
1.3 Primes in arithmetic progression

Our first partial result towards Dirichlet’s theorem introduces analytic approach.
We prove that not only the two kinds of odd primes p = 1+ 4n and p = 3+ 4n
are infinite in number, but that they are in a sense equidistributed: for both
a = 1 and a = 3 we have, for x > 1,
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An important tool in the proof is Abel’s inequality, Proposition B.1.7: if
ai ∈ C, bi ∈ R, i = 1, 2, . . . , n, and b1 ≥ b2 ≥ · · · ≥ bn ≥ 0, then
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We apply it four times or so. Important is also the function χ : Z → {−1, 0, 1},

χ(n) =

�
(−1)(n−1)/2 if n is odd
0 if n is even .

So χ(4n+ 1) = 1, χ(4n+ 3) = −1 and χ(2n) = 0. Two crucial properties, both
immediate from the definition, are
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where I ⊂ Z is any finite interval and a, b ∈ Z. The proof only uses finite sums,
with the exception of
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This infinite series conditionally converges by Abel’s inequality (ai = χ(i), bi =
1/i), which further gives
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In particular, L(1, χ) �= 0.

Proposition 1.3.1 For x > 1, let

S = S(x) :=
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(by Theorem 1.2.8). Then for x > 1 we have
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Proof. We denote the first sum by A = A(x) and the second by B = B(x).
Then

S = A +B and C = C(x) := A − B =
�
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p
.

As A = (S + C)/2 and B = (S − C)/2, it suffices to show that C = O(1) for
x > 1.

We have, for x > 1,
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The first equality follows by Abel’s inequality (ai = χ(i), bi = i−1 log i), the
second by Proposition 1.2.7 and the third by changing summation order and
using complete multiplicativity of χ. By Abel’s inequality (ai = χ(i), bi = 1/i),
the last sum equals L(1, χ) −
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e>x/d χ(e)/e = L(1, χ) + O(d/x). Thus, by

Proposition 1.2.7,
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Since L(1, χ) �= 0, we may divide by it and get
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We split the sum in two, over d = p ≤ x and d = pk ≤ x with k ≥ 2, as in the
proof of Proposition 1.2.7. The second sum is bounded by a convergent series,
and we have the desired conclusion
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The same argument works for primes of the forms p = 1 + 3n and p = 2 + 3n;
we replace χ with the mapping χ� given by χ�(3n) = 0, χ�(3n + 1) = 1 and
χ�(3n + 2) = −1. In Chapter 2 we extend it to general primes p = a +mn.

The second partial result towards Dirichlet’s theorem demonstrates power
of algebraic methods. We show that any arithmetic progression

1 +mn, n = 1, 2, . . . ,

contains infinitely many primes. We start with the case when m itself is a prime
number, and demonstrate by a simple argument existence of one prime of the
form 1 + mn. Let p be a prime dividing 2m − 1 ≥ 3. Thus 2m ≡ 1 modulo p,
and as 21 �≡ 1 modulo p, 2 has multiplicative order m modulo p. By Fermat’s
little theorem, 2p−1 ≡ 1 modulo p (p �= 2). Hence m divides p − 1, which we
wanted to show. We have obtained the next result.
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