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1. Previous bounds. It is well known that
c(n) = #(solutions to n =) a;, a; > 1) = on—1
but what is
m(n) = #(solutions to n =[] a;, a; >2)7?

(The order of summands and factors matters.)

The values of m(n) forn =1,2,...,50 are:
0(1),1,1,2,1,3,1,4,2,3,1,8,1,3,3,8, 1,8,
1,8,3,3,1,20,2,3,4,8,1,13,1,16, 3, 3,3, 26,
1,3,3,20,1,13,1,8,8,3,1,48,2,8, ...

We have m(n) < n for n < 48 but m(48) = 48. Perhaps
m(n) < ni> for all n?



Well, no, but it is true that m(n) < nf for all n when
p= 172864 ..., where p satisfies {(p) =>>.1/nf = 2.

Proof by induction (Coppersmith & Lewenstein, 2005).
m(1) =1 < 1P and for n > 1,

m(n) = > mn/d)y< ) nf/d

dln, d>1 dln, d>1
< 0P Y 1/dP = nP((p) — 1)
d>1
= nP. O

Where does p come from? From the Dirichlet series

) Sy 1y =

n>1 " _rzo 2 —((s)




How big may m(n) be? In average,

> m(n) = (c+o(1))z’, z — oo,

n<x

where ¢ = —1/p¢'(p) = 0.31817... (Kalmar, 1931).
Bounds on the error term:

< exp(—as(loglog 2)4/378), a. >0
(Ikehara, 1941) and 4/3 — 3/2 by Hwang in 2000.

What about the maximal order of m(n)? Erd&s claimed
in 1941 that for some constants O < ¢y < c¢q < 1,

m(n) < nf/exp((logn)2) for n > ng
m(n) > nf/exp((logn)l) for co many n
but gave no proof. Best bounds proved so far are

m(n) < nP (Chor, Lemke and Mador, 2000) and m(n) >
nP—¢ for oo many n (Hille, 1937).



2. Our bounds. One may take ¢ = cp = 1/p. More
precisely, Ve > 0

nP
exp ((Iog n)1/r/(loglog n)1+€)

holds for n > ng, while, for some positive constant c,

m(n) <

.y
exp (c(log n)1/P/(loglog n)l/P>

holds for co many n.
(Klazar & Luca, arXivimath.NT /0505352, version 2)

m(n) >

Perhaps 1 4+¢ — 1/p7



3. Outline of the proof. Let p, = the kth prime,

P(n) = mMaXy,,, P,

Pr={n: P(n) < px}
and
my(n) = #(solutions to n = [ a;, a; € PL\{1}).

So mgp(n) = m(n) if n € P, and mp(n) = 0 else. As
before we have

myp(n) < nPk
where (i.(pr) = 2 and (i (s) is defined by
G =11 (1-1p°) = X 1/n"

PPy neEP;
Clearly, pr. T p as k — oo but how fast?

c+ O(loglog k/log k)
kP—1(log k)P '

p— Pr=



The lower bound. We use the Dirichlet series

5> ) sy 1y =

n>1 T r>0 2 — Ck(s)

By the effective Ikehara—Ingham theorem (due to Tenen-
baum), for z — oo,

> my(n) = > m(n) = (¢ + o(1))z"*,
n<w n<z, P(n)<py
uniformly in k£ = 2,3,4,.... Thus, with the usual no-

tation V(z,y) = #{n <z : P(n) < y}, there exists an
N < z such that

Pk zP [ ex — pi)logx
V) > _ =/ exp((p — p) log =)
5W (z, p) 5V (x, p)

and tunning k = k(x), we obtain the lower bound.



The upper bound. We are given an n = g71...q"
where 2 < g1 <go < .... Letﬁ=p6{1...pzk (now p1 = 2,
p>=3,...). Son<n and

m(n) = m(n) < nfk < nPk
where k = w(n). If k = w(n) is small, we bound

nP

exp((p — pr) logn)

again by the asymptotics p — pp. = ---. But what if
k= w(n) is not small? By a combinatorial argument, if
qgln then

m(n) < nPk =

m(n) < 2Q2(n) -m(n/q) < 3logn-m(n/q).
Iterating, we get

m(n) < (3logn)* - m(n/q1qz ... qx)
where k£ = w(n).



So

m(n) < (3logn)* -pm(n/qmz QL)

(9192 - - - qx)*
nP

(p1p2 ... PK)P

nP

— exp(pXi<k logp; — k(loglogn + log 3))’
If k = w(n) is not small, exp(---) > 1 and we get a non-
trivial upper bound. Tunning k = k(n) and combining
both arguments, we get the upper bound.

< (3logn)”

< (3logn)*




4. Further properties of m(n). (1, 2, and 3 are
proved in our preprint, 1 was obtained also by Knopf-
macher and Mays in 2005).

1. m(n) = n for co many n.
2. m(n) is odd <= n is squarefree.

3. Sequence (m(n)),>1 is not holonomic, that is, sat-
isfies no linear recurrence with polynomial coefficients.

4. (Cayley, 1859; often rediscovered). If a, = m(p1ip2...pg)
then
k 1

Z apx .
S0 k! 2 —exp(x)




5. (MacMahon, 1893). A formula for m(qyt...q.*) in
terms of the multiset {aq1,ao,...,a}.

6. (MacMahon, 1893). m(n) is equal to the number
of perfect partitions of n — 1.

A F n is perfect if for every n’ < n there is exactly one
subpartition X of A with M F »/.

Example. m(12) = 8 and 11 has 8 perfect partitions,
namely (12,3,6), (1,22,6), (1°,6), (1,2,42), (13,42,
(12,3%), (1,2°), and (111).



