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Abstract. We show that the Stanley–Wilf enumerative conjecture on
permutations follows easily from the Füredi–Hajnal extremal conjecture
on 0-1 matrices. We apply the method, discovered by Alon and Friedgut,
that derives an (almost) exponential bound on the number of some ob-
jects from a (almost) linear bound on their sizes. They proved by it a
weaker form of the Stanley–Wilf conjecture. Using bipartite graphs, we
give a simpler proof of their result.

Poka�em, qto gipoteza St�nli i Vilfa o qisle perestanovok vy-
tekaet prostym obrazom iz �kstremal~no� gipotezy Firedy i Ha�-
nala o 0-1 matricah. Primen�em metod vyvoda (poqti) �ksponen-
cial~no� ocenki qisla ob�ektov iz (poqti) line�no� ocenki ih
veliqin otkryty� Alonom i Fridgutom. �tim metodom oni doka-
zali gipotezu St�nli i Vilfa v oslablenno� forme. S pomow~�
dvudol~nyh grafov poluqim bolee prostoe dokazatel~stvo ih re-
zul~tata.

The Stanley–Wilf conjecture asserts that the number of n-permutations not
containing a given permutation is exponential in n. Alon and Friedgut [1] proved
that it is true provided we have a linear upper bound on lengths of certain words
over an ordered alphabet. They also proved a weaker version of it with an almost
exponential upper bound. In the present note we want to inform the reader about
this interesting development by reproving the latter result in a simpler way. We
use bipartite graphs instead of words. We point out that in 1992 Füredi and
Hajnal almost made an extremal conjecture on 0-1 matrices that now can easily
be seen to imply the Stanley–Wilf conjecture. We prove that both extremal
conjectures are logically equivalent.

We use N to denote the set {1, 2, . . .} and [n] to denote the set {1, 2, . . . , n}.
The sets of all finite sequences (words) over N and [n] are denoted N∗ and [n]∗.
If u ∈ N∗, |u| is the length of u. A sequence v = b1b2 . . . bl ∈ N∗ is k-sparse if
bj = bi, j > i, implies j − i ≥ k. In other words, in each interval in v of length
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≤ k all terms are distinct. Permutations are represented as elements of N∗ in
the standard way, e.g., p = 32154. If |p| = k, we speak of a k-permutation.

Let u = a1a2 . . . ak and v = b1b2 . . . bl be two sequences from N∗. If k = l
and, for every i and j, ai < aj if and only if bi < bj , we say that u and v are
isomorphic. Thus, in particular, ai = aj if and only if bi = bj . The isomorphism
of u and v means that, using only comparisons by <, we cannot tell apart u
and v. If u, v ∈ N∗ are two sequences and v has a (not necessarily consecutive)
subsequence isomorphic to u, we say that v contains u and write v ⊃< u. Then,
clearly, |v| ≥ |u|.

We define analogous notions for the equality relation. Two sequences u =
a1a2 . . . ak and v = b1b2 . . . bl are weakly isomorphic if k = l and, for every i and
j, ai = aj if and only if bi = bj . A sequence v weakly contains another sequence
u, denoted v ⊃= u, if v has a subsequence weakly isomorphic to u. Then, again,
|v| ≥ |u|.

In summary, v ⊃< u means that a subsequence of v induces the same ”bigger-
smaller” pattern as u, while v ⊃= u requires only a subsequence that shares with
u just the equality pattern. Thus v ⊃< u implies v ⊃= u but the opposite im-
plication usually does not hold. As an example consider the sequences 31225345
and 2121. We have 31225345 ⊃= 2121 (because of the subsequence 3535) but
31225345 6⊃< 2121.

The following conjecture is about ten years old and is well known among
enumerative combinatorialists.

The Stanley–Wilf conjecture. For each permutation p there is a constant
c = c(p) > 1 such that the number Sn(p) of n-permutations q, q 6⊃< p, satisfies
Sn(p) < cn.

One of the evidences for it is the result of Bóna [2] that it holds for all permu-
tations p of the form p = I1I2 . . . Ir where all terms of Ii are smaller than all
terms of Ii+1 and each sequence Ii is decreasing.

The Alon–Friedgut conjecture. For each k-permutation p there is a constant
c = c(p) > 0 such that if v ∈ [n]∗ is k-sparse and v 6⊃< p then |v| < cn.

In [1] it is shown that if the AFC is true then so is the SWC. To be precise, the
AFC is put there in the form of a question rather than a conjecture.

Suppose M = (mij) and N = (nij) are a × b and c × d matrices with
entries in {0, 1}. M contains N if there are indices 1 ≤ i1 < · · · < ic ≤ a and
1 ≤ j1 < · · · < jd ≤ b such that, for all r ∈ [c] and s ∈ [d], mir,js

= 1 whenever
nr,s = 1. In other words, M has a (not necessarily consecutive) submatrix of N ’s
size that has 1s on all the places where N has them and maybe on some others.

Füredi and Hajnal [3] investigated the extremal function f(m,n;N) that is
defined as the maximum number of 1s in an m × n 0-1 matrix M that does
not contain N ; f(n;N) = f(n, n;N). They looked systematically at all 37 sub-
stantially distinct Ns with four 1s and no zero row or column. (We leave to the
interested reader to prove as an exercise that if N has at most three 1s then



f(m,n;N) = O(m+n). For four 1s the situation is much more complicated.) In
the concluding section of [3] they ask if for each permutation matrix N we have
f(n;N) = O(n): ”Is it true that the complexity of all permutation configurations
are linear?” We take the liberty to formulate it as a conjecture.

The Füredi–Hajnal conjecture. For each permutation matrix N we have the
estimate f(n;N) = O(n).

We show, using the ideas of [1], that the FHC implies the SWC. We prefer
to think of the matter in terms of bipartite graphs. Let G and H be two simple
bipartite graphs with the parts [a], [b]′ and [c], [d]′. Here [b]′ = {1′, 2′, . . . , b′}
and the parts are linearly ordered in the natural way. We say that G contains
H if H is a (ordered!) subgraph of G, that is, there exist increasing injections
f : [c] → [a] and g : [d]′ → [b]′ such that if {i, j′} is an edge of H then {f(i), g(j′)}
is an edge of G. Besides being a sequence and a 0-1 matrix, each k-permutation
p = a1a2 . . . ak is also a bipartite graph Gp with the parts [k], [k]′ and the edges
{ai, i

′}, i ∈ [k]. The FHC then says that each bipartite graph on [n], [n]′ not
containing Gp has only O(n) edges.

Theorem 1. If the FHC is true then so is the SWC.

Proof. Let p be a permutation and M(n) the set of simple bipartite graphs on
[n], [n]′ that do not contain Gp. We assume the FHC — there is a constant c
such that |E(G)| < cn for each G ∈ M(n). Let n > 1. For each G ∈ M(n) we
define a bipartite graph G1 on [m], [m]′, where m = dn/2e, by

{i, j′} ∈ E(G1) ⇐⇒ ∃ e ∈ E(G) : e ∩ {2i− 1, 2i} 6= ∅& e ∩ {2j′ − 1, 2j′} 6= ∅ .

Clearly, G1 ∈ M(m). Also, one G1 arises from at most 15|E(G1)| < 15cm graphs
G because there are 15 possibilities for a nonempty restriction of G to {2i −
1, 2i}, {2j′ − 1, 2j′}. Hence,

|M(n)| < 15cdn/2e · |M(dn/2e)| .

Iterating the inequality until |M(1)| = 2, we obtain an upper bound on |M(n)|
that is exponential in n. But Sn(p) ≤ |M(n)| because for each n-permutation
q, q 6⊃< p, we have Gq ∈ M(n). Thus

Sn(p) ≤ |M(n)| < 152cn .

ut

Alon and Friedgut prove the weaker form of the SWC with an almost ex-
ponential bound by means of the following result due to Klazar [5]. Suppose
u ∈ [k]∗ is given. If v ∈ [n]∗ is k-sparse and v 6⊃= u — notice that now we use
the weak containment, then

|v| < ncα(n)d

(1)



where c, d > 1 are moderate constants depending only on u and α(n) is the
inverse of the Ackermann function A(n) known from recursion theory.

We remind the reader the definitions of A(n) and α(n). If F1(n) = 2n,
F2(n) = 2n, and Fi+1(n) = Fi(Fi(. . . Fi(1) . . .)) with n iterations of Fi, then
A(n) = Fn(n) and α(n) = min{m : A(m) ≥ n}. Although α(n) → ∞, in
practice α(n) is bounded:

α(n) ≤ 4 for n ≤ 22··
·2

where the height of the tower is 216 = 65536.

Theorem 2. For each fixed permutation p,

Sn(p) ≤ |M(n)| < 225nβ(n) with β(n) = cα(n)d

where c, d > 1 are constants depending only on |p| and α(n) is the inverse of the
Ackermann function.

Proof. We use the notation of the previous proof and set k = |p|. If instead of
|E(G1)| < cm the bound |E(G1)| < mβ(m) with an increasing function β(m) is
used, we get

Sn(p) ≤ |M(n)| < 152nβ(n) = 225nβ(n) .

Let G ∈ M(n). It remains to derive a good bound |E(G)| < nβ(n). Consider
the sequence v = L1L2 . . . Ln ∈ [n]∗, where Li is the list of the neighbours of i′ in
G, in the increasing order. The sequence v is in general not k-sparse but it is easy
to see that by deleting ≤ (k − 1)(n− 1) appropriate elements, ≤ k − 1 from the
beginning of each of L2, . . . , Ln, we can obtain a k-sparse subsequence w. It is
also not difficult to see that if v ⊃= u(k), where u(k) = 12 . . . k12 . . . k . . . 12 . . . k
has 2k segments 12 . . . k, then G contains Gp. (The repetitions in the weak u(k)-
copy in v force a subsequence isomorphic to p whose terms lie in k distinct Lis.)
Thus w 6⊃= u(k) and we can apply the aforementioned result:

|E(G)| = |v| ≤ (k − 1)(n− 1) + |w| < (k − 1)(n− 1) + ncα(n)d

.

ut

Our bound is weaker compared to the bound of Alon and Friedgut in [1]. They
use a more complicated induction step in which they decrease n more than to
ours dn/2e. As we mentioned, they do not work with graphs but in (N∗,⊃<)
and (N∗,⊃=).

We show that both extremal conjectures are equivalent.

Theorem 3. The AFC and the FHC are mutually equivalent.

Proof. We prove first that the AFC implies the FHC. If v = a1a2 . . . al ∈ N∗,
1 ≤ i ≤ j < k ≤ l, and aj > aj+1, we say that ai and ak are in v separated by a
fall. Let p be a permutation and G a bipartite graph on [n], [n]′ not containing



Gp. Consider the sequence v = L1L2 . . . Ln ∈ [n]∗ of the previous proof. Recall
that each Li is increasing. It may happen that v ⊃< p because one Li can
contribute to the subsequence isomorphic to p by more than one element. To
prevent this, we take a larger permutation p′ ⊃< p, |p′| = k′, such that each two
consecutive elements of the subsequence of p′ that is isomorphic to p are in p′

separated by a fall. Now v ⊃< p′ is impossible. As we know, by deleting < k′n
elements we can obtain a k′-sparse subsequence w. By the AFC for p′, we have
a linear bound on |w|. So |E(G)| = |v| < k′n + |w| = O(n).

We prove that the FHC implies the AFC. If we are content in the AFC with
any bound, the (unconditional) proof is easy. Suppose u ∈ [k]∗, v ∈ [n]∗ is k-
sparse, and v 6⊃< u. We derive a bound on |v| in terms of k, |u|, and n. Notice
that u is any sequence, not just a permutation. Split v into intervals of length
k and the remainder of length < k. By the pigeonhole principle (v 6⊃< u), there
are at most (|u| − 1)

(
n
k

)
intervals. Therefore

|v| < k((|u| − 1)
(

n

k

)
+ 1) .

Now suppose that p is a k-permutation and v ∈ [n]∗ is a k-sparse sequence
not containing p. Using the FHC, we prove a linear bound on |v|. There is a
constant c > 0 such that |E(G)| < cn holds for each bipartite graph on [n], [n]′

not containing Gp. If k > c, we set l = k and w = v. Else we fix a positive integer
l, l > c, and take w as the longest l-sparse subsequence of v. We show first that
|w| is proportional to |v|. The subsequence w splits v into nonempty intervals
disjoint to w. Let I be one of them. Since no term of I can be used to extend
w, each of them equals to one of the ≤ l− 1 terms of w preceding I or following
it. So there are only ≤ 2l − 2 distinct numbers in I and, since I is k-sparse and
I 6⊃< p, |I| < k((k − 1)

(
2l−2

k

)
+ 1) = d(k, l) (by the above trivial bound). Thus

|v| < (d(k, l) + 1)(|w|+ 1) .

Now split w into m intervals wi of length l and the remainder r of length
< l: w = w1w2 . . . wmr. Consider the bipartite graph G on [n], [m]′, defined by

{i, j′} ∈ E(G) ⇐⇒ i appears in wj .

Clearly, G does not contain Gp and each j′ has degree l. If m ≥ n, after adding
some isolated vertices to [n] G can be regarded as a graph on [m], [m]′. But G
has lm > cm edges, a contradiction. Hence m < n and we have the bound

|v| < (d(k, l) + 1)(|w|+ 1) < (d(k, l) + 1)(ln + 1) = O(n) .

ut

Conclusion and remarks. In (1) one can set, for n > n(u), c = 1000k3 and
d = |u|−4, see [5]. Thus in Theorem 2 one can set, for n > n(k), c = 1000k3 and
d = 2k2. The bound (1) cannot in general be improved to O(n). For example,
it is known that if v1, v2 ∈ [n]∗ are 2-sparse and have the maximum length



with respect to v1 6⊃= 12121, v2 6⊃= 121212, then nα(n) � |v1| � nα(n) and
n2α(n) � |v2| � n2α(n). For more information see the book [8] of Sharir and
Agarwal. So it is possible that the FHC is false. If the FHC is true, to prove it
seems to require tools far stronger than are those presented in [3].

The paper [1] teaches us that we understand the SWC better by viewing
permutations as elements of N∗. We have seen that we can view them also as
bipartite graphs. The situation can be generalized further to the class of ordered
hypergraphs, see [6] and [7].

In the end of [4] Gessel mentions the problem to decide if for each permutation
p the sequence {Sn(p)}n≥1 is P-recursive. The above results are not relevant to
the problem and it appears to be very difficult. On the other hand, a strong
optimism in this respect was expressed by Zeilberger [9].
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