1.3 Primes in arithmetic progression

Our first partial result towards Dirichlet's theorem introduces analytic approach. We prove that not only the two kinds of odd primes $p=1+4 n$ and $p=3+4 n$ are infinite in number, but that they are in a sense equidistributed: for both $a=1$ and $a=3$ we have, for $x>1$,

$$
\sum_{p=a+4 n \leq x} \frac{\log p}{p}=\frac{1}{2} \sum_{p \leq x} \frac{\log p}{p}+O(1)=\frac{\log x}{2}+O(1) .
$$

An important tool in the proof is Abel's inequality, Proposition B.1.7: if $a_{i} \in \mathbb{C}, b_{i} \in \mathbb{R}, i=1,2, \ldots, n$, and $b_{1} \geq b_{2} \geq \cdots \geq b_{n} \geq 0$, then

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq A b_{1}, A=\max _{1 \leq m \leq n}\left|a_{1}+a_{2}+\cdots+a_{m}\right|
$$

We apply it four times or so. Important is also the function $\chi: \mathbb{Z} \rightarrow\{-1,0,1\}$,

$$
\chi(n)= \begin{cases}(-1)^{(n-1) / 2} & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even }\end{cases}
$$

So $\chi(4 n+1)=1, \chi(4 n+3)=-1$ and $\chi(2 n)=0$. Two crucial properties, both immediate from the definition, are

$$
\left|\sum_{n \in I} \chi(n)\right| \leq 1 \quad \text { and } \quad \chi(a b)=\chi(a) \chi(b)
$$

where $I \subset \mathbb{Z}$ is any finite interval and $a, b \in \mathbb{Z}$. The proof only uses finite sums, with the exception of

$$
L(1, \chi):=\sum_{n=1}^{\infty} \frac{\chi(n)}{n}
$$

This infinite series conditionally converges by Abel's inequality ($a_{i}=\chi(i), b_{i}=$ $1 / i$), which further gives

$$
L(1, \chi)=1+\sum_{n=3}^{\infty} \frac{\chi(n)}{n} \geq 1-\frac{1}{3}=\frac{2}{3}
$$

In particular, $L(1, \chi) \neq 0$.
Proposition 1.3.1 For $x>1$, let

$$
S=S(x):=\sum_{2<p \leq x} \frac{\log p}{p}=\log x+O(1)
$$

(by Theorem 1.2.8). Then for $x>1$ we have

$$
\sum_{p=1+4 n \leq x} \frac{\log p}{p}=\frac{S}{2}+O(1) \quad \text { and } \quad \sum_{p=3+4 n \leq x} \frac{\log p}{p}=\frac{S}{2}+O(1) .
$$

Proof. We denote the first sum by $A=A(x)$ and the second by $B=B(x)$. Then

$$
S=A+B \text { and } C=C(x):=A-B=\sum_{p \leq x} \frac{\chi(p) \log p}{p}
$$

As $A=(S+C) / 2$ and $B=(S-C) / 2$, it suffices to show that $C=O(1)$ for $x>1$.

We have, for $x>1$,

$$
O(1)=\sum_{n \leq x} \frac{\chi(n) \log n}{n}=\sum_{n \leq x} \frac{\chi(n)}{n} \sum_{d \mid n} \Lambda(d)=\sum_{d \leq x} \frac{\chi(d) \Lambda(d)}{d} \sum_{e \leq x / d} \frac{\chi(e)}{e} .
$$

The first equality follows by Abel's inequality $\left(a_{i}=\chi(i), b_{i}=i^{-1} \log i\right)$, the second by Proposition 1.2.7 and the third by changing summation order and using complete multiplicativity of χ. By Abel's inequality ($a_{i}=\chi(i), b_{i}=1 / i$), the last sum equals $L(1, \chi)-\sum_{e>x / d} \chi(e) / e=L(1, \chi)+O(d / x)$. Thus, by Proposition 1.2.7,
$O(1)=L(1, \chi) \sum_{d \leq x} \frac{\chi(d) \Lambda(d)}{d}+O(1 / x) \sum_{d \leq x} \Lambda(d)=L(1, \chi) \sum_{d \leq x} \frac{\chi(d) \Lambda(d)}{d}+O(1)$.
Since $L(1, \chi) \neq 0$, we may divide by it and get

$$
\sum_{d \leq x} \frac{\chi(d) \Lambda(d)}{d}=O(1)
$$

We split the sum in two, over $d=p \leq x$ and $d=p^{k} \leq x$ with $k \geq 2$, as in the proof of Proposition 1.2.7. The second sum is bounded by a convergent series, and we have the desired conclusion

$$
C=\sum_{p \leq x} \frac{\chi(p) \log p}{p}=O(1)
$$

The same argument works for primes of the forms $p=1+3 n$ and $p=2+3 n$; we replace χ with the mapping χ^{\prime} given by $\chi^{\prime}(3 n)=0, \chi^{\prime}(3 n+1)=1$ and $\chi^{\prime}(3 n+2)=-1$. In Chapter 2 we extend it to general primes $p=a+m n$.

The second partial result towards Dirichlet's theorem demonstrates power of algebraic methods. We show that any arithmetic progression

$$
1+m n, n=1,2, \ldots
$$

contains infinitely many primes. We start with the case when m itself is a prime number, and demonstrate by a simple argument existence of one prime of the form $1+m n$. Let p be a prime dividing $2^{m}-1 \geq 3$. Thus $2^{m} \equiv 1$ modulo p, and as $2^{1} \not \equiv 1$ modulo $p, 2$ has multiplicative order m modulo p. By Fermat's little theorem, $2^{p-1} \equiv 1$ modulo $p(p \neq 2)$. Hence m divides $p-1$, which we wanted to show. We have obtained the next result.

