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1. Previous bounds. It is well known that

c(n) = #(solutions to n =
∑

ai, ai ≥ 1) = 2n−1

but what is

m(n) = #(solutions to n =
∏

ai, ai ≥ 2) ?

(The order of summands and factors matters.)

The values of m(n) for n = 1,2, . . . ,50 are:

0(1),1,1,2,1,3,1,4,2,3,1,8,1,3,3,8,1,8,

1,8,3,3,1,20,2,3,4,8,1,13,1,16,3,3,3,26,

1,3,3,20,1,13,1,8,8,3,1,48,2,8, . . .

We have m(n) < n for n < 48 but m(48) = 48. Perhaps

m(n) < n1.5 for all n?



Well, no, but it is true that m(n) < nρ for all n when

ρ = 1.72864 . . ., where ρ satisfies ζ(ρ) =
∑

1/nρ = 2.

Proof by induction (Coppersmith & Lewenstein, 2005).

m(1) = 1 ≤ 1ρ and for n > 1,

m(n) =
∑

d|n, d>1

m(n/d) ≤
∑

d|n, d>1

nρ/dρ

< nρ
∑
d>1

1/dρ = nρ(ζ(ρ)− 1)

= nρ. 2

Where does ρ come from? From the Dirichlet series∑
n≥1

m(n)

ns
=

∑
r≥0

(ζ(s)− 1)r =
1

2− ζ(s)
.



How big may m(n) be? In average,∑
n≤x

m(n) = (c + o(1))xρ, x →∞,

where c = −1/ρζ′(ρ) = 0.31817 . . . (Kalmár, 1931).
Bounds on the error term:

� exp(−αε(log logx)4/3−ε), αε > 0

(Ikehara, 1941) and 4/3 → 3/2 by Hwang in 2000.

What about the maximal order of m(n)? Erdős claimed
in 1941 that for some constants 0 < c2 < c1 < 1,

m(n) < nρ/ exp((logn)c2) for n > n0

m(n) > nρ/ exp((logn)c1) for ∞ many n

but gave no proof. Best bounds proved so far are
m(n) < nρ (Chor, Lemke and Mador, 2000) and m(n) >
nρ−ε for ∞ many n (Hille, 1937).



2. Our bounds. One may take c1 = c2 = 1/ρ. More

precisely, ∀ε > 0

m(n) <
nρ

exp
(
(logn)1/ρ/(log logn)1+ε

)
holds for n > n0, while, for some positive constant c,

m(n) >
nρ

exp
(
c(logn)1/ρ/(log logn)1/ρ

)
holds for ∞ many n.

(Klazar & Luca, arXiv:math.NT/0505352, version 2)

Perhaps 1 + ε → 1/ρ?



3. Outline of the proof. Let pk = the kth prime,
P (n) = maxp|n p,

Pk = {n : P (n) ≤ pk}
and

mk(n) = #(solutions to n =
∏

ai, ai ∈ Pk\{1}).
So mk(n) = m(n) if n ∈ Pk and mk(n) = 0 else. As
before we have

mk(n) < nρk

where ζk(ρk) = 2 and ζk(s) is defined by

ζk(s) =
∏

p≤pk

(
1− 1/ps

)−1
=

∑
n∈Pk

1/ns.

Clearly, ρk ↑ ρ as k →∞ but how fast?

ρ− ρk =
c + O(log log k/ log k)

kρ−1(log k)ρ
.



The lower bound. We use the Dirichlet series∑
n≥1

mk(n)

ns
=

∑
r≥0

(ζk(s)− 1)r =
1

2− ζk(s)
.

By the effective Ikehara–Ingham theorem (due to Tenen-

baum), for x →∞,∑
n≤x

mk(n) =
∑

n≤x, P (n)≤pk

m(n) = (ck + o(1))xρk,

uniformly in k = 2,3,4, . . .. Thus, with the usual no-

tation Ψ(x, y) = #{n ≤ x : P (n) ≤ y}, there exists an

N ≤ x such that

m(N) >
xρk

5Ψ(x, pk)
=

xρ/ exp((ρ− ρk) logx)

5Ψ(x, pk)
.

Using the asymptotics ρ − ρk = · · ·, bounds on Ψ(x, y)

and tunning k = k(x), we obtain the lower bound.



The upper bound. We are given an n = q
a1
1 . . . q

ak
k

where 2 ≤ q1 < q2 < . . .. Let n = p
a1
1 . . . p

ak
k (now p1 = 2,

p2 = 3, . . .). So n ≤ n and

m(n) = m(n) < nρk ≤ nρk

where k = ω(n). If k = ω(n) is small, we bound

m(n) < nρk =
nρ

exp((ρ− ρk) logn)

again by the asymptotics ρ − ρk = · · ·. But what if
k = ω(n) is not small? By a combinatorial argument, if
q|n then

m(n) < 2Ω(n) ·m(n/q) < 3 logn ·m(n/q).

Iterating, we get

m(n) < (3 logn)k ·m(n/q1q2 . . . qk)

where k = ω(n).



So

m(n) < (3 logn)k ·m(n/q1q2 . . . qk)

< (3 logn)k nρ

(q1q2 . . . qk)ρ

≤ (3 logn)k nρ

(p1p2 . . . pk)ρ

=
nρ

exp(ρ
∑

i≤k log pi − k(log logn + log3))
.

If k = ω(n) is not small, exp(· · ·) > 1 and we get a non-

trivial upper bound. Tunning k = k(n) and combining

both arguments, we get the upper bound.



4. Further properties of m(n). (1, 2, and 3 are

proved in our preprint, 1 was obtained also by Knopf-

macher and Mays in 2005).

1. m(n) = n for ∞ many n.

2. m(n) is odd ⇐⇒ n is squarefree.

3. Sequence (m(n))n≥1 is not holonomic, that is, sat-

isfies no linear recurrence with polynomial coefficients.

4. (Cayley, 1859; often rediscovered). If ak = m(p1p2 . . . pk)

then ∑
k≥0

akxk

k!
=

1

2− exp(x)
.



5. (MacMahon, 1893). A formula for m(qa1
1 . . . q

ak
k ) in

terms of the multiset {a1, a2, . . . , ak}.

6. (MacMahon, 1893). m(n) is equal to the number

of perfect partitions of n− 1.

λ ` n is perfect if for every n′ ≤ n there is exactly one

subpartition λ′ of λ with λ′ ` n′.

Example. m(12) = 8 and 11 has 8 perfect partitions,

namely (12,3,6), (1,22,6), (15,6), (1,2,42), (13,42),

(12,33), (1,25), and (111).


