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Let N = {1, 2, . . . } and C be the complex numbers. We present a proof in
two steps of the Fundamental Theorem of Algebra (FTA) that every polynomial
p(z) ∈ C[z] with deg p ≥ 1 has a root, that is, p(α) = 0 for some α ∈ C. First
we show that this follows easily if one knows that every complex number has a
k-th root for every k ∈ N. Then we prove topologically that z 7→ zk maps the
unit circle onto itself, which establishes existence of k-th roots. Finally, we give
some comments and references.

Proposition 1. If every binomial zk − a, k ∈ N and a ∈ C, has a root then so
has every non-constant polynomial p(z) ∈ C[z].

Proof. Let p(z) ∈ C[z] with deg p ≥ 1 be given. First we prove that |p(z)|
attains on C minimum value. We write

p(z) = anz
n + an−1z

n−1 + · · ·+ a0 = zn(an + an−1z
−1 + · · ·+ a0z

−n)

= zn(an + q(z))

where n ≥ 1, an 6= 0, and lim|z|→∞ q(z) = 0. Let R > 0 be so large that
Rn|an|/2 ≥ |p(0)| and |z| > R⇒ |q(z)| ≤ |an|/2, and let D = {z ∈ C | |z| ≤ R}.
The disc D is compact and |p(z)| is a continuous mapping from C to [0,+∞),
hence an α ∈ D exists such that |p(α)| ≤ |p(z)| for every z ∈ D. But for
z ∈ C\D this holds too because 0 ∈ D:

|p(α)| ≤ |p(0)| ≤ Rn|an|/2 < |z|n(|an| − |q(z)|) ≤ |p(z)| .

So |p(α)| ≤ |p(z)| for every z ∈ C.
Next we show that |p(α)| = 0 and so α is a root of p(z). For contradiction,

let |p(α)| > 0. We reexpand p(z) in the basis (z − α)j , j = 0, 1, . . . :

p(z) = b0 + bk(z − α)k + bk+1(z − α)k+1 + · · ·+ bn(z − α)n

= b0 + bk(z − α)k + r(z)

where b0, bk, bn 6= 0, 1 ≤ k ≤ n, and limz→α r(z)/(z − α)k = 0. In fact,
b0 = p(α) 6= 0 and bn = an. We set, invoking the hypothesis,

β = α+ δ(−b0/bk)1/k
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where (−b0/bk)1/k is a k-th root of −b0/bk and δ > 0 is real and small enough
so that δk ≤ 1 and |r(β)| ≤ δk|b0|/2. So β 6= α and

|p(β)| = |b0 − δkb0 + r(β)| ≤ |b0 − δkb0|+ |r(β)|
= |b0| − δk|b0|+ |r(β)| ≤ |b0| − δk|b0|/2
< |b0| = |p(α)| ,

in contradiction with the minimality of |p(α)|. 2

We see that the FTA follows if we show that every a ∈ C has a k-th root for
every k ∈ N. For a = 0 or real a > 0 it is clear. Thus by replacing a 6= 0 with
a/|a| we may restrict to a ∈ S, the unit complex circle S = {z ∈ C | |z| = 1}.
For any k ∈ N, the mapping

C 3 z 7→ zk ∈ C

maps S to itself. It is clearly continuous on C and locally injective on C\{0},
in the sense that for every nonzero z ∈ C its restriction to a neighborhood of z
is injective. This follows easily from the factorization

uk − vk = (u− v)(uk−1 + uk−2v + · · ·+ vk−1)

— if u, v ∈ C are distinct and near enough to a nonzero z ∈ C, the second factor
is almost kzk−1 6= 0, and so uk 6= vk. The next proposition thus shows that
every complex number has a k-th root and completes the proof of the FTA.

Proposition 2. If f : S → S is a continuous and locally injective mapping of
the unit circle to itself then f(S) = S.

Proof. Suppose that f : S → S is continuous. We show that f(S) = S or f
is not locally injective. Since S is compact and connected, f(S) is a nonempty,
closed and connected subset of S. It follows that f(S) is (i) a single point of S
or (ii) a closed arc of S with two distinct endpoints or (iii) the whole S. The
cases (i) and (iii) are clear. Suppose that the case (ii) occurs and the endpoints
of the arc f(S) are b and c. We take an a ∈ S with f(a) = b. Let A ⊂ S be
any closed arc containing a in its interior. Then f(A) = B ⊂ S is a closed arc
such that f(a) = b is one of its two endpoints. If the restriction of f to A is
injective, it is a homeomorphism of A and B (since A is compact). But this
is impossible because A\{a} is disconnected but B\{f(a)} is connected. Thus
f |A is not injective and we deduce that f is not locally injective near a. 2

This text arose from my teaching of “Matematická analýza III” in fall of
2015. I have found it useful and pleasing to record a simple and selfcon-
tained proof of the FTA, and used it in my lectures to illustrate topological
notions such as continuity, compactness, closeness, homeomorphism, interior,
and (dis)connectivity. Proofs of the FTA are an often, maybe too often, trod-
den area — search in the Mathematical Reviews database returns (in October
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2015) 128 items whose title contains “the fundamental theorem of algebra”, of
which I randomly selected and printed and tried to look at Baltus [2], Derksen
[3], Lazer and Leckband [4], Moritz [5], Pascu [6], Sheffer [9], Shipman [10],
and Suzuki [11] — and so I put here the usual disclaimer of claiming not much
originality in the above proof. I think I remember well that I learned the mini-
mization argument proving Proposition 1 from Zorich [12, Chapter 5.5.5]. This
minimization proof of the FTA goes back to Argand [1]. I also think I remem-
ber well not learning Proposition 2 from anywhere. I want to remark that this
minimization proof is in fact not so much a proof of the FTA as a reduction
from general non-constant polynomials p(z) to binomial polynomials zk − a, as
I stressed by the formulation of Proposition 1. Usually, say in Zorich [12, Chap-
ter 5.5.5] or Rudin [7, Chapter 8, p. 184], this is not emphasized and is buried
in and obscured by notation. But the truth is that the second necessary step,
proving existence of k-th roots, is equally important and at least as difficult
as the previous minimization argument. One can obtain them by de Moivre’s
formula via the sinus–cosinus machinery, which means to establish properties of
the exponential function z 7→

∑
n≥0 z

n/n! (especially that its image is C\{0})
which is very nicely done in Rudin [8, Prologue]. One can probably calculate
k-th roots by converging power series solutions of some equations, but then one
can try to find in this way solution to the general equation p(z) = 0, and al-
ready Sheffer [9] thought about that (and much earlier before him d’Alembert,
see Baltus [2]). Or one can use topological arguments, as we did in Proposition
2. Certainly one can write a formula for the 2-nd root of any a ∈ C. Is there a
more algebraic argument proving existence of k-th roots?
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