How many ordered factorizations may *n* have?

Martin Klazar

Charles University, Prague, Czech Republic joint work with

Florian Luca

UNAM, Morelia, Mexico

Overview

- 1. Previous bounds on the number m(n) of ordered factorizations of n
- 2. Our bounds
- 3. Outline of the proof
- 4. Further properties of m(n)

1. Previous bounds. It is well known that

c(n) = #(solutions to $n = \sum a_i, a_i \ge 1) = 2^{n-1}$ but what is

m(n) = #(solutions to $n = \prod a_i, a_i \ge 2$)? (The order of summands and factors matters.)

The values of m(n) for $n = 1, 2, \dots, 50$ are:

0(1), 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8,1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, $1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, \dots$

We have m(n) < n for n < 48 but m(48) = 48. Perhaps $m(n) < n^{1.5}$ for all n?

Well, no, but it is true that $m(n) < n^{\rho}$ for all n when $\rho = 1.72864...$, where ρ satisfies $\zeta(\rho) = \sum 1/n^{\rho} = 2$.

Proof by induction (Coppersmith & Lewenstein, 2005). $m(1) = 1 \le 1^{\rho}$ and for n > 1,

$$\begin{split} m(n) &= \sum_{\substack{d \mid n, \ d > 1}} m(n/d) \leq \sum_{\substack{d \mid n, \ d > 1}} n^{\rho}/d^{\rho} \\ &< n^{\rho} \sum_{\substack{d > 1}} 1/d^{\rho} = n^{\rho}(\zeta(\rho) - 1) \\ &= n^{\rho}. \end{split}$$

Where does ρ come from? From the Dirichlet series

$$\sum_{n \ge 1} \frac{m(n)}{n^s} = \sum_{r \ge 0} (\zeta(s) - 1)^r = \frac{1}{2 - \zeta(s)}.$$

How big may m(n) be? In average,

$$\sum_{n \le x} m(n) = (c + o(1))x^{\rho}, \ x \to \infty,$$

where $c = -1/\rho\zeta'(\rho) = 0.31817...$ (Kalmár, 1931). Bounds on the error term:

$$\ll \exp(-\alpha_{\varepsilon}(\log\log x)^{4/3-\varepsilon}), \ \alpha_{\varepsilon} > 0$$

(Ikehara, 1941) and $4/3 \rightarrow 3/2$ by Hwang in 2000.

What about the maximal order of m(n)? Erdős claimed in 1941 that for some constants $0 < c_2 < c_1 < 1$,

$$m(n) < n^{
ho}/\exp((\log n)^{c_2})$$
 for $n > n_0$
 $m(n) > n^{
ho}/\exp((\log n)^{c_1})$ for ∞ many n

but gave no proof. Best bounds proved so far are $m(n) < n^{\rho}$ (Chor, Lemke and Mador, 2000) and $m(n) > n^{\rho-\varepsilon}$ for ∞ many n (Hille, 1937).

2. Our bounds. One may take $c_1 = c_2 = 1/\rho$. More precisely, $\forall \varepsilon > 0$

$$m(n) < \frac{n^{\rho}}{\exp\left((\log n)^{1/\rho}/(\log\log n)^{1+\varepsilon}\right)}$$

holds for $n > n_0$, while, for some positive constant c,

$$m(n) > \frac{n^{\rho}}{\exp\left(c(\log n)^{1/\rho}/(\log\log n)^{1/\rho}\right)}$$

holds for ∞ many n.

(Klazar & Luca, arXiv:math.NT/0505352, version 2)

Perhaps $1 + \varepsilon \rightarrow 1/\rho$?

3. Outline of the proof. Let $p_k = \text{the } k\text{th prime}$, $P(n) = \max_{p|n} p$,

$$\mathcal{P}_k = \{n : P(n) \le p_k\}$$

and

$$m_k(n) = \#$$
(solutions to $n = \prod a_i, a_i \in \mathcal{P}_k \setminus \{1\}$).
So $m_k(n) = m(n)$ if $n \in \mathcal{P}_k$ and $m_k(n) = 0$ else. As before we have

$$m_k(n) < n^{
ho_k}$$

where $\zeta_k(\rho_k) = 2$ and $\zeta_k(s)$ is defined by

$$\zeta_k(s) = \prod_{p \le p_k} \left(1 - 1/p^s \right)^{-1} = \sum_{n \in \mathcal{P}_k} 1/n^s.$$

Clearly, $\rho_k \uparrow \rho$ as $k \to \infty$ but how fast?

$$\rho - \rho_k = \frac{c + O(\log \log k / \log k)}{k^{\rho - 1} (\log k)^{\rho}}.$$

The lower bound. We use the Dirichlet series

$$\sum_{n\geq 1} \frac{m_k(n)}{n^s} = \sum_{r\geq 0} (\zeta_k(s) - 1)^r = \frac{1}{2 - \zeta_k(s)}.$$

By the effective Ikehara–Ingham theorem (due to Tenenbaum), for $x \to \infty$,

$$\sum_{n \le x} m_k(n) = \sum_{n \le x, \ P(n) \le p_k} m(n) = (c_k + o(1)) x^{\rho_k},$$

uniformly in k = 2, 3, 4, ... Thus, with the usual notation $\Psi(x, y) = \#\{n \le x : P(n) \le y\}$, there exists an $N \le x$ such that

$$m(N) > \frac{x^{\rho_k}}{5\Psi(x, p_k)} = \frac{x^{\rho}/\exp((\rho - \rho_k)\log x)}{5\Psi(x, p_k)}.$$

Using the asymptotics $\rho - \rho_k = \cdots$, bounds on $\Psi(x, y)$ and tunning k = k(x), we obtain the lower bound. The upper bound. We are given an $n = q_1^{a_1} \dots q_k^{a_k}$ where $2 \le q_1 < q_2 < \dots$ Let $\overline{n} = p_1^{a_1} \dots p_k^{a_k}$ (now $p_1 = 2$, $p_2 = 3, \dots$). So $\overline{n} \le n$ and

$$m(n) = m(\overline{n}) < \overline{n}^{\rho_k} \le n^{\rho_k}$$

where $k = \omega(n)$. If $k = \omega(n)$ is small, we bound

$$m(n) < n^{\rho_k} = \frac{n^{
ho}}{\exp((
ho -
ho_k)\log n)}$$

again by the asymptotics $\rho - \rho_k = \cdots$. But what if $k = \omega(n)$ is not small? By a combinatorial argument, if q|n then

$$m(n) < 2\Omega(n) \cdot m(n/q) < 3 \log n \cdot m(n/q).$$

Iterating, we get

$$m(n) < (3 \log n)^k \cdot m(n/q_1 q_2 \dots q_k)$$
 where $k = \omega(n)$.

So

$$m(n) < (3 \log n)^k \cdot m(n/q_1q_2 \dots q_k)$$

$$< (3 \log n)^k \frac{n^{\rho}}{(q_1q_2 \dots q_k)^{\rho}}$$

$$\leq (3 \log n)^k \frac{n^{\rho}}{(p_1p_2 \dots p_k)^{\rho}}$$

$$= \frac{n^{\rho}}{\exp(\rho \sum_{i \le k} \log p_i - k(\log \log n + \log 3))}.$$

If $k = \omega(n)$ is not small, $\exp(\dots) > 1$ and we get a nontrivial upper bound. Tunning k = k(n) and combining both arguments, we get the upper bound. **4.** Further properties of m(n). (1, 2, and 3 are proved in our preprint, 1 was obtained also by Knopfmacher and Mays in 2005).

1. m(n) = n for ∞ many n.

2. m(n) is odd $\iff n$ is squarefree.

3. Sequence $(m(n))_{n\geq 1}$ is not holonomic, that is, satisfies no linear recurrence with polynomial coefficients.

4. (Cayley, 1859; often rediscovered). If $a_k = m(p_1 p_2 \dots p_k)$ then

$$\sum_{k\geq 0}\frac{a_k x^k}{k!} = \frac{1}{2 - \exp(x)}.$$

5. (MacMahon, 1893). A formula for $m(q_1^{a_1} \dots q_k^{a_k})$ in terms of the multiset $\{a_1, a_2, \dots, a_k\}$.

6. (MacMahon, 1893). m(n) is equal to the number of perfect partitions of n-1.

 $\lambda \vdash n$ is perfect if for every $n' \leq n$ there is exactly one subpartition λ' of λ with $\lambda' \vdash n'$.

Example. m(12) = 8 and 11 has 8 perfect partitions, namely $(1^2, 3, 6)$, $(1, 2^2, 6)$, $(1^5, 6)$, $(1, 2, 4^2)$, $(1^3, 4^2)$, $(1^2, 3^3)$, $(1, 2^5)$, and (1^{11}) .