u. The sequences for which equality is achieved are
called chains. Hence in chains no symbol repeats.
Two sequences u = a1a2 . . . an and v = b1b2 . . . bn of the same length
are equivalent if there exists a bijection f : S(u) → S(v) such that
f(ai) = bi for all i = 1, 2, . . . , n. Thus u and v coincide after a renam-
ing of symbols. The notation u ⊆ v means that u is a subsequence of
v. We say that v contains u, formally u ≺ v, if u is equivalent to some
t, t ⊆ v.
We shall refer to the occurrences of a symbol a ∈ S(u) in the sequence
u as to a-occurrences. The sequence u = aa . . . a, |u| = i is denoted
shortly by ai.
The mirror image an . . . a2a1 of the sequence u = a1a2 . . . an is denoted
by ū. The sequence u = a1a2 . . . am is called k-regular if ai = aj , i 6= j
implies |i− j| ≥ k. Thus any at most k consecutive elements in u are
different to each other. Davenport-Schinzel sequences are 2-regular.

Definition 1.2.1

Ex(u, n) = max{|v| | u 6≺ v, v is ‖u‖-regular, ‖v‖ ≤ n}

where u is a fixed sequence, v is arbitrary sequence and n ≥ 1 is an
integer.

We investigate the behaviour of this function for u fixed and n growing
to infinity. Sometimes a more general definition will be useful:

Definition 1.2.2

Ex(u, n, l) = max{|v| | u 6≺ v, v is l-regular, ‖v‖ ≤ n}

where l ≥ ‖u‖ is an integer.

Obviously Ex(u, n) = Ex(u, n, l) = ‖u‖ − 1 for any chain u and
Ex(u, n, l) ≥ n for any nonchain u. Also Ex(ai, n) = (i − 1)n and
Ex(abab, n) = 2n− 1. Our interest is focused on the set

Definition 1.2.3

Lin = {u | Ex(u, n) = O(n)}.

We call its elements linear sequences. Other sequences, for instance
ababa, are called nonlinear.
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1.3 Results

The following two theorems are the main result of this paper.

Theorem A Suppose that u = u1a
2u2 and v are two sequences

such that S(u) ∩ S(v) = ∅ and a is a symbol. If v is not a chain
then Ex(u1avau2, n) = O(Ex(v, 2Ex(u, n))). In the case v is a chain
Ex(u1avau2, n) ≤ Ex(u, n) holds.

Theorem B Suppose a, b are two symbols and u = u1a
2u2a is a

sequence such that b 6∈ S(u). Then Ex(u1abiau2abi, n) = Θ(Ex(u, n))
for any i ≥ 1.

We are interested in linear sequences. For them it follows immediately

Consequence A Let u, v ∈ Lin be as in Theorem A. Then u1avau2 ∈
Lin.

Consequence B Let u ∈ Lin and b be as in Theorem B. Then
u1abiau2abi ∈ Lin for all i ≥ 1.

We use both consequences in the obvious manner: by repeated appli-
cations of both transformations u, v → u1avau2 and u → u1abiau2abi

we can generate a wide class of linear sequences.

2 Properties of Ex(u,n)

Fact 2.1 Suppose two sequences u and v and two integers l > k ≥ ‖u‖
are given. Then for any n ≥ 1

1. Ex(u, n, k) is finite and Ex(u, n, k) = O(|u|.‖u‖.n‖u‖).

2. Ex(u, n, l) ≤ Ex(u, n, k) ≤ (Ex(u, l − 1, k) + 1)Ex(u, n, l) .

3. If v ≺ u then Ex(v, n) = O(Ex(u, n)). Especially if u is linear
then v is linear too.

4. Ex(u, n) = Ex(ū, n).

Proof: The first claim follows from Pigeon-Hole argumentation (we
mentioned in the Introduction that a far stronger estimate holds ([8])
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). The second inequality in the second claim is obtained by delet-
ing occurrences by a a greedy algorithm. For both proofs we re-
fer to [1]. The first inequality as well as the fourth claim are ob-
vious. We prove the third claim. Suppose w is a ‖u‖-regular se-
quence not containing v. Hence it cannot contain u and therefore
Ex(v, n, ‖u‖) ≤ Ex(u, n, ‖u‖) = Ex(u, n). The second inequality in
2. yields the estimate

Ex(v, n) = Ex(v, n, ‖v‖) = O(Ex(v, n, ‖u‖) = O(Ex(u, n)).

2

The reason why we exclude from the following considerations chains
is that the extremal function of any chain is constant and hence for
these singular sequences the nice estimates are not valid.

Fact 2.2 Suppose u, v and w are three sequences, i ≥ 2, j ≥ 2 are two
integers and a is a symbol such that au is not a chain. Then for n ≥ 1

1. Ex(aiu, n) = Θ(Ex(au, n)), Ex(uai, n) = Θ(Ex(ua, n)).

2. Ex(wajv, n) = Θ(Ex(wa2v, n)).

Proof: See in [1]. 2

Let us reformulate Fact 2.2. Suppose the sequence u is written in
the ”exponential form” u = ai1

1 ai2
2 . . . air

r , ai 6= ai+1, ij ≥ 1 (note that
i1 = i2 = . . . = ir = 1 iff u is 2-regular). The reduced sequence
is defined by red(u) = aj1

1 aj2
2 . . . ajr

r where j1 = jr = 1 and jk =
min{2, ik} for 1 < k < r. The fully reduced sequence is defined by
fred(u) = a1a2 . . . ar.

Fact 2.3 Ex(u, n) = Θ(Ex(red(u), n)) for any sequence u and any
integer n ≥ 1 provided that red(u) is not a chain.

Proof: Follows from the previous Fact 2.2. 2

There is the question whether Ex(u, n) = Θ(Ex(fred(u), n)) (suppose
fred(u) is not a chain) which is equivalent to the following problem.

Problem 2.1 Does Ex(ua2v, n) = O(Ex(uav, n)) hold for any sym-
bol a and all sequences u, v (provided uav is not a chain)?
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Fact 2.4 Suppose i ≥ 1 is an integer, u is a sequence over two symbols
(‖u‖ ≤ 2) and a, b are two symbols. Then

1. aibiaibi is linear.

2. ababa is nonlinear.

3. u is nonlinear iff ababa ≺ u.

Proof: For the proof of the first statement we refer to [1]. Or apply
Consequence B to the sequence a2i. The second claim is proved in [7].
We deduce the last statement from the first two. If ababa ≺ u then
clearly u is nonlinear. If the sequence u is over two symbols and does
not contain ababa then clearly u = am1bm2am3bm4 where mi ≥ 0.
Thus u ≺ ambmambm for m = max(mi | i = 1, 2, 3, 4) and u is linear
according to 1. and according to 3. of Fact 2.1. 2

3 Applications of Theorems A and B

3.1 Linearity of abcdcbabcd

The sequence w(k, i) = ai
1a

i
2 . . . ai

ka
i
1a

i
2 . . . ai

k which we mentioned in
Introduction is a k-symbol analog to aibiaibi. It was proved in [9]
by methods different from those presented here that w(k, i) is linear.
Now we prove a stronger result.

Theorem 3.1.1 The sequence z(k, i) = ai
1a

i
2 . . . ai

k−1a
i
ka

i
k−1 . . . ai

2a
i
1a

i
2 . . . ai

k−1a
i
k,

where the symbols a1, a2, . . . ak are mutually distinct, is linear for all
i, k ≥ 1.

Proof: By induction on k. For k = 1 the sequence z(1, i) =
a2i is linear. Suppose that the assertion holds for k > 1. Thus
ai

1a
i
2 . . . ai

k−1a
2i
k ai

k−1 . . . ai
2a

i
1a

i
2 . . . ai

k−1a
i
k ≺ z(k, 2i) is linear because

z(k, 2i) is a linear sequence. Applying Consequence B we conclude
that z(k + 1, i) is linear as well. 2

3.2 Superlinear bounds

Despite the fact that we stress the linear case here we cannot resist
the temptation to present an application of our theorems to nonlinear
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sequences. The difficulty is that the strong superlinear bounds of
[7] and [3] were derived only for the 2-regular case and we need a
bit more here. However, it may be checked that the method of [7]
giving Ex(ababa, n) = Θ(nα(n)) works for aibiaibiai as well and so
Ex(aibiaibiai, n) = Θ(nα(n)). We present two examples of new strong
superlinear upper bounds. It is possible to derive other similar results.

Theorem 3.2.1

Ω(nα(n)) = Ex(abacdcdcaba, n) = O(nα2(n))

Proof: The lower bound follows trivially from ababa ≺ abacdcdcaba.
The upper bound follows from Theorem A:

Ex(abacdcdcaba, n) = O(Ex(ababa, 2Ex(aba2ba, n))) =

= O(O(nα(n)).α(O(nα(n)))) = O(nα2(n))

where α(O(nα(n))) = O(α(n)) follows from the extreme slow growth
of α(n). 2

Theorem 3.2.2

Ex(abacdcabacd, n) = Θ(nα(n))

Proof: This result follows from Theorem B:

Ex(abacdcabacd, n) = Θ(Ex(abac2abac, n)) = Θ(Ex(aba2ba, n)) = Θ(nα(n)).

2

3.3 Linear sequences over three symbols

The third point of Fact 2.4 gives a complete characterization of linear
sequences over two symbols. We would like to obtain a similar charac-
terization for the whole set Lin of linear sequences but this seems to
be a hard task. Though we are unable to decide linearity even in the
slightly more general case of sequences over three symbols, we give for
these sequences a characterization theorem which puts away only few
sequences as undecided.
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Theorem 3.3.1 Suppose u is a sequence over three symbols (‖u‖ ≤ 3)
and neither u nor ū contains any of the three sequences

ababa cababcb acbabcb.

Then u is a linear sequence.

Proof: Suppose that ababa 6≺ u. It is not difficult to show that
any 2-regular sequence u, ababa 6≺ u, ‖u‖ ≤ 3 is contained in one of
three sequences u1 = ababcbc, u2 = abcbabc and u3 = acababcb. Thus
ababa 6≺ u, ‖u‖ ≤ 3 implies u ≺ u1(i) or u ≺ u2(i) or u ≺ u3(i)
(for large i) where u1(i) = aibiaibicibici, similarily for u2(i) and u3(i).
But, as may be deduced from Consequence B and Fact 2.4.1., u1(i)
and u2(i) are linear (actually u2(i) = z(3, i)). Hence u is linear or
u ≺ u3(i).
Using Consequences A and B it may be proved that any subsequence of
u3(i) which does not contain any of the four sequences s1 = cababcb, s2 =
acbabcb, s3 = acabacb and s4 = acababc is linear. Thus u is linear or
u � sj for some j ∈ {1, 2, 3, 4}. But s1 is equivalent to s̄4 and s2 is
equivalent to s̄3. We are finished. 2

In the opposite direction we are able to say only that ababa ≺ u
implies the nonlinearity of u. The linearity of three sequences over
three symbols u3 = acababcb, s1 = cababcb and s2 = acbabcb remains
open.

Problem 3.3.1 Are u3, s1 and s2 resp. u3(i), s1(i) and s2(i) linear?

3.4 How to get many linear sequences

We conclude this section by a compact description of the widest class
of sequences M such that M ⊆ Lin may be proved from above.
Let M be the minimal (to inclusion) set of sequences satisfying the
following rules

1. ai ∈ M for any symbol a and any integer i, i ≥ 1.

2. If u = u1a
2u2 and v (a is a symbol) are two sequences of M such

that S(u) ∩ S(v) = ∅ then u1avau2 lies in M as well.

3. If u = u1a
2u2a (a is a symbol) is a sequence of M and b, b 6∈ S(u)

is a new symbol then u1abiau2abi lies in M for any i ≥ 1 as well.
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4. If u is a sequence of M and v, v ≺ u is another sequence then v
lies in M as well.

5. If u is a sequence of M then ū lies in M as well.

Then

Theorem 3.4.1 M ⊆ Lin

Proof: We see immediately that the first and the last two rules
preserve linearity and hence it suffices to prove only that the set Lin
is closed on the second rule as on the third one. But this is exactly
the statement of Consequence A and B. 2

We present, as a concrete example of an application of the previous
theorem, three linear sequences. The reader will be surely able to es-
tablish how the previous five rules were used to derive these sequences
as well as (s)he will be able to obtain many others.

Example
The following three sequences belong to M and therefore they all are
linear.

ababcbcdcdedefefgfg ccaaccaabbdefedefbabb ccaaccabgggbdefedefbbbaabbgg

It is worth noting that u ∈ M iff fred(u) ∈ M . Hence the answer to
Problem 2.1 is affirmative if we restrict ourselves to M . This supports
the conjecture that the change of any exponent in u does not influence
(except the trivial case of a chain) the growth rate of Ex(u, n).

Problem 3.4.1 Characterize the set Lin. Are there 2-regular linear
sequences over n symbols which are longer than 3n− 2?

This bound is achieved for instance by z(n, 1) or by the sequences
which are constructed as the first sequence in the example above.

Problem 3.4.2 Suppose B is the set of all minimal (to ≺) nonlinear
sequences. What can be said about the elements of B? Is B finite?

The set Lin is closed to ≺ (u ≺ v ∈ Lin ⇒ u ∈ Lin) and thus B
characterizes Lin: u 6∈ Lin iff there is a sequence v that v ∈ B, v ≺
u. The set B serves for Lin as a collection of ”forbidden pictures”.
An immediate observation is that ababa ∈ B. Another observation,
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nontrivial, is that the set B must contain at least two elements: the
simple and nice construction of [15] proving Ex(ababa, n) = Ω(nα(n))
proves also implicitely Ex(w, n) = Ω(nα(n)) where w = abcbadadbcd
but ababa 6≺ w. Thus there is a sequence u∗, u∗ 6= ababa, u∗ ≺ w, u∗ ∈
B. For details we refer to [10].

4 Proof of Theorem A

Suppose a is a symbol and u = u1a
2u2 and v are two sequences such

that S(u) ∩ S(v) = ∅. We denote by t the sequence u1avau2.
We start with the simpler case of Theorem A when v is a chain.
Suppose w is a ‖t‖-regular sequence not containing t. We show that
w cannot even contain u. Let s ⊆ w be equivalent to u. The ‖t‖-
regularity of w implies that there occur ‖v‖ distinct symbols between
the two ”a’s” in s which are not elements of S(s). Thus t ≺ w which
is a contradiction. We get an inequality Ex(t, n, ‖t‖) ≤ Ex(u, n, ‖t‖).
Hence Ex(t, n) = Ex(t, n, ‖t‖) ≤ Ex(u, n, ‖t‖) ≤ Ex(u, n, ‖u‖) =
Ex(u, n).

Before proving the first part of Theorem A we give an auxiliary lemma.
We say that a nondecreasing integral function f : {1, 2, . . .} → {1, 2, . . .}
is big if

∑
i f(ni) ≤ cf(

∑
ni) for some fixed constant c for any sum of

integers
∑

i ni.

Lemma 4.1 The function Ex(u, n) is big for any nonchain u.

Proof: We call in this proof a sequence u irreducible if there does not
exist a nontrivial decomposition u = u1u2 such that S(u1)∩S(u2) = ∅.
Otherwise we call it reducible. It is easy to see that Ex(u, n) is big with
constant c = 1 for any irreducible u. Indeed, if n = n1 +n2 + · · ·+nm

then by concatenation of m ‖u‖-regular sequences vi, u 6≺ vi, ‖vi‖ ≤
ni, |vi| = Ex(u, ni), S(vi) ∩ S(vj) = ∅ we get a ‖u‖-regular sequence
v = v1v2 . . . vm, ‖v‖ ≤ n not containig u which proves the desired
inequality. To manage the case of reducible sequences we need the
following claim.

Claim Ex(u1u2, n) = O(Ex(u1, n)+Ex(u2, n)) for any two sequences
u1, u2, S(u1) ∩ S(u2) = ∅ except when |u1| = |u2| = 1.
Proof: Suppose v is ‖u1‖+‖u2‖-regular, |v| ≥ c(Ex(u1, ‖v‖)+Ex(u2, ‖v‖))
for some large fixed constant c. We show that this implies u1u2 ≺
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v. We split v = v1v2, |v1|
.= |v2|

.= 1
2c(Ex(u1, ‖v‖) + Ex(u2, ‖v‖)).

There is a sequence t, t ⊆ v1 equivalent to u1. After deleting all a-
occurrencess, a ∈ S(t) from v2 we get a ‖u2‖-regular subsequence of
v2 long enough to contain inevitably u2. Thus u1u2 ≺ v which proves
the claim.

For a given reducible nonchain sequence u we decompose u = u1u2 . . . um

where ui are irreducible and S(ui) are mutually disjoint. The previous
claim yields Ex(u, n) = O(Ex(u1, n) + Ex(u2, n) + · · ·+ Ex(um, n)).
Any term of this sum is a big function and Ex(ui, n) = O(Ex(u, n))
(3. of Fact 2.1). Hence the lemma follows. 2

Now we are able to continue in the proof. Let u, v, t be as above, v is a
nonchain and w is a ‖t‖ = ‖u‖+ ‖v‖- regular sequence not containing
t. Let f : {1, 2, . . .} → {1, 2, . . .} be a nondecreasing big function that
will be specifized later. We take the leftmost occurrence in w and add
occurrence after occurrence maintaining in every step the condition
|s| ≤ f(‖s‖) for currently constructed contiguous subsequence s of
w. In case we get equality we finish s and start a new s by the next
occurrence. On the end we get the decomposition

w = w1w2 . . . whw0, |wi| = f(‖wi‖), i > 0, |w0| ≤ f(‖w0‖).

We need f(n) be sufficiently large but not too much, we need namely:

(*) f(1) > Ex(t, 2‖u‖ − 2).

(**) f(n) > 1
‖v‖(‖u‖+ ‖v‖)(Ex(v, n) + ‖u‖) for any n ≥ 1.

(***) f(n) = O(Ex(v, n)) for n ≥ 1.

Thus the choice f(n) = dEx(v, n) for a large constant d clearly meets
all conditions (*),(**) and (***). Obviously f(n) is nondecreasing
and big because Ex(v, n) is. For any i = 1, 2, . . . , h let w∗

i , w
∗
i ⊆ wi

be such that ‖w∗
i ‖ = |w∗

i | = ‖wi‖ (we take for any x ∈ S(wi) exactly
one x-occurrences). Thus |w∗

i | ≥ 2‖u‖ − 1 according to (*). Then we
choose w∗∗

i , w∗∗
i ⊆ w∗

i (i > 0) such that |w∗∗
i | ≥ |w∗

i |−(‖u‖−1) > 1
2 |w

∗
i |

and that the two sequences

wodd = w∗∗
1 w∗∗

3 . . . w∗∗
h−1, weven = w∗∗

2 w∗∗
4 . . . w∗∗

h

(suppose for simplicity h is even) are ‖u‖-regular. This is achieved
by deleting at most ‖u‖ − 1 occurrences from w∗

i which equal to one
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of the last ‖u‖ − 1 occurrencess of w∗
i−2. It suffices to show wodd 6�

u, weven 6� u. Then conclude:

|w| =
h∑

i=1

|wi|+|w0| ≤
h∑

i=1

f(|w∗
i |)+f(‖w0‖) ≤

h∑
i=1

f(2|w∗∗
i |)+f(‖w0‖) =

=
h∑

i odd

f(2|w∗∗
i |) +

h∑
i even

f(2|w∗∗
i |) + f(‖w0‖) ≤

(bigness of f)

≤ cf(2|wodd|)+cf(2|weven|)+f(‖w‖) ≤ 2cf(2Ex(u, ‖w‖))+f(‖w‖) =

(property (***) )

= 2cdEx(v, 2Ex(u, ‖w‖)) + dEx(v, ‖w‖) = O(Ex(v, 2Ex(u, ‖w‖))).

Suppose now on the contrary that, say, wodd contains u (the sequence
weven is treated similarily). Thus u∗ = u∗1(a

∗)2u∗2 ⊆ wodd is equiva-
lent to u. The two a∗-occurrencess must lie in two distinct segments
w∗∗

2i+1, w
∗∗
2j+1, i < j for there is no repetition in any w∗∗

i and hence
u∗1a

∗w2ja
∗u∗2 ⊆ w. Now we proceed as in the proof of the claim above,

we delete all x-occurrencess, x ∈ S(u∗), from w2j and obtain a ‖v‖-
regular subsequence w′

2j , w
′
2j ⊆ w2j . Clearly

|w′
2j | ≥

‖v‖
‖u‖+ ‖v‖

|w2j | − ‖u‖

which follows from the fact that the deletion of all occurrencess of a
symbol from a k-regular sequence s yields a k−1-regular subsequence
s′ of s of the length at least k−1

k (|s| − 1). But then, according to (**),

|w′
2j | >

‖v‖
‖u‖+ ‖v‖

.
‖u‖+ ‖v‖

‖v‖
(Ex(v, ‖w2j‖) + ‖u‖)− ‖u‖ =

= Ex(v, ‖w2j‖) ≥ Ex(v, ‖w′
2j‖)

and v ≺ w′
2j . Consequently t = u1avau2 ≺ w which is a contradiction.
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5 Proof of Theorem B

This theorem is in some sense stronger than Theorem A because in
Theorem B the sequence v = b2i is split into two parts which are
inserted in two places of u, in the middle and on the end. In theorem
A we put simply the whole v in the middle of u. Therefore, one can
expect a more complicated proof. We start with three preliminary
lemmas.

Lemma 5.1 Let l ≥ 2 be an integer and let ε, 0 < ε < 1 be a
constant. Suppose v is a d l

εe- regular sequence. Then any v1, v1 ⊆
v, |v1| ≥ ε|v| contains a subsequence v2, v2 ⊆ v1 such that

1. v2 is l-regular

2. |v2| ≥ ( ε
l )

2|v|

Proof: Let v and v1 be as described. We split v = w1w2 . . . whw
where |wi| = d l

εe, i = 1, 2, . . . h, |w| ≤ d l
εe. Let

A = {i | |v1 ∩ wi| ≤ l − 1}, a = |A|, B = {i | |v1 ∩ wi| ≥ l}, b = |B|.

Clearly

a + b = h = b |v|
d l

εe
c ≤ ε

l
|v|.

Further a(l−1)+bd l
εe ≥ |v1| ≥ ε|v|. Hence ε|v| ≤ ( ε

l |v|−b)(l−1)+bd l
εe

and

b ≥
ε
l |v|

d l
εe − l + 1

≥ (
ε

l
)2|v|.

By appropriately taking one occurrences from any v1 ∩ wi, i ∈ B we
create an l-regular subsequence v2, v2 ⊆ v1, |v2| = b. 2

Suppose u = a1a2 . . . am is a sequence. An interval I = 〈aj , aj+k〉 in
u is any contiguous subsequence ajaj+1 . . . aj+k, k ≥ 1 of length at
least 2. In the case aj and aj+k are both a-occurrences we call I an
a-interval. An ordered sequence (u, <) is a sequence enriched by a
linear order (S(u), <).
Let (u, <), u = a1a2 . . . am be an ordered sequence, ai be an a-occurrences
in u (a ∈ S(u)) and c, d ≥ 1 be two integers. We say that ai is (c, d)-
covered (in u) if there is an interval I in u such that

1. ai ∈ I
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2. there are at most c a-occurrencess in I

3. there are 2d occurrencess of d (not necessarily distinct) symbols
xj ∈ S(u), j = 1 . . . d, xj < a in I, each of these symbols occurs
at least twice in I.

Lemma 5.2 For any 2-regular ordered sequence (u, <) and any inte-
ger r ≥ 2 either |u| ≤ 720r‖u‖ or there are at least 1

10 |u| occurrencess
in u which are (8r, r − 1)-covered.

Proof: We can suppose that S(u) = {1, 2, . . . , n} and that ¡ coincides
with the standard order of integers. We will define by induction sets
U0, U1, . . . , Un of disjoint intervals in u. For any j = 1, 2, . . . , n the
set Uj will contain some k-intervals, k = 1, 2, . . . , j. First put U0 = ∅.
Fix j and suppose that the set Uj−1 have been defined. We split all
j-occurrencess in u in m 8r-tuples T1, T2, . . . Tm and a residual tuple
T of the size at most 8r − 1 so that T1 consists of the 8r leftmost
j-occurrencess, T2 consists of the next 8r j-occurrencess etc. Define

Sj = {i | at least one j-occurrences of Ti is not (8r, r − 1)-covered }.

The elements of Ti, i ∈ Sj group in 4r pairs (x, x′) of consecutive
elements generating j-intervals 〈x, x′〉. The set Uj consists of all those
intervals 〈x, x′〉 and of all members of Uj−1 not intersecting them.
Now, crucially, 4r intervals 〈x, x′〉 corresponding to one Ti, i ∈ Sj

intersect all together at most (r − 2) + 2 = r intervals of Uj−1. This
holds by the definition of Sj . Thus

|Uj | ≥ 4r|Sj |+ |Uj−1| − r|Sj | = 3r|Sj |+ |Uj−1|

and

|Un| ≥ 3r
n∑

j=1

|Sj |.

Since u is 2-regular and Un consists of disjoint k-intervals,

|u| ≥ 3|Un| ≥ 9r
n∑

j=1

|Sj |.

The number of occurrencess in u which are (8r, r−1)-covered is there-
fore at least ( suppose |u| ≥ 720rn)

|u| −
n∑

j=1

8r|Sj | − (8r − 1)n ≥ |u| − 8r

9r
|u| − 1

90
|u| = 1

10
|u|.
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2

In the remaining lemma we force the symbols xj to be distinct. Sup-
pose (u, <), u = a1a2 . . . am is an ordered sequence, v ⊆ u is a sub-
sequence, y ∈ v is an a-occurrences (a ∈ S(u)) and c, d ≥ 1 are two
integers. We say that y is strongly (v, c, d)-covered if there is an in-
terval I in u such that

1. y ∈ I

2. there are at most c a-occurrencess in I ∩ v

3. there are 2d occurrencess of d distinct symbols xj ∈ S(u), j =
1 . . . d, xj < a in I, any of these symbols occurs at least twice in
I.

Lemma 5.3 Suppose two integers k ≥ 2, d ≥ 1 are given. Then there
exist two integers l ≥ 2, c ≥ 1 and two positive constants ε, ∆ > 0 such
that for any l-regular ordered sequence (u, <) one of the following
statements holds.

1. |u| ≤ ∆‖u‖
2. there is a k-regular subsequence v, v ⊆ u, |v| ≥ ε|u| such that any

occurrence in v is strongly (v, c, d)-covered.

Proof: We proceed by induction on d. To prove the statement for
d = 1 we take a 10k-regular ordered sequence (u, <). Then, according
to the previous lemma (r = 2), either |u| ≤ 1440‖u‖ or there is a
subsequence v ⊆ u, |v| ≥ 1

10 |u| whose each element is in u (16, 1)-
covered. We apply Lemma 5.1 and choose a k-regular subsequence
v′ ⊆ v, |v′| ≥ ( 1

10k )2|u|. Any element of this sequence is still (16, 1)-
covered. We see that for k ≥ 2, d = 1 we can put c = 16, l = 10k, ∆ =
1440 and ε = ( 1

10k )2.
Suppose the statement has been proved for d > 1 and any k ≥ 2.
Our task is to derive the existence of the numbers c(k, d + 1), l(k, d +
1),∆(k, d + 1) and ε(k, d + 1) corresponding to a given d + 1, k. We
show that it is possible to take

l(k, d + 1) = l(10k, d), c(k, d + 1) = 8r, ε(k, d + 1) = (
1

10k
)2ε(10k, d)

and
∆(k, d + 1) = max(∆(10k, d),

720r

ε(10k, d)
)
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where
r = d.c(10k, d) + 2.

Suppose (u, <) is an ordered l(k, d + 1)-regular sequence. Then, ac-
cording to the induction hypothesis, either |u| ≤ ∆(10k, d)‖u‖ or there
is a 10k-regular subsequence v1, v1 ⊆ u, |v1| ≥ ε(10k, d)|u| whose each
element is strongly (v1, c(10k, d), d)-covered. Suppose the latter pos-
sibility holds.
Now, according to Lemma 5.2, either |v1| ≤ 720r‖v1‖ or there is a
subsequence v2, v2 ⊆ v1, |v2| ≥ 1

10 |v1| any element of which is (8r, r −
1)-covered in v1. Suppose the latter possibility holds.
Finally, we choose according to Lemma 5.1 a k-regular subsequence
v3, v3 ⊆ v2 where |v3| ≥ ( 1

10k )2|v1|. We prove that any element of
v3 is strongly (v3, c(k, d + 1), d + 1)-covered. Let x ∈ v3 be an a-
occurrences. According to the choice of v2 there is an interval I in v1

that (8r, r − 1)-covers x. This implies that there are r − 1 symbols
aj ∈ S(u), j = 1, 2, . . . r− 1, aj < a any of which occurs twice in I and
that there are at most 8r a-occurrences in I.
We define Iu as the interval in u spanned by I and show that Iu

strongly (v3, c(k, d + 1), d + 1)-covers x. Property 1. is obvious, prop-
erty 2. requires that Iu∩ v3 contains at most c(k, d+1) a-occurrences
which is true already for I = Iu∩v1. It remains to show that 3. holds.
In case at least d+1 symbols aj are distinct we are finished. Otherwise
(see the definition of r) some symbol, say a1, has at least 2c(10k, d)+1
occurrencess in Iu. Denote the subsequence consisting of these occur-
rencess as p. Now we make use of the choice of v1 from u. We denote
by J the interval in u which strongly (v1, c(10k, d), d)-covers the mid-
dle element of p. Clearly J ⊆ Iu. We see that there are again d + 1
distinct symbols satisfying 3. for Iu. Namely a1 and those d symbols
less then a1 any of which occurs twice in J . In the former possibilitties
it is easy to check that |u| ≤ ∆(k, d + 1). 2

Now we are able to prove Theorem B. Suppose u = u1a
2u2a is a

sequence, b 6∈ S(u) is a new symbol and i ≥ 1 is an integer. Our
task is to prove Ex(u1abiau2abi, n) = O(Ex(u, n)). The lower bound
Ex(u1abiau2abi, n) = Ω(Ex(u, n)) follows from u ≺ u1abiau2abi. By
Fact 2.2 it suffices to prove Ex(t, n) = O(Ex(u, n)) where t = u1ab2au2ab.
Put k = d = ‖u‖ in the previous lemma and let c, l, ε and ∆ be the
corresponding constants guaranteed by this lemma.
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Suppose the sequence w is l-regular and does not contain t. We define
the linear order (S(w), <) by a < b iff the rightmost a-occurrences
lies to the right of the rightmost b-occurrences. In the first case of
the previous lemma |w| ≤ ∆‖w‖. Otherwise there is a ‖u‖-regular
subsequence v, v ⊆ w, |v| ≥ ε|w| whose each element is strongly
(v, c, ‖u‖)-covered. We show that v does not contain the sequence
u′ = u1a

2c+1u2a.
Suppose on the contrary that s = u∗1(a

∗)2c+1u∗2a
∗, s ⊆ v is equivalent

to u′. We denote by p the subsequence (a∗)2c+1 of s. The middle a∗-
occurrences in the subsequence p must be strongly (v, c, ‖u‖)-covered
by an interval I in w. Let J be interval in w spanned by the first and
by the last a∗-occurrences in p. Clearly I ⊆ J . There are ‖u‖ distinct
symbols xi, xi < a∗, i = 1, 2, . . . ‖u‖ and each of them occurs at least
twice in I. By the definition of ¡ each of these symbols occurs to the
right of s. At least one of them is not an element of S(s) and we get
t ≺ v which is a contradiction.
Thus u′ 6≺ v and |v| ≤ Ex(u′, ‖v‖) ≤ gEx(u, ‖v‖) for some constant g
according to Fact 2.2. Hence

|w| ≤ 1
ε
|v| ≤ g

ε
Ex(u, ‖v‖) ≤ g

ε
Ex(u, ‖w‖).

Together

|w| ≤ max{∆‖w‖, g

ε
Ex(u, ‖w‖)} = O(Ex(u, ‖w‖)).

We have proved that

Ex(t, n, l) = O(Ex(u, n)).

Finally, according to 2. of Fact 2.1, the estimate

Ex(t, n) = Ex(t, n, ‖t‖) = O(Ex(t, n, l)) = O(Ex(u, n))

holds. The Theorem is proved.
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